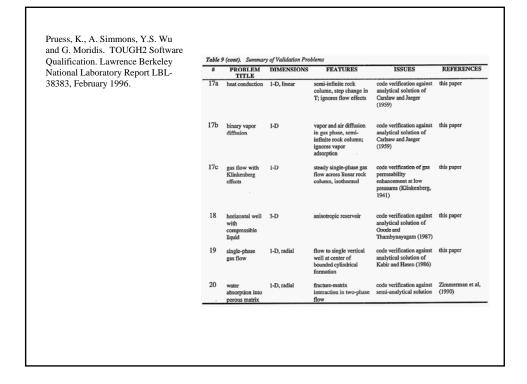
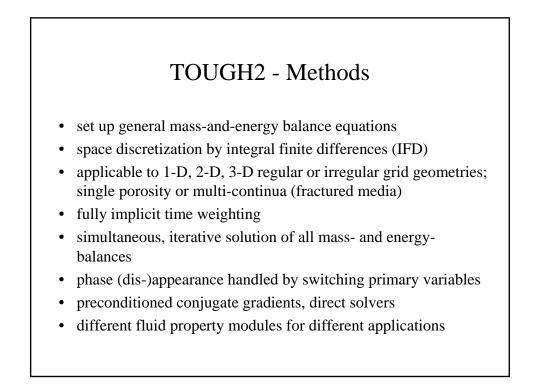



| Transport Of Unsaturated                                                                                                                                                                                                               | Groundwater a    | and ${f H}$ eat                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|
| <ul> <li>Geothermal reservoir en</li> <li>Nuclear waste disposal</li> <li>Vadose zone hydrology</li> <li>Environmental remediat</li> <li>Oil and gas</li> <li>Carbon storage (sequest</li> </ul> Distributed by U.S. Department of Ene | tion<br>tration) |                                         |
| I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                  | phone            | (865) 576-2606                          |
| Energy Science and Technology Software Center                                                                                                                                                                                          | 1                |                                         |
| Energy Science and Technology Software Center<br>P.O. Box 1020<br>Oak Ridge, Tennessee 37831                                                                                                                                           | fax              | (865) 576-6436<br>estsc@adonis.osti.gov |

| rable 1. Development | of the TOUGH codes.*                                                  |                                                               |                                                         |
|----------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------|
| Simulator            | Application                                                           | Phases (components)†                                          | Comments                                                |
| MULKOM               | geothermal, nuclear waste,<br>oil and gas                             | multi (multi)                                                 | research code,<br>operational 1981<br>no public release |
| TOUGH                | geothermal, nuclear waste                                             | aqueous, gas (water, air)                                     | released 1987                                           |
| TOUGH2               | general purpose                                                       | aqueous, gas (water, NCGs)                                    | released 1991                                           |
| T2VOC                | environmental                                                         | aqueous, gas, NAPL<br>(water, air, VOC)                       | released 1995                                           |
| ITOUGH2              | inverse modeling;<br>sensitivity analysis,<br>uncertainty propagation | multi (multi)                                                 | released 1999                                           |
| TOUGH2 V 2.0         | general purpose                                                       | multi (multi)                                                 | released 1999                                           |
| TMVOC                | environmental                                                         | aqueous, gas, NAPL<br>(water, air, multiple VOCs<br>and NCGs) | released 2002                                           |
| TOUGHREACT           | reactive chemistry                                                    | aqueous, gas, solid (multi)                                   | release 2004                                            |
| TOUGH-FLAC           | geomechanics                                                          | in the CON                                                    | (expected)<br>research code                             |
| IUUGHILAU            | geomecnanics                                                          | aqueous, gas (water, CO <sub>2</sub> )                        | research code                                           |






| Pruess, K., A. Simmons, Y.S. Wu                                                                        | *   | PROBLEM<br>TITLE                              | DIMENSIONS                | FEATURES                                                                                                                                                  | ISSUES                                                                                                                                             | REFERENCES                                                         |
|--------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| and G. Moridis. TOUGH2 Software<br>Qualification. Lawrence Berkeley<br>National Laboratory Report LBL- | 1   | infiltration                                  | 1-D, linear<br>horizontal | isothermal                                                                                                                                                | code verification against<br>known semi-analytical<br>solution (Philip, 1955;<br>Ross et al., 1982)                                                | #2 in Pruess<br>(1987); also #1 in<br>Moridis and Pruess<br>(1992) |
| 38383, February 1996.                                                                                  | 2   | flow to a<br>geothermal<br>well               | 1-D, radial               | water and steam only,<br>no air; sensible and<br>latent heat effects;<br>coupled fluid and heat<br>flow                                                   | phase transitions;<br>propagating boiling<br>front; code verification<br>against known semi-<br>analytical and numerical<br>solutions (Garg, 1978, | #4 in Pruess,<br>(1987), also #4 in<br>Moridis and Prues<br>(1992) |
|                                                                                                        | 3   | transient heat<br>pipe                        | 1-D, linear               | coupled fluid and heat<br>flow with air; liquid-gas<br>counter-flow with very<br>strong binary diffusion;<br>sensible and latent heat<br>effects          | 1980)<br>code verification against<br>similarity solution<br>(Doughty and Proess,<br>1991, 1992)                                                   | Pruess (1991);<br>Doughty and<br>Pruess (1992)                     |
|                                                                                                        | 4   | coupled heat<br>and mass<br>transport         | 1-D, linear               | enects<br>non-isothermal<br>convection, diffusion                                                                                                         | code verification<br>(Avdonin, 1964, Ross,<br>1982)                                                                                                | # 2 in Moridis and<br>Pruess (1992)                                |
|                                                                                                        | 5   | heat transport                                | 1-D, radial               | single phase non-<br>isothermal, convection,<br>diffusion, sensible and<br>latent heat effects                                                            | code verification<br>(Avdonin, 1964, Ross,<br>1982)                                                                                                | #3 in Moridis and<br>Pruess (1992)<br>#2 in Moridis and            |
|                                                                                                        | 6   | Theis problem<br>(flow toward a<br>well)      | 1-D, radial               | single-phase,<br>isothermal, viscous<br>forces                                                                                                            | validation against<br>analytical solution<br>(Theis, 1935)                                                                                         | Pruess (1995)<br>#1 in Moridis and<br>Pruess (1995)                |
|                                                                                                        | 7   | Coupled fluid<br>and heat flow<br>in fracture | 1-D, radial               | heat conduction, MINC,<br>fracture-matrix flow,<br>single-phase, non-<br>isothermal                                                                       | verification                                                                                                                                       | Pruess and Wu<br>(1993)                                            |
|                                                                                                        | . 8 | infiltration                                  | 2-D, cartesian            | isothermal, two-phase<br>heterogeneous medium,<br>seepage face mixed<br>boundary condition,<br>interference between<br>liquid and gas, gravity<br>effects | validation against<br>experimental data<br>(Vauclin et al., 1979)                                                                                  | #6 in Moridis and<br>Pruess (1995)                                 |

Г

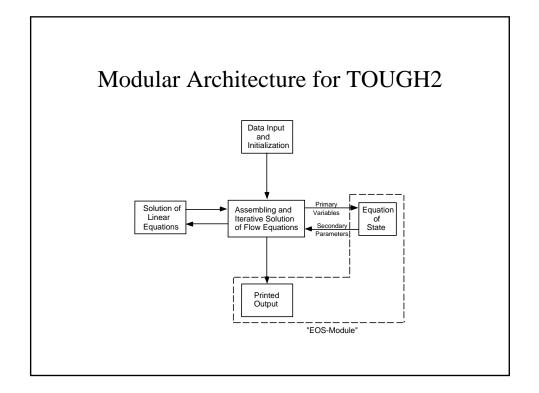
| Pruess, K., A. Simmons, Y.S. Wu                                                                        | #   | PROBLEM<br>TITLE                                         | DIMENSIONS       | FEATURES                                                                                                                                | ISSUES                                                                                      | REFERENCES                                                              |
|--------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| and G. Moridis. TOUGH2 Software<br>Qualification. Lawrence Berkeley<br>National Laboratory Report LBL- | 9   | convection cell                                          | 2-D, cylindrical | single phase, non-<br>isothermal,<br>heterogeneous soil, no<br>mass flow boundary,<br>flow channeling.<br>sensible and latent heat      | validation against lab<br>experiment (Reda,<br>1984)                                        | #7 in Moridis and<br>Pruess (1992)<br>3 in Moridis and<br>Pruess (1995) |
| 38383, February 1996.                                                                                  |     |                                                          |                  | effects                                                                                                                                 |                                                                                             |                                                                         |
|                                                                                                        | 10  | two-phase flow                                           | 2-D, cylindrical | simultaneous heat and<br>mass flow, phase<br>change, time-variant<br>pressure boundary,<br>interference between<br>liquid and gas phase | validation against lab<br>experiment (Kruger and<br>Ramey, 1974; Faust<br>and Mercer, 1979) | #8 in Moridis and<br>Pruess, 1992                                       |
|                                                                                                        | 11  | Warren-Root<br>Solution                                  | 1-D, radial      | transient flow, double-<br>porosity modium                                                                                              | code verification against<br>analytical solution<br>(Warren and Root,<br>1963)              | this paper                                                              |
|                                                                                                        | 12  | Lauwerier heat<br>transfer<br>solution                   | 2-D, cartesian   | conductive and<br>convective heat transfer<br>in porous media                                                                           | code verification against<br>analytical solution<br>(Lauwerier, 1955)                       | this paper                                                              |
|                                                                                                        | 13  | handling of<br>thermophysical<br>properties              | NA               | water, water vapor, air                                                                                                                 | TOUGH2 calculated<br>properties compared to<br>steam tables (CRC,<br>1993)                  | this paper                                                              |
|                                                                                                        | 14  | vapor pressure<br>lowering                               | NA               | coupling between<br>capillary and vapor<br>adsorption effects, and<br>vapor pressure                                                    | comparison with<br>predictions from<br>Kelvin's equation                                    | this paper                                                              |
|                                                                                                        | 15a | heterogeneous                                            | 1-D              | single-phase slightly<br>compressible liquid                                                                                            | code verification against<br>analytical solution of<br>Moridis (1995)                       | this paper                                                              |
|                                                                                                        | 15b | flow to single<br>well with<br>anisotropic<br>formation  | 2-D              | single-phase, slightly<br>compressible fluid,<br>infinite anisotropic<br>aquif <del>tr</del>                                            | code verification against<br>analytical solution<br>(Papadapoulos, 1965)                    | this paper                                                              |
|                                                                                                        | 16  | single-phase<br>transient flow<br>with irregular<br>gird | 2-D, cartesian   | transient flow in<br>horizontal, isotropic,<br>isothermal aquifer                                                                       | verification of irregular<br>grid capability using<br>Theis solution                        | this paper                                                              |

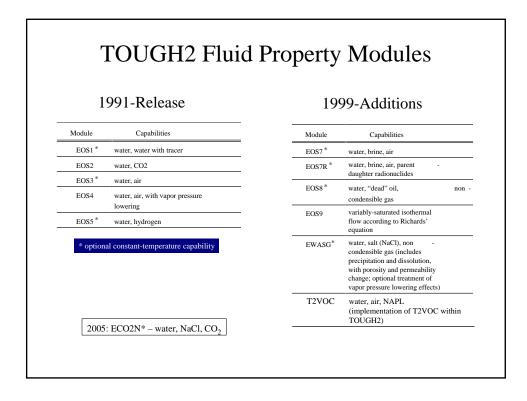


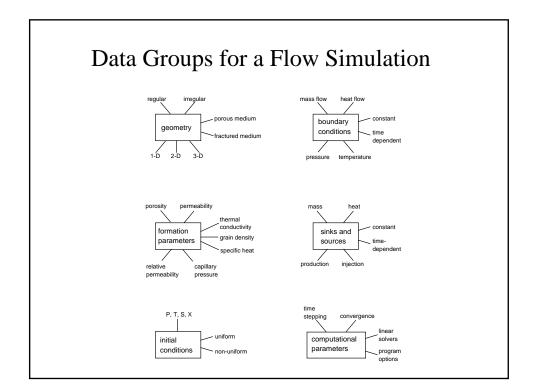


## TOUGH2 - Architecture

The equations describing multiphase, multicomponent fluid and heat flow have the same mathematical form, regardless of the number and nature of fluid components and phases present.


The only differences for different fluid systems, such as *water-air*, *water-dissolved* salts, brine- $CO_2$ , or *water-gas-oil*, are in the material properties:

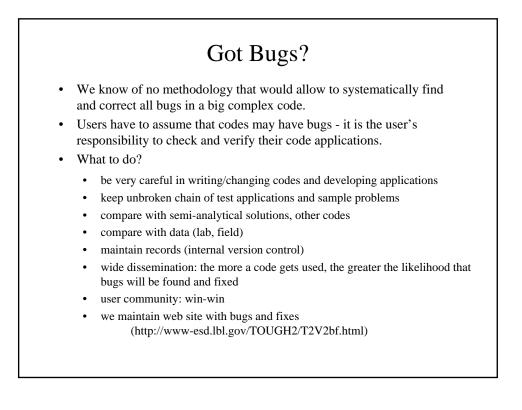

densities, viscosities, partitioning of fluid components among phases, etc. ...


This suggests to set up a "modular" simulator architecture, consisting of

- a core module for assembling and solving the flow and transport equations,
- fluid property or "equation-of-state" (EOS) modules, that supply thermophysical and transport property data for the fluid system(s) at hand,
- modules for inputting and outputting data.

The modular architecture just described is known as "MULKOM," and is implemented in the TOUGH family of codes. It offers great flexibility in applications to different kinds of flow problems.



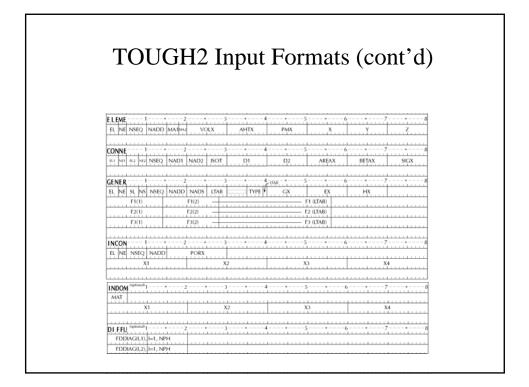


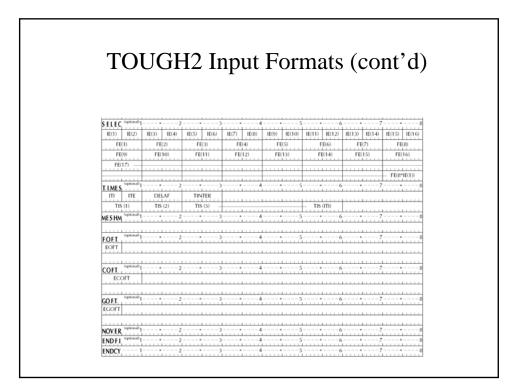


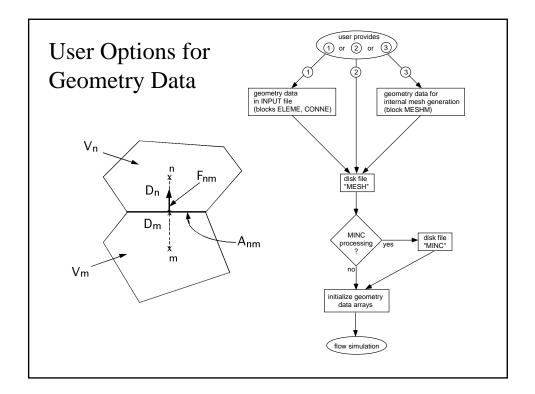

## Model Calibration (History Matching)

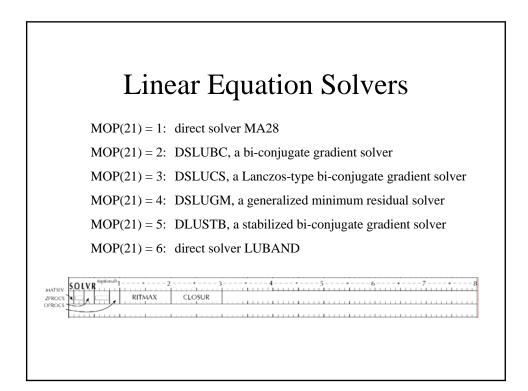
- make guesses for poorly constrained parameters
- run simulation
- compare the outcome with field observations
- · revise parameters to try and reduce discrepancies

trial-and-error process, or "inverse modeling" (iTOUGH2 - automatic history match)





|                            | TOUGH2 Inp                                                                                                                                          | out E               | Data Blocks                                                                                                                                       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Keyword                    | Function                                                                                                                                            |                     |                                                                                                                                                   |
| TITLE<br>(first<br>record) | one data record (single line) with a title for the simulation problem                                                                               | RPCAP               | optional; parameters for relative permeability and capillary pressure functions                                                                   |
| MESHM                      |                                                                                                                                                     | TIMES               | optional; specification of times for generating printout                                                                                          |
| MESHM                      | optional; parameters for internal grid generation<br>through MESHMaker                                                                              | *ELEME              | list of grid blocks (volume elements)                                                                                                             |
| ROCKS                      | hydrogeologic parameters for various reservoir                                                                                                      | *CONNE              | list of flow connections between grid blocks                                                                                                      |
|                            | domains                                                                                                                                             | *GENER              | optional; list of mass or heat sinks and sources                                                                                                  |
| MULTI                      | optional; specifies number of fluid components and<br>balance equations per grid block; applicable only for<br>certain fluid property (EOS) modules | INDOM               | optional; list of initial conditions for specific reservoir domains                                                                               |
| SELEC                      | used with certain EOS-modules to supply<br>thermophysical property data                                                                             | *INCON              | optional; list of initial conditions for specific gri<br>blocks                                                                                   |
| START                      | optional; one data record for more flexible<br>initialization                                                                                       | NOVER<br>(optional) | optional; if present, suppresses printout of version<br>numbers and dates of the program units executed in a<br>TOUGH2 run                        |
| PARAM                      | computational parameters; time stepping and<br>convergence parameters; program options                                                              | ENDCY<br>(last      | one record to close the TOUGH2 input file and initiate the simulation                                                                             |
| DIFFU                      | diffusivities of mass components                                                                                                                    | record)             |                                                                                                                                                   |
| FOFT                       | optional; specifies grid blocks for which time series data are desired                                                                              | ENDFI               | alternative to "ENDCY" for closing a TOUGH2 input file;<br>will cause flow simulation to be skipped; useful if only<br>mesh generation is desired |
| COFT                       | optional; specifies connections for which time series data are desired                                                                              |                     |                                                                                                                                                   |
| GOFT                       | optional; specifies sinks/sources for which time series<br>data are desired                                                                         |                     | cks labeled with a star * can be provided as separate disk files,<br>in which case they would be omitted from the INPUT file.                     |


|                   | TOUGH2                                                                                                                                                                                    | 2 Di               | sk Files                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| File              | Use                                                                                                                                                                                       |                    |                                                                                                                          |
| MESH<br>(unit 4)  | written in subroutine INPUT from ELEME and CONNE data, or in<br>module MESHMAKER from mesh specification data;<br>read in RFILE to initialize all geometry data arrays used to define the | LINEQ<br>(unit 15) | written during linear equation solution, to provide informative messages on linear equation solution                     |
|                   | discretized flow problem                                                                                                                                                                  | TABLE<br>(unit 8)  | written in CYCIT to record coefficients of semi-analytical heat exchange<br>at the end of a TOUGH2 simulation run        |
| GENER<br>(unit 3) | written in subroutine INPUT from GENER data;<br>read in RFILE to define nature, strength, and time-dependence of sinks                                                                    | (unit 8)           | read (optionally) in subroutine QLOSS to initialize heat exchange<br>coefficients in a continuation run                  |
| INCON             | and sources<br>written in subroutine INPUT from INCON data:                                                                                                                               | FOFT               | written in FGTAB to provide time series data for elements for plotting                                                   |
| (unit 1)          | read in RFILE to provide a complete specification of thermodynamic                                                                                                                        | (unit 12)          |                                                                                                                          |
|                   | conditions                                                                                                                                                                                | COFT<br>(unit 14)  | written in FGTAB to provide time series data for connections for<br>plotting                                             |
| SAVE<br>(unit 7)  | written in subroutine WRIFI to record thermodynamic conditions at the<br>end of a TOUGH2 simulation run;                                                                                  | GOFT               | written in FGTAB to provide time series data for sinks/sources for                                                       |
| (                 | compatible with formats of file or data block INCON for initializing a                                                                                                                    | (unit 13)          | plotting                                                                                                                 |
| MINC              | continuation run<br>written in module MESHMAKER with MESH-compatible                                                                                                                      | VERS<br>(unit 11)  | written in all TOUGH2 program units with informational message on<br>version number, date, and function;                 |
| (unit 10)         | specifications, to provide all geometry data for a fractured-porous                                                                                                                       | (unit 11)          | read in main program and printed to default OUTPUT at the conclusion                                                     |
|                   | medium mesh (double porosity, dual permeability, etc.);<br>read (optionally) in subroutine RFILE to initialize geometry data for a                                                        |                    | of a TOUGH2 simulation run; printing of version information is<br>suppressed when keyword NOVER is present in INPUT file |
|                   | fractured-porous system                                                                                                                                                                   |                    | suppressed when key word no vizit is present in interest in                                                              |
|                   |                                                                                                                                                                                           |                    |                                                                                                                          |

| TSTART         TIMAX         DELTEN or NDLT         DELT         CF         REDLT         SCALE           DLT (1)         DLT (2)         DLT (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                          |                        |                                   |          |           |               |            |                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------|------------------------|-----------------------------------|----------|-----------|---------------|------------|-------------------------------|
| NOCKS         1         2         3         4         5         6         7           MAT         NAD         DECK         POR         PBR (1)         PBR (2)         PER (3)         CWET         SPHT           COM         EXPAN         CDBY         TORTX         GK         XXD3         XXD4            IRP         BP         PR (1)         PER (2)         PER (3)         KP (4)         XXD4            IRP         PR (1)         RP (2)         RP (3)         RP (4)         XXD3         XXD4            IRP         PR (1)         RP (2)         RP (3)         RP (4)         RP (5)         CP (6)         CP (7)           ICP         CP (1)         CP (2)         CP (3)         CP (4)         CP (5)         CP (6)         CP (7)           MULTI         PRE MI         NE         NKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                          |                        | TO                                | UGH2 INI | PUT FORMA | ATS           |            |                               |
| MAT         NAD         DROK         POR         PER (1)         PER (2)         PER (3)         CWET         SPHT           COM         EXMAN         CDKY         TORTX         GK         XKD3         XKD4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I, I, I,                 | .E                                       |                        |                                   |          |           |               |            |                               |
| COM         EXPAN         CDRY         TORTX         GK         XKD3         XKD4           IBP         RP(1)         RP(2)         RP(3)         RP(4)         RP(5)         RP(6)         RP(7)           ICP         CP(1)         CP(2)         CP(3)         CP(4)         CP(5)         RP(6)         RP(7)           ICP         CP(1)         CP(2)         CP(3)         CP(4)         CP(5)         CP(6)         CP(7)           MULT (************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | procession in the second |                                          |                        | 23-                               |          | 45<br> 5  |               | 67         |                               |
| IRP         RP (1)         RP (2)         RP (3)         RP (4)         RP (5)         RP (6)         RP (7)           ICP         CP (1)         CP (2)         CP (3)         CP (4)         CP (5)         CP (6)         CP (7)           MULT   "period"         2         3         4         5         6         7         •           NK         NEQ         NPH         NB         NKIN         •         5         6         7         •           START         "month"         2         3         4         •         5         6         7         •           MOP 12 24 5 5 7 9 01 2 34 5 6 7 8 9 01 2 34 5 6 7 8 9 01 2 34         •         -         5         6         7         •           MOP 12 24 5 5 7 9 01 2 34 5 6 7 8 9 01 2 34 5 6 7 8 9 01 2 34         •         -         5         6         7         •           MOP 12 24 5 5 7 9 01 2 34 5 6 7 8 9 01 2 34         •         -         5         6         7         •           MOP 12 24 5 6 7 8 9 01 2 3 4 5 6 7 8 9 01 2 3 4         •         -         5         6         7         •           MOP 01 10         -         -         -         5         6         7         •                                                                                                                                                                 |                          | 1 1 1 1 1                                |                        |                                   |          |           |               |            | SPHT                          |
| ICP         CP (1)         CP (2)         CP (3)         CP (4)         CP (5)         CP (6)         CP (7)           MULTI         1         2         3         4         5         6         7         1           NK         NEQ         NPH         NSIN         START         1         5         6         7         1           START         1         2         3         4         5         6         7         1           MOP:12 24 5 5 78 9 01 23 4 5 6 78 9 01 23 4 5         3         4         5         6         7         1           MOP:12 24 5 5 78 9 01 23 4 5 6 78 9 01 23 4 5         4         -5         6         7         1           MOP:12 24 5 5 78 9 01 23 4 5 6 78 9 01 23 4 5         7         9         1         -7         1           MOP:12 24 5 5 78 9 01 23 4 5 6 78 9 01 23 4 5         7         9         1         -7         -7           MOP:12 14 5 6 78 9 01 23 4 5 6 78 9 01 23 4 5         1         1         -7         -7         -7           TSTART         MOP (0, 1= 1/24         Itel NX         ELST         Cf         REDT         SCALE           DUT (0)         DUT (2)         DUT (3)         DUT (40         0458*MO                                                                                                                                              |                          | ÇOM                                      | EXPAN                  | CDRY                              | TORTX    | GK        | XKD3          | XKD4       |                               |
| MULTI         Operandi<br>NMLTI         2         3         4         5         6         7           NK         NEQ         NPH         N8         NKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IRP                      |                                          | RP (1)                 |                                   | RP (3)   | RP (4)    | RP (5)        | RP (6)     | RP (7)                        |
| NK         NEQ         NPH         NB         NKIN           START         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ICP                      |                                          | CP (1)                 | CP (2)                            | CP (3)   | CP (4)    | CP (5)        | CP (6)     | CP (7)                        |
| START         1         2         3         4         5         6         7           MCP:12:14:56:78:90:12:14:56:78:90:12:14         MCP:12:14:16:16:16:16:16:16:16:16:16:16:16:16:16:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MUL                      | (optional)                               |                        | 23-                               |          | 45        |               | 67         | · · · · · · · · · · · · · · · |
| START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NK                       | NEQ                                      | NPH NB                 | NKIN                              |          |           |               |            |                               |
| PARAM         1         2         3         4         5         6         7           Note:         MCYC         MSEC         MCYC         MCYC <td< td=""><td>STA</td><td>(T (optional)</td><td></td><td>23-</td><td></td><td>4s</td><td></td><td>67</td><td></td></td<> | STA                      | (T (optional)                            |                        | 23-                               |          | 4s        |               | 67         |                               |
| NOTE:         MCYC         MSSC NCYR         MCP (0, 1=1,24         TEXP         BE           TSTART         TIMAX         DELTEN or NDAT         DELTMAX         ELST         GF         REDAT         SCALE           DUT (1)         DET (2)         DET (3)         DET (3)         DET (3)         DET (3)         DET (3)           RE1         RE2         U         WUP         WNR         DFAC         DEF (4)           SOLVR         RTMAX         CLOSUR         CLOSUR         SCALE         SCALE         SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                          | MOP: 1 2 3             | 456789012345                      | 67890123 |           |               |            |                               |
| TSTART         TIMAX         DELTEN of NDLT         DELT         GF         REDLT         SCALE           DLT (1)         DLT (2)         DLT (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                          | *                      | 23-                               |          | 45        |               | 67         |                               |
| DLT (1)         DLT (2)         DLT (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATA                     | MCYC MS                                  | EC MCYPR               | MOP (I), I=1,                     | 24       |           | TEXP          | BE         |                               |
| DEF (i)         DEP (i)         DEP (i)         DEP (i)         DEP (i)           SOLVR *****1         2         3         4         5         6         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | START                                    | TIMAX                  | DELTEN or NDLT                    | DELTMX   | ELST      | GF            | REDLT      | SCALE                         |
| RE1         RE2         U         WUP         WNR         DFAC           DEP (1)         DEP (2)         DEP (3)         DEP (4)           SOLVER*####################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 17 (1)                                   | DIT (2)                | DLT (3)                           |          |           |               |            |                               |
| DEP (1)         DEP (2)         DEP (3)         DEP (4)           SOLVE <sup>systemb</sup> -         2         3         4         -         5         6         7         -           VX         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                          |                        |                                   |          |           | DIT (M)       | (MS8*NDLT) |                               |
| SOLVE viewali - 2 - 3 - 4 - 5 - 6 - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                                          |                        |                                   |          |           | Dervio        |            |                               |
| SUV SOLVR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                                          |                        |                                   | WUP      | WNR       |               |            |                               |
| XS RITMAX CLOSUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | RE1<br>DEF                               | RE2                    | Ų                                 |          |           | DFAC          | DEI        | P (4)                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | RE1                                      | RE2                    | U<br>DEP                          |          |           | DFAC          |            | P (4)                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | RE1                                      | RE2<br>? (1)           | U<br>DEP                          |          |           | DFAC          | 67         | P (4)                         |
| RPCAP (optional) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | RE1<br>DEF<br>(R <sup>(optional)</sup> ) | RE2<br>? (1)           | U<br>DEP                          |          |           | DFAC          | 67         | P (4)                         |
| RPCAP         Optimization         2         3         4         5         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 <th7< th=""> <th7< th="">         7</th7<></th7<>                                                                                                                                                                                                               |                          | RE1<br>DEF<br>(psionab)                  | RE2<br>? (1)<br>RITMAX | U DEP<br>2 3 -<br>CLOSUR<br>2 3 - | (2)      | DEI<br>4  | DFAC<br>P (3) | 67         | RP (7)                        |







