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Abstract

The in situ extraction of semivolatile hydrocarbons from low permeability soils requires
extraordinary techniques such as extremely high vacuums, solvent flooding, or the injection of
warm air. Fluid migration and associated mass transfer rates are very low in these cases and result
in unacceptably close well spacings or long durations to achieve desired remediation goals. An
alternative technique is the injection of steam to both increase the volatilization rate and flush the
hydrocarbon from the pore spaces of the soil matrix.

We report here the results of from an Advanced Applied Technology Demonstration Facility
(AATDF) project which investigated the effect of hydraulic fracturing and steam injection in
order to develop a design and implementation guide to the remediation of semi-volatile
contaminants in fine grained soils. This paper addresses numerical simulation experiments
conducted to assist in selecting appropriate spacings for the fractures and the vapor extraction
wells relative to the steam injection wells. In addition, the simulations will be used to gain a

better understanding of the processes involved so that these pilot scale studies can be expanded to
remediate larger areas. '

Numerical experiments were carried in two dimensions represented by depth and distance (z,x).
This domain, representing a depth of 6.2 meters and a distance of 7.5 meters was descritzed into a
27 by 21.matrix. Spacing between elements varied, with smaller horizontal spacings (0.25)
adjacent to the sand layers and smaller vertical spacing (0.25) adjacent to the wells. The fractures.
themselves were 0.025 m: The matrix was assumed to be a homogeneous clay with extremely
low permeability (K;.=0.1 darcy, K, =0.05 darcy) and an effective porosity of 10%. Steam
injection was simulated by adding water with an enthalpy of 2.66 x 10° J/Kg directly to the
appropriate elements. Under most conditions, this resulted in a temperature of approximately
107°C at the injection point. Vacuum extraction wells were simulated using the On
Deliverability well type, with a production index of 2 x 1072

The numerical simulation of the injection of steam into a narrow sand fracture surrounded by a
clay matrix, was found to be extremely sensitive to the initial water saturation conditions. In
addition, the rapid changes in water saturation and temperature that ensue as the steam front
propagates through the media resulted in many non-convergent simulations. Results from the
numerical simulation experiments for varying fracture spacing and differing scenarios for the
vacuum and injection rates will be presented. The simulations will be compared with actual field
data to demonstrate that the steam can be focussed to increase the area (volume) raised to above
75 EC. For sites where the production of steam is expensive, configurations which minimizes
amount of steam while maximizing the heating are proposed.

The experimental results clearly demonstrate that steam injection through artificially created
fractures is an effective process for the remediation of volatile and semi-volatile hydrocarbons in
low permeable environments. Vapor extraction without the accompaniment of steam was not
possible due to the low permeability of the soil. Thus, using the combined process of hydro-
fracturing and steam heating, the TPH as JP8 concentrations, within the treated areas to a depth of

20 feet, were reduced from between 2,000 and 7,000 mg/kg to less than 300 mg/kg in about 3
months.
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Steam Injection Technology
Description

= Steam is injected into vadose and saturated zone to
heat the soils by forced convection
¢ Increases semi-volatile vapor pressure
¢ Decreases viscosity
¢ Decreases interfacial tension and residual saturation
 Steam generated by on site source

* Target Temperature =212° F
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The effect of temperature on the viscosity of several hydrocarbons.
Note that water has a value of 1.0 and that glycerol and cresol are plotted on the right
axis, while that for the #6 fuel refers to the left axis.
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Site conditions: .
=* Soil impacted by semi-volatile JP-8
= Concentrations > 4,000 mg/Kg

=> Clay soil, Kh < 10" cm/sec

Objectives:

> Determine if the technology can reduce
concentration to < 1,000 mg/kg

> Cost effectiveness

> Capture steam front - do no harm

> Data needed for full scale impl ion

FORT HOOD SIMULATION MODEL
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Vertical section through celi C showing the planned placement of the three fractures at depths of 3.5, 3.5 and
5.5 meters. Only half of a diagonal is shown since the layout is symetric about the injection well.
The bulk lithology is taken to be a dense clay with a horizontal permeability of 0.1 and a vertical
permeability of 0.05 darcy.
‘The fractures are assumed to be filled with a welt graded sand with a uniform permeability of 10 darcy.

The water table will be maintained at 6.5 meters by pumping from a fourth fracture installed at that depth. §
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MODEL PARAMETERS
PARAMETER CLAY SAND FLUID
Permeability, horizontal (m2) 1E13 1E-11
Permeability, vertical (m2) SE-14 1E-11
Porosity (%) 10 30
Rock density (Kg/m3) 2650 2650 1000
Heat conductivity, sat (Wim-C) 0.7 3.1 06
Heat canductivity, unsat (W/m-C) 0.3 0.04
Sp. heat capacity (J/Kg-C) 1120 1000 4200
Steam enthalpy (J/Kg) 2.77E406
Compressability (m2/N} 0 o
Expansivity (1/C) 0 [
Tortuosity factor o o
Praduction Index (m3) 2E-12
Relative permeability Modified Stone - Completely
3 phase mabile
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TEMPERATURE vs TIME - Injecting 16 Ibs/hr, vac=10" Hg.
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Results from numerical simulation using T2VOC
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TEMPERATURE vs TIME - Injecting 24 Ibs/r, vac=10" Hg.
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Top and bottom fractures, inj 16 Ib/hr, vac = 10" Hg,
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