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ABSTRACT 

Numerical issues with modeling transport of 
chemicals or solute in realistic large-scale subsurface 
systems have been a serious concern, even with the 
continual progress made in both simulation 
algorithms and computer hardware in the past few 
decades. The problem remains and becomes even 
more difficult when dealing with chemical transport 
in a multiphase flow system using coarse, 
multidimensional regular or irregular grids, because 
of the known effects of numerical dispersion 
associated with moving plume fronts. We have 
investigated several total-variation-diminishing 
(TVD) or flux-limiter schemes by implementing and 
testing them in the T2R3D code, one of the TOUGH2 
family of codes. The objectives of this paper are (1) 
to investigate the possibility of applying these TVD 
schemes using multi-dimensional irregular 
unstructured grids, and (2) to help select more 
accurate spatial averaging methods for simulating 
chemical transport given a numerical grid or spatial 
discretization. We present an application example to 
show that such TVD schemes are able to effectively 
reduce numerical dispersion. 

INTRODUCTION 

Numerical approaches for modeling multiphase flow 
and tracer or chemical transport in porous media are 
generally based on methodologies developed for 
reservoir simulation and groundwater modeling. 
They involve solving coupled mass-conservation 
equations that govern the transport processes of all 
chemical components using finite-difference or 
finite-element schemes. Since the 1960s, in parallel 
with rapid advances in multiphase flow simulation 
and groundwater modeling, significant progress has 
been made in understanding and modeling solute 
transport through porous and fractured media (e.g., 
Scheidegger, 1961; Bear, 1972; Huyakorn et al. 
1983; Istok, 1989; Falta et al., 1992; Unger et al. 
1996; Forsyth et al. 1998; Wu and Pruess, 2000).  
 
Since the 1970s, transport problems involving solute 
and contaminant migration in porous and fractured 
formations have received increasing attention in the 
groundwater and soil-science literature. As demanded 
by site characterization, remediation, and other 
environmental concerns, many quantitative modeling 

approaches have been developed and applied (e.g., 
Abriola and Pinder, 1985; Corapcioglu and Baehr, 
1987; Forsyth, 1994). More recently, suitability 
evaluation of underground geological storage of 
high-level radioactive wastes in unsaturated fractured 
rocks has generated renewed interest in the 
investigation of tracer or radionuclide transport in a 
nonisothermal, multiphase fractured geological 
system (e.g., Viswanathan et al. 1998; Moridis et al. 
2003).  In addition, application of tracer tests, 
including environmental and man-made tracers, has 
become an important technique in characterizing 
subsurface porous-medium systems.  
 
Even with the continual progress made in both 
computational algorithms and computer hardware in 
the past few decades, modeling coupled processes of 
multiphase fluid flow and chemical migration in 
porous and fractured  media remains a mathematical 
challenge. There still exist many unresolved issues 
and limitations with current numerical approaches. 
One of the main concerns is that severe numerical 
dispersion often occurs when using a 
multidimensional control-volume-type numerical grid 
in field-scale modeling studies. It becomes even more 
problematic when dealing with tracer transport when 
a general 3-D, coarse, irregular grid is used to solve 
advection-dispersion-type governing equations for 
handling tracer transport. To overcome these 
numerical difficulties, scientists have investigated a 
number of total variation diminishing (TVD) or flux 
limiter schemes and applied them in transport 
modeling with varying successes (e.g., Sweby, 1984; 
Liu et al. 1994; Unger et al. 1996;  Forsyth et al. 
1998; Oldenburg and Pruess, 1997 and 2000). 
However, many of these investigations were 
demonstrated using regular grids. This work 
continues the effort of reducing numerical dispersion 
in simulating tracer or chemical plumes as they travel 
spatially through porous or fractured media. The 
emphasis in this study is to examine the effectiveness 
of these TVD schemes in two- or three-dimensional, 
irregular, and unstructured grids.   
 
The objectives of this paper are (1) to develop a 
general scheme for implementing different TVD 
schemes into multidimensional irregular unstructured 
grids of porous or fractured media, (2) to investigate 
the applicability of these TVD schemes to such 
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irregular unstructured grids, and (3) to help select 
more accurate spatial averaging methods for 
simulating chemical transport, given a numerical grid 
or spatial discretization.  
 
In particular, implementation of TVD schemes is 
carried out using the T2R3D code, one of the 
TOUGH2 family of codes made up of 
multidimensional, multiphase, nonisothermal 
reservoir simulators. In this approach, a subsurface 
domain is discretized using an unstructured 
integrated-finite-difference grid, followed by time 
discretization carried out using a backward, first-
order, finite-difference method. The final discrete 
linear or nonlinear equations are handled fully 
implicitly, using Newtonian iteration. In addition, the 
fractured medium is handled using a general 
multicontinuum modeling approach. Also, we present 
an application example to demonstrate that TVD 
schemes are in general able to reduce numerical 
dispersion effectively. 

MODEL FORMULATION

Let us consider a multiphase system consisting of 
several fluid phases, such as gas, water, and oil 
(NAPL), with each fluid phase in turn consisting of a 
number of mass components. To derive a set of 
generalized governing equations for multiphase fluid 
flow and multicomponent transport we assume that 
these processes can be described using a continuum 
approach within a representative elementary volume 
in a porous or fractured medium. According to mass 
conservation principles, a generalized conservation 
equation of mass components in the porous 
continuum can be written as follows: 
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where superscript k is the index for the components, 
k = 1, 2, 3,…, Nc (Nc being the total number of mass 
components); M is the accumulation term of 
component k;  is the decay or internal generation 
(reaction) term of mass component k; is an 
external source/sink term or fracture-matrix exchange 
term for mass component k and energy; and is the 
“flow” term of mass movement or net exchange from 
multiphase flow, or diffusive and dispersive mass 
transport. 
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The mass component transport is governed in general 
by the processes of advection, diffusion, and 
dispersion. Advective transport of a component or 
solute is carried by fluid flow, and diffusive and 
dispersive flux is contributed by molecular diffusion 
and mechanical dispersion, or hydrodynamic 
dispersion. These processes are described using a 

modified Fick’s law for the total mass flow term for a 
component k, by advection and dispersion, written as  

( ) ( )( )∑∑
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    (k = 1, 2, 3,…, Nc)   (2) 
where βρ is the density of phase β;   is the mass 

fraction of component k in fluid β;  is a vector of 
the Darcy’s velocity or volumetric flow of fluid 
phase β; 

κ
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kDβ  is the hydrodynamic dispersion tensor 
accounting for both molecular diffusion and 
mechanical dispersion for component k in phase β, 
defined by an extended dispersion model 
(Scheidegger, 1961; Bear, 1972) to include 
multiphase effects as 
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    (k = 1, 2, 3,…, Nc)   (3) 
where   and  are transverse and longitudinal 
dispersivities, respectively, in fluid β of porous 
media; is the saturation of phase β; 

βαT
βαL

βS τ  is 

tortuosity of the porous medium;  is the molecular 

diffusion coefficient of component k within fluid β;  
and δ

kdβ

ij is the Kronecker delta function (δij = 1 for i = 
j, and δij = 0 for i ≠ j), with i and j being coordinate 
indices. 

NUMERICAL FORMULATION  

The methodology for using numerical approaches to 
simulate multiphase subsurface flow and transport 
consists in general of the following three steps: (1) 
spatial discretization of mass conservation Equation 
(1), (2) time discretization; and (3) iterative 
approaches to solve the resulting nonlinear, discrete 
algebraic equations. Among various numerical 
techniques for simulation studies, a mass-conserving 
discretization scheme, based on finite volume or 
integral finite-difference or finite-element methods, is 
the most commonly used approach, and is discussed 
here. 

Discrete Equations 
The component mass-balance Equations (1) are 
discretized in space using a control-volume, 
integrated finite difference concept (Narasimhan and 
Witherspoon, 1976; Pruess, 1991). The control-
volume approach provides a general spatial 
discretization scheme that can represent a one-, two- 
or three-dimensional domain using a set of discrete 
meshes. Each mesh has a certain control volume for a 
proper averaging or interpolation of flow and 
transport properties or thermodynamic variables. 
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Time discretization is carried out using a backward, 
first-order, fully implicit finite-difference scheme. 
The discrete nonlinear equations for components in 
the multiphase system at gridblock or node i can be 
written in a general form:   
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(k = 1, 2, 3, …, Nc) and (i=1, 2, 3, …, N) 
 
where superscript k serves also as an equation index 
for all mass components; superscript n denotes the 
previous time level, with n+1 the current time level to 
be solved; subscript i refers to the index of gridblock 
or node i, with N being the total number of nodes in 
the grid;  ∆t is time step size; Vi is the volume of 
node i; ηi contains the set of direct neighboring nodes 
(j) of node i; , , , and  are the 
accumulation, decay or generation, the “flow” term 
(between nodes i and j), and sink/source term at node 
i for component k. 

k
iA k

iG k
ijflow k

iQ

 
Equation (4) has the same form regardless of the 
dimensionality of the system, i.e., it applies to one-, 
two-, or three-dimensional flow and transport 
analyses. The accumulation and decay/generation 
terms for mass components are evaluated at each 
node i. The “flow” terms in Equation (4) are generic 
and include mass fluxes by advective and dispersive 
processes, as described by Equation (5), as well as 
heat transfer, described by Equation (2).  In general, 
the mass flow term is evaluated as (Wu and Pruess, 
2000): 

k
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k
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k
ij FFlowf +=   (k = 1, 2 , 3, …, Nc) (5) 

where  and  are the net mass fluxes by 
advection and hydrodynamic dispersion along the 
connection, respectively, with  

k
ij,AF k

ij,DF

( ) ij,)2/1ij
k

ij
k

ij,A FXAF β
β

+β∑=   (6) 

where  is the common interface area between the 
two connected blocks i and j; and the mass flow term 
( ) is the mass flux of fluid phase β along the 
connection, described by  
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where ijγ is transmissivity and is defined differently 
for finite-difference or finite-element discretization. 
If the integral finite-difference scheme (Pruess, 1991) 
is used, the transmissivity is calculated as 
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where Di is the distance from the center of block i to 
the interface between blocks i and j. The flow 
potential term in Equation (7) is defined as 

i2/1ji,ii ZgP +βββ ρ−=ψ   (9) 

where is pressure of fluid phase β at node i and ZiPβ i 
is the depth to the center of block i from a reference 
datum. 
 
The flow term or the net mass flux by advection and 
hydrodynamic dispersion of a component along the 
connection of nodes i and j is determined by 

( kk
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where nij is the unit vector along the connection of 
the two blocks i and j. Wu and Pruess (2000) present 
a general approach to calculating these flow terms 
associated with advective and dispersive mass 
transport in a multiphase system, using a regular or 
irregular and unstructured multidimensional grid. 

Weighting and Flux Limiter Schemes 
As shown in Equations (6) and (7), there are in 
general two types of spatial weighting schemes 
needed in modeling multiphase transport. The first 
one is ( )

)2/1ij
kX

+β in (6) for estimating the averaged 

mass fraction for calculating advective flux, and the 
other ( )

2/1ijr /k
+βββ µρ in (7) is used in mobility 

weighting for the multiphase flow term. In the 
literature, flux-limiter schemes have been used not 
only for the first type of weighting, but also for the 
second type of  weighting (e.g., Blunt and Rubin, 
1992; and Oldenburg and Pruess, 2000). However, it 
has been observed in practical simulations that the 
numerical smearing of saturation fronts is in general 
much less severe than that with dissolved 
concentration fronts. Therefore, in this work, we 
focus our attention on the mass fraction averaging for 
modeling the concentration plume only, whereas the 
traditional, full upstream weighting is used in 
mobility or relative permeability averaging for 
estimating fluid displacement or saturation fronts.    
 
In addition to spatial weighting schemes, temporal 
weighting also needs to be addressed in the numerical 
formulation. Commonly used temporal weighting 
schemes include fully implicit and Crank-Nicolson 
methods, while the fully explicit weighting is rarely 
used because of its strict limitation in time-step size.  
Among these schemes, the fully implicit method has 
proven itself to be most effective in handling 
numerical problems associated with solving highly 
nonlinear multiphase flow equations. In particular, 
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the theoretical analysis of advective-dispersive 
transport through a one-dimensional finite volume 
grid by Unger et al. (1996) indicates that the fully 
implicit scheme has no limitations in Courant number 
under various temporal weighting schemes including 
flux limiters. They demonstrate how fully implicit 
temporal weighting leads to unconditionally stable 
solutions for linear advection-dispersion equations. It 
should be noted that fully implicit weighting is only a 
first-order approximation, with numerical errors of 
the same size as the time step. However, it is our 
experience (in conducting hundreds and hundreds of 
large, field-scale simulations of coupled multiphase 
flow and chemical transport) that fully implicit 
temporal schemes always result in stable solutions 
and that temporal discretization errors, caused by a 
fully implicit scheme, are  of secondary importance 
when compared with the many other unknowns. The 
key is to have a robust numerical scheme that leads to 
reliable and stable solutions under different spatial 
discretization and various physical conditions. 
Considering that it is impractical to define a Peclet or 
Courant number for detailed theoretical analyses in 
most field applications when using multidimensional, 
irregular, unstructured grids, fully implicit temporal 
weighting should be selected as a first choice. 
 
Selection of proper spatial-weighting schemes 
becomes very critical when dealing with coupled 
processes of multiphase flow and chemical transport 
in a fractured medium because of the large 
differences in fracture and matrix characteristics. It is 
further complicated by the fact that there are no 
generally applicable weighting schemes or rules 
applicable to all problems (Wu and Pruess, 2000).  
The weighting schemes that are used for flux 
calculation in this work are: 
• Upstream weighting for relative permeability 

and/or mobility 
• Matrix permeability and molecular diffusion 

coefficients for fracture-matrix interaction  
• Phase saturation-based weighting functions for 

determining diffusion coefficients  
 
Consider the schematic of Figure 1, representing a 
multidimensional irregular, unstructured grid of 
porous and/or fractured media. To calculate advective 
flux between nodes i and j, we also need the 
information from a secondary upstream node 
(denoted as i2up), which is an upstream node to the 
upstream one, ups(i, j ), between nodes i and j (Unger 
et al., 1996; Forsyth et al., 1998). As shown in Figure 
1, the node i2up is determined by the maximum 
potential method in terms of maximum fluid influx 
into ups(i, j), which has been implemented in T2R3D 
at the Newtonian iteration level for every connection.  
 

Various weighting schemes for spatially averaged 
mass fraction or concentration for advective flux 
calculation between nodes i and j are summarized as: 
 

 
Figure 1.  Schematic for determining the second 

upstream block (i2up) for flow between 
block i and block j, using the geometric 
method and the maximum potential 
method 

Upstream: 
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where subscript ups(i, j) stands for the upstream node 
for fluid flow between nodes i and j.    
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Several flux-limiter or TVD schemes tested are as 
follows: 
 
van Leer limiter: 
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where subscript dwn(i, j) is the downstream node of i 
and j, defined as 
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where Dups(i, j) and Di2up are the distances from the 
center of block ups(i, j) or its upstream block i2up to 
their common interface along the connection between 
the blocks.  
 
MUSCL Method: 
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In (18), ε  is a small number, which prevents a zero 
divide. 
 
Leonard Method: 
 
Leonard flux limiter is also described by (13) with 
the Leonard weighting factor ( )ijrσ  is defined as 
 
( ) { })3/)r2(,r2,2(min,0maxr ijijij +=σ (22) 

 
with rij is defined by Equation (16). 
 
The numerical implementation of these TVD 
schemes is made into the T2R3D code (Wu et al., 
1996) for simulation of tracer transport through an 
isothermal system for this work. 

Numerical Solution Scheme 
In this section, we discuss a general procedure to 
solve the discrete nonlinear Equation (4) fully 
implicitly, using a Newton iteration method. Let us 
write the discrete nonlinear Equation (4) in a residual 
form as  
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k = 1, 2, 3, …, Nc ;  i = 1, 2, 3, …, N). 
Equation (24) defines a set of  (Nc × N) coupled 
nonlinear equations that need to be solved for every 
balance equation of mass components.  In general, 

(Nc) primary variables per node are needed to use the 
Newton iteration for the associated (Nc) equations per 
node. The primary variables are usually selected 
among fluid pressures, fluid saturations, mass (mole) 
fractions of components in fluids, and temperatures. 
In many applications, however, primary variables 
cannot be fixed and must be allowed to vary 
dynamically to deal with phase appearance and 
disappearance (Forsyth et al., 1998). The rest of the 
dependent variables, such as relative permeability, 
capillary pressures, viscosity and densities, 
partitioning coefficients, specific enthalpies, thermal 
conductivities, dispersion tensor, etc. as well as 
nonselected pressures, saturations, and mass (mole) 
fractions, are treated as secondary variables.  
 
In terms of the primary variables, the residual 
Equation (23) at a node i is regarded as a function of 
the primary variables at not only node i, but also at 
all its direct neighboring nodes j. The Newton 
iteration scheme gives rise to 
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where xm is the primary variable m with m = 1, 2, 3, 
…, Nc at node i and all its direct neighbors; p is the 
iteration level; and i =1, 2, 3, …, N.   
 
A numerical method is used to construct the Jacobian 
matrix for Equation (24) (Forsyth et al., 1995). At 
each Newton iteration, Equation (24) represents a 
system of (Nc × N) linearized algebraic equations 
with sparse matrices, which are solved by a linear 
equation solver. Note that when using the flux limiter 
schemes, as discussed in the last subsection, 
advective mass flux terms in the discrete equation  
may depend on primary and secondary variables 
beyond the direct neighboring nodes, such as  at node 
of i2up. In such a situation, the Newton iteration 
discussed here becomes inexact, because the Jacobian 
matrix does not include the contributions with respect 
to the primary variables beyond neighboring nodes. 
Nevertheless, converged solutions should be correct, 
because the residuals are exact. This omission in 
these Jacobian calculations may make solution 
convergence more problematic. However, many 
numerical tests have been made for multiphase tracer 
transport, and no significant numerical problems have 
been observed. 

Fractured Media 
The mathematical formulations and flux-limiter 
schemes discussed above are applicable to both 
single-continuum and multi-continuum media, as 
long as the physical processes involved can be 
described in a continuum sense within either 
continuum. When handling flow and transport 
through fractured rock using the numerical formation 
of this section, fractured media (including explicit 
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fracture, dual, or multiple continuum models) can be 
considered as special cases of unstructured grids of 
Figure 1. Then, a large portion of the work consists 
of generating a mesh that represents both the fracture 
and the matrix system under consideration. Several 
fracture and matrix subgridding schemes exist for 
designing different meshes for different fracture-
matrix conceptual models (e.g., Pruess, 1983).  
 
Once a proper unstructured grid of a fracture-matrix 
system is generated, fracture and matrix blocks are 
identified to represent fracture and matrix domains, 
separately. Formally they are treated identically for 
the solution in the model. However, physically 
consistent fracture and matrix properties, parameter 
weighting schemes, and modeling conditions must be 
appropriately specified for both fracture and matrix 
systems. 

APPLICATION 

One example is presented here to demonstrate 
application of the TVD schemes, as discussed above, 
in handling transport through fractured media. The 
sample problem is based on a two-dimensional site-
scale model developed for investigation of the 
unsaturated zone at Yucca Mountain, Nevada. This 
example shows transport of one conservative 
(nonadsorbing) tracer through unsaturated fractured 
rock using a 2-D, unstructured grid with a dual-
permeability conceptualization for handling fracture 
and matrix interaction.  
 
The 2-D west-east cross-sectional model grid, shown 
in Figure 2, has a total of 30,000 fracture-matrix 
gridblocks and 74,000 connections between them in a 
dual-permeability mesh. The potential repository is 
located in the middle of the model domain, 
discretized with locally refined grid (Figure 2), at an 
elevation of about 1,100  m.  

 
Figure 2. Two-dimensional west-east cross-

sectional model domain and grid showing 
lateral and vertical discretization, 
hydrogeological layers, repository layout, 
and several faults incorporated 

The 2-D model uses the ground surface as the top 
model boundary and the water table as the bottom 
boundary. Both top and bottom boundaries of the 
model are treated as Dirichlet-type boundaries, i.e., 
constant (spatially distributed) pressures, liquid 
saturations and zero initial tracer concentrations are 
specified along these boundary surfaces. In addition, 
on the top boundary, a spatially varying, steady-state, 
present-day infiltration map, as shown in Figure 3, 
determined by the scientists of the U.S. Geological 
Survey, is used in this study to describe the net water 
recharge, with an average infiltration rate of  about 5 
mm/yr over the model domain. In addition, an 
isothermal condition is assumed in this study. The 
properties used for rock matrix and fractures in the 
dual-permeability model, including two-phase flow 
parameters of fractures and matrix as well as faults, 
were estimated from field tests and model calibration 
efforts  (Wu et al., 2002).  
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Figure 3.  Net infiltration rate along the west-east 

cross-section model as surface water 
recharge boundary condition 

We consider a conservative liquid tracer migrating 
from the repository downward by advective and 
dispersive processes, subject to the ambient steady-
state unsaturated flow condition. A constant effective 
molecular diffusion coefficient of 3.2 × 10-11 (m2/s) is 
used for matrix diffusion of the conservative 
component. Transport starts with a finite amount of 
the tracer  initially released into the fracture elements 
of the repository blocks. After the simulation starts, 
no more tracer will be introduced into the system, but 
the steady-state water recharge from the top boundary 
continues. Eventually, all the tracer will be flushed 
out from the 2-D system through the bottom, water 
table boundary, by advective and diffusive processes.  
 
Figures 4 and 5 show normalized tracer concentration 
contours in the fracture continuum within the 2-D 
model at 10 years of tracer release, simulated using 
various weighting schemes of spatially averaged  
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Figure 4. Concentration distributions within the 2-

D model at 10 years, simulated using the 
central weighting scheme mass fraction 
for advective flux calculation.  

Comparisons of simulated concentrations between 
Figures 4 (central weighting) and 5 (TVD-MUCSL) 
show a large difference at the time of 10 years. Note 
that for this problem, all three TVD schemes 
implemented in this study give similar results, so 
only the results with MUSCL are shown for the TVD 
cases in Figure 5. Figure 6 presents  fractional 
cumulative mass breakthrough curves at the water 
table, also showing some significant difference 
between the results using the TVD schemes and the 
central weighting.  
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Figure 5. Concentration distributions within the 2-

D model at 10 years, simulated using the 
TVD (MUSCL) scheme 
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Figure 6. Breakthrough curves of fractional 

cumulative tracer mass arriving at the 
water table, since release from the 
repository, simulated using the different 
weighting schemes 

Overall, the simulation results indicate that at early 
time, such as in first 10 years (Figure 4), the central 
weighting scheme underestimates advective 

transport, while at later time (t > 100 years) it 
overestimates advective transport, because of 
selecting too high or too low averaged concentration 
values.  In addition, the TVD schemes are tested and 
found to have much better numerical performance 
than the central weighting scheme with respect to 
taking larger time steps or stability.    

SUMMARY AND CONCLUSIONS 

We have investigated several TVD schemes by 
implementing them into the TOUGH2 family of 
codes, using multidimensional irregular unstructured 
grids. Our test results show that such TVD schemes 
are able to reduce numerical dispersion effectively, if 
used properly. In addition, numerical performance 
with TVD schemes is significantly improved relative 
to commonly used central weighting and is 
comparable to fully upstream weighting. It is 
encouraging to note that under multiphase conditions 
using relatively course spatial discretization, these 
TVD schemes provide more accurate simulation 
results for modeling large-scale field tracer transport 
processes through heterogeneous, fractured rock.  
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