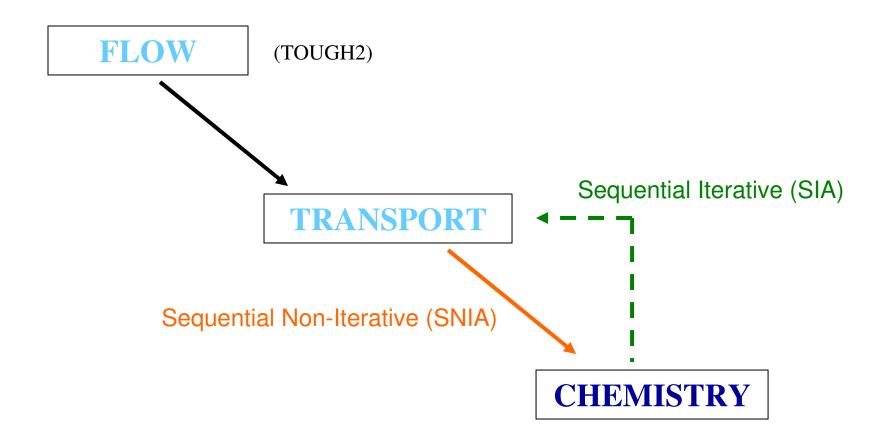

Multicomponent Geochemical Computations in TOUGHREACT


Nicolas Spycher Earth Sciences Division Lawrence Berkeley National Laboratory

- flow transport chemistry
- Introduction of reactive chemistry • into TOUGH2
- Reactions between gas aqueous -• solid phases, equilibrium or kinetics
- General database for minerals, • aqueous and gaseous species
- Porosity and permeability change

Reactive Transport Computational Approach

Multicomponent Chemical System

- Multicomponent Reactions (water must be present)
 - Aqueous Species
 - Minerals
 - Gases
 - Exchange Species
 - Surface Complexes (v2.0 beta)
- Aqueous Speciation: equilibrium (v2.0 beta with kinetics)
- Surface Complexation/Exchange: equilibrium
- Mass Transfer:
 - Minerals: equilibrium or kinetic constraints
 - Gases: equilibrium
- External Thermodynamic Database: reaction stoichiometries, equilibrium constants, activity coefficient data, etc.

Geochemical Computations - General

- Chemical system definition
 - Temperature and Pressure
 - Total aqueous concentrations (e.g., analytical)
 - Mineral amounts (0 for potential secondary phases)
 - Gas partial pressures (optional, unsaturated medium)
- Numerical approach: mass balance/mass action
 - Primary aqueous species (actual unknowns)
 - Derived species (functions of primary species mass action)
 - Secondary aqueous species (ion pairs, complexes)
 - Minerals
 - Gases
 - Newton-Raphson iterative procedure
 - Solve for concentrations of primary species and kg water
 - Derive all other concentrations, mineral amounts, and gas partial pressures from mass action laws involving primary species

Example Chemical System

- Components of interest:
 - O, H, Na, Cl, Ca, S, C
- Primary species reflecting the components:
 - H₂O, H⁺, Cl⁻, Ca⁺², Na⁺, SO₄⁻², HCO₃⁻
 - Best to use primary species representing dominant species
 - H_2O and H⁺ always primary species in TOUGHREACT
- Secondary aqueous species
 - OH^- , CO_3^{-2} , HSO_4^{-} , $CaHCO_3^+$ etc... (automatic selection or specified)
- Minerals (specified input)
 - Calcite (CaCO₃), Gypsum (CaSO₄) etc...
- Gases (specified input)
 - $CO_{2(g)}$, $HCl_{(g)}$ (Note, $H_2O_{(g)}$ is handled by flow EOS modules!)

Mass-Action Equations

- Expressions in terms of primary species only
- Secondary aqueous species $(a_i = \gamma_i \times m_i)$
 - OH⁻ + H+ = H₂O $K_{OH-} = a_{H2O} / (a_{H+} \times a_{OH-})$ HSO₄⁻ = H⁺ + SO₄⁻² $K_{HSO4-} = (a_{H+} \times a_{SO4--}) / a_{HSO4-}$ CO₃⁻² + H⁺ = HCO₃⁻ $K_{CO3--} = a_{HCO3-} / (a_{H+} \times a_{CO3--})$ CaHCO₃⁺ = Ca⁺² + HCO₃⁻ $K_{CaHCO3} = (a_{Ca++} \times a_{HCO3-}) / a_{CaHCO3}$
- Minerals

$$CaCO_{3(s)} + H^{+} = Ca^{+2} + HCO_{3}^{-} K_{calcite} = (a_{Ca++} \times a_{HCO3-}) / a_{H+}$$
$$CaSO_{4(s)} = Ca^{+2} + SO_{4}^{-2} K_{gypsum} = a_{Ca++} \times a_{HCO3-}$$

• Gases $(f_i = \phi_i \times P_i)$ $CO_{2(g)} + H_2O = HCO_3^- + H^+$ $K_{CO2} = (a_{H+} \times a_{HCO3-}) / (f_{CO2} \times a_{H2O})$

Mass-Balance Equations

- Total moles (M^t) in terms of molal concentrations (mol/kg_w)
 - Solutes $M_{C}^{t} = \{[HCO_{3}^{-2}] + [CO_{3}^{-2}] + [CaHCO_{3}] \dots\} \times kg_{w} + \Delta n_{calcite} + n_{CO2(g)} + \dots$ $M_{H+}^{t} = \{[H^{+}] - [OH^{-}] - [CO_{3}^{-2}] + [HSO_{4}^{-}] + \dots\} \times kg_{w} - \Delta n_{calcite} + n_{CO2(g)} + \dots$ $M_{Ca}^{t} = \{[Ca^{+2}] + [CaHCO_{3}^{+}] + \dots\} \times kg_{w} + \Delta n_{calcite} + \Delta n_{gypsum} + \dots$

- Solvent (water, after Reed 1982 GCA)

$$M_{w}^{t} = \{55.505 + [...] + ...\} \times kg_{w} + \Delta n_{...} - n_{CO2(g)} + ...$$

- Minerals incremental change Δn_m (in moles) Kinetics: $\Delta n_m = R \times \Delta t$ R = kinetic rate (positive = dissolve) Equilibrium: solve for Δn_m by adding mass action eqn (negative = dissolve)
- Gases, at equilibrium total moles n_i (change + initial)
 From gas law: P_iV = n_iRT with gas concentration = n_i/V and P_i from massaction law (ideal, P = f, except with ECO2 module)

Activity Coefficients Calculations

• Charged species and water:

Extended Debye-Hückel (Helgeson et al., 1981 AJS)

- Assumes predominant ions are Na⁺ and Cl⁻
- Careful above ionic strength 1 molal for non Na-Cl dominant waters!
- Not bad to $\sim 6 \text{ m}$ for <u>pure</u> NaCl solution
- Remove NaCl_(aq) (derived species) in the database!
- Watch! D-H a₀ values are calculated from input effective radii in database (different from more standard "b-dot" equation)
- Neutral species:
 - Optional Setchenow equation: $log(\gamma) = (const) \times (ionic strength)$, otherwise γ values are set to one
 - Dissolved gases: Drummond (1981 unpubl. Ph.D. Penn State)
- Unreleased beta-version with Pitzer ion-interaction model for concentrated solutions (Zhang et al., 2006)

Redox Reactions

- Same approach as non-redox reactions if:
 - Unique redox couple (i.e., donor and acceptor) is defined with two primary species. For example:
 - H_2O and O_2 (preferable if dealing with mostly oxidized systems)
 - SO_4 and HS^- (preferable if dealing with mostly reduced systems)
 - Electron transfer is balanced using the specific redox couple in all reactions of the database (i.e., no free electrons!).
- Example:
 - Primary species: Fe⁺³, H₂O, O_{2(aq)}, etc... (with Fe⁺² as secondary species) Fe⁺² + $0.25O_{2(aq)}$ + H⁺ = Fe⁺³ + $0.5H_2O$
 - Primary species: Fe^{+2} , SO_4 and HS^- , etc... (with Fe^{+3} as secondary species) $8Fe^{+3} + HS^- + 4H_2O = 8Fe^{+2} + SO_4^{--} + 9H^+$
- Utility provided to "switch" the redox couple in the database
- Unreleased v2.0 beta with redox disequilibrium (Xu, 2006)

Thermodynamic Data

• $\log(K)$ values for mass-action equations and D-H parameters for activity coefficients are calculated as functions of temperature (T_K , Kelvin) from coefficients read in external database for given reaction stoichiometries

 $a + \ln(T_K) + b + cT_K + d/T_K + e/T_K^2$

• Watch!!!! Crucial for confidence in results!

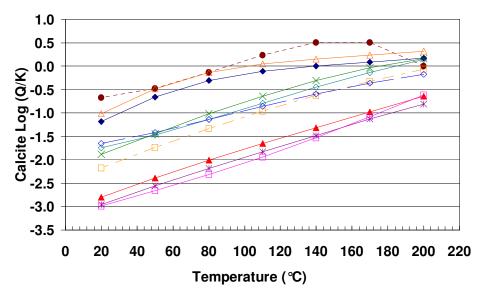
- Quality/consistency of log(K) data
- Applicability of activity coefficient model
- Consistency between activity coefficient model and types of secondary aqueous species and their log(*K*) values
- DO NOT use supplied database as black box!
- Understand the data you are using (trash in = trash out)

Kinetic Data

$$Rate = \pm kA_m \prod_i a_i^p \left[\left(\frac{Q}{K} \right)^m - 1 \right]^n$$

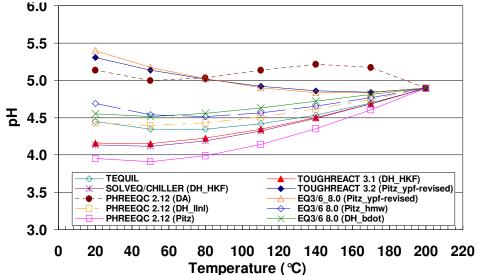
(e.g., Steefel and Lasaga, AJS, 1994)

• Rate constant k


$$k = k_0 \exp\left[\frac{-E_a}{R} \left(\frac{1}{T} - \frac{1}{298.15}\right)\right]$$

- Surface area A_m
- Equilibrium constant *K*

Q is ion activity product, a_i are individual activities (e.g., H⁺) Equilibrium at Q/K = 1, dissolution at Q/K<1, precipitation at Q/K>1


Large uncertainty in A_m and k !!

Beware of Data/Model Limits (!)

Cool same geothermal brine from 200°C (pH 4.9, ionic strength 1.8)

This is mostly an effect of activity coefficient uncertainty at elevated temperature when dealing with concentrated solutions

TOUGHREACT WORKSHOP

Useful General References (not related to TOUGHREACT)

Bethke C.M., 1996. Geochemical Reaction Modeling. Oxford University Press, New York, 397pp.

2007. Geochemical and Biogeochemical Reaction Modeling (2nd Edition). Cambridge University Press, 564pp.

- Denbigh K., 1983. The Principles of Chemical Equilibrium. 4th Edition. Cambridge University Press, 494pp.
- Lasaga, A.C., 1998. *Kinetic Theory in the Earth Sciences*. Princeton, New Jersey: Princeton University Press, 811pp.
- Lichtner P.C., Steefel C.I., Oelkers E.H., 1996. Reactive Transport in Porous Media. Reviews in Mineralogy, 34. Mineralogical Society of America, Washington D.C., 438pp.
- Reed M.H., 1982. Calculation of multicomponent equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase. *Geochimica Cosmochimica Acta*, 46, 513-528.
- Steefel, C.I. and Lasaga, A.C. 1994. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. *American Journal of Science*, 294, (5), 529-592.