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Introduction

At the Stripa mine in Sweden, flow and transport
experiments in a water-saturated fractured granite were
conducted to investigate techniques for site characteriza-
tion for a geologic nuclear waste repository. In the Simu-
lated Drift Experiment, measured water inflow to an
excavated drift with pressure held at 1 bar was only 1/9th
the value expected based on inflow to boreholes with
pressure held at 2.7 bars [Olsson, 1992]. Several physical
and chemical mechanisms were hypothesized to be
responsible for this reduction in flow [Long et al., 1992].
One possibility is that significant degassing of dissolved
nitrogen takes place between 2.7 and 1 bars, creating a
two-phase regime with an accompanying decrease in fluid
mobility, resulting in a decrease in flow to the drift. To
investigate this process, theoretical studies on degassing
and redissolution phenomena have been carried out,
beginning with an idealized model which yields a simple
analytical solution, then relaxing some of the simplifying
assumptions and using TOUGH2 to study the phenomena
numerically. In conjunction with these theoretical stu-
dies, laboratory experiments on flow and degassing in
transparent fracture replicas are being carried out [Geller
et al., 1995], and are being used to check the modeling
approach. We need to develop a fundamental understand-
ing of degassing and redissolution in particular and two-
phase flow phenomena in general for flow in fractures and
fracture networks, in order to successfully model condi-
tions around a nuclear waste repository, where long time
and large space scales may preclude conclusive field
experiments.

Analytical Solution

For one-dimensional steady-state flow through a
homogeneous medium, there is a simple analytical
expression that gives an upper bound to the flow reduc-
tion that can be caused by degassing. Here one-
dimensional means that there is only one spatial dimen-
sion in the problem, but the flow geometry can be linear
(n = 1), radial (n =2), spherical (n =3), or the non-
integral geometries characteristic of some fracture net-
works. The effect of gravity is neglected. Darcy’s law
governs fluid flow, and while the exact form of the
characteristic curves need not be specified, there must be
strong interference between phases. In general, strong
interference is expected for flow through low-dimensional
flow regimes (e.g., flow through highly channelized frac-
tures would exhibit more interference than flow through
an isotropic porous medium). Thermodynamic equili-
brium between gas dissolved in the liquid phase and gas
existing as a separate gas phase is assumed, and is
governed by Henry’s law. When pressure falls below the
bubble pressure P,, dissolved gas comes out of solution
and forms a separate gas phase, whereas above Pj, gas
remains in solution and single-phase liquid conditions
prevail. According to Henry’s law, P, is directly propor-
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tional to gas content, defined as the mole fraction of gas
dissolved in the liquid phase. Gas content can also be

expressed as a mass fraction or as a volume percent at
STP.

The pressure is assumed to be held fixed at both
ends of a medium of length L, at one end below the bub-
ble pressure (Pg), and at the other end above it (P;). The
upper frame of Figure 1 shows the pressure variation
under degassing conditions schematically. For strongly
interfering relative permeability curves, a steep pressure
gradient is required to drive flow through the two-phase
region, whose width [ is rather small. The flow reduction
due to degassing can be quantified by a normalized flow
g, defined as the flow through the medium with gas
present (g), divided by the flow through the medium
under the same boundary conditions if no gas were
present (gg). According to Darcy’s law, the normalized
flow is simply the ratio of the slopes of the liquid-phase
portion of the pressure curves:

P1 - P - 1)

~ q
g=--—-= - M
90 (P1—Py/L
In the limit / < L this becomes
Py—Py
g = —— . 2
=5 "p, @

Figure 1 and Equation (2) illustrate how the inter-
play of gas content (as represented by P;), and boundary
conditions (P; and Pg) controls the flow reduction. In
the context of the Stripa field experiment, P, is the far-
field pressure, and Py is the pressure at the drift. The
lower frame of Figure 1 shows the normalized flow as
predicted by Equation (1) and the results for the Stripa
Simulated Drift Experiment (SDE), and indicates that not
nearly enough flow reduction is predicted by the analyti-
cal solution (g,, = 0.92 as opposed t0 G,p; = 0.11). The
analytical solution was verified against numerical results
using the TOUGH2 simulator [Pruess, 1987, 1991], and
the effect of the choice of characteristic curves was stu-
died numerically. Using relative permeability functions
with weaker phase interference produced less flow reduc-
tion, as did the addition of capillary pressure. While
expected on physical grounds, these findings did not
improve the prediction of the Stripa SDE results or subse-
quent comparisons with laboratory results [Geller et al.,
1995], which were consistent with the Stripa SDE results.
Therefore, a further examination of the assumptions used
for the analytical solution was warranted, which required
investigating the degassing and redissolution problem
numerically.

Numerical Homogeneous Media Studies

By using TOUGH2 to examine the degassing prob-
lem numerically, both transient and steady-state condi-
tions can be studied. In addition, the effect of the far-



field constant pressure boundary condition can be exam-
ined, by considering both finite and infinite systems.
Under these conditions, the flow geometry has a tremen-
dous effect not only on flow reduction, but on whether a
steady-state develops at all. In a fractured rock mass the
flow geometry is very complicated, as it depends on both
the nature of the flow channels within a single fracture
plane, and the connectivity of the network of fracture
planes. However, simple models using either linear,
cylindrical, or spherical flow geometries provide insight
into limiting cases of possible flow geometries in a real
rock mass. Figures 2, 3, and 4 show § versus time for
linear, radial, and spherical flow geometries, for finite and
infinite systems. In all cases, the go value used to nor-
malize g is the steady-state value for a finite system.
Time is normalized by f4yf, the time required for a pres-
sure pulse to diffuse across the finite medium under
liquid-phase conditions.

The § value given by the analytical solution, shown
as a symbol at the final time, agrees reasonably well with
the numerically calculated values. The difference
between finite and infinite systems decreases strikingly as
flow dimension increases, because pressure changes
become more localized around the borehole. For linear
geometry, no steady state develops for an infinite system,
whereas for radial geometry a quasi-steady state develops,
and for spherical geometry there is no difference between
finite and infinite systems. For linear geometry and an
infinite medium (Figure 2), flow rates decline monotoni-
cally to zero. Because compressibility increases with gas
content, the decline occurs at later times for greater gas
contents. Thus at any given time, degassing causes a
flow increase rather than reduction. For radial geometry
(Figure 3) the difference between finite and infinite media
is still apparent, but in both cases greater gas content
causes greater flow reduction. The time required to reach
steady state decreases as flow dimension increases, but
increases strongly with gas content.

One of the powerful features of the integral finite
difference method for spatial discretization which is
employed in TOUGH2 is the ability to create efficient
computational meshes for arbitrary flow geometries very

easily. A mesh generator has been developed that creates -

a one-dimensional mesh with arbitrary flow dimension
ranging from n =1 (linear) to n =3 (spherical). This
mesh was used not only for the calculations illustrated
above for n =1, n =2, and n =3, but also to create
meshes with non-integral flow dimensions of n = 1.4 and
n = 2.4, which may be used to represent incompletely
connected fracture networks. Figure 5 shows g versus
time for n = 1.4. As expected, the variation in § is inter-
mediate between that for n =1 and n = 2, whereas the
variation for n = 2.4 (not shown) is intermediate between
n=2andn =3.

In conclusion, relaxing the assumptions of the
analytical solution did not improve the model’s prediction
of the Stripa SDE results or those of laboratory experi-
ments. However, the numerical solution verified the
essential features of the analytical solution. Firstly, if a
steady-state value of § exists (finite media for linear or
radial flow geometries, finite or infinite media for spheri-
cal flow geometry), it is independent of flow dimension.
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Secondly, flow reduction increases as gas content
increases. The steady-state flow reduction predicted by
the numerical simulations generally agrees with the
analytical solution, but as the amount of gas present
increases, the analytical solution approximation gets
worse.

Numerical Heterogeneous Media Studies

All the numerical simulations described above con-
sidered a homogeneous medium characterized by a single
value of permeability. However, laboratory experiments
being conducted with fracture replicas indicate that
heterogeneity within the flow domain has an important
effect on the magnitude of flow reduction [Geller et al.,
1995]. Therefore, a two-dimensional numerical model of
a fracture replica was created in order to examine the
effect of a heterogeneous medium on flow reduction. The
fracture replica is about 74 mm on a side and the aperture
distribution is given as a 369 by 369 array of aperture
values, each representing a 0.02 mm by 0.02 mm square.
Aperture values range from O (an asperity) to 240
microns. Using these values directly would result in a
model with over 130,000 elements, which would be
impractical for numerical simulation. After some study,
it was decided to arithmetically average over 9 by 9
blocks of adjacent aperture values to obtain a 41 by 41
array of aperture values, each representing a 0.18 mm by
0.18 mm square. This results in a model with 1681 ele-
ments representing the fracture replica (Figure 6) and .an
additional 82 elements representing the constant-pressure
boundaries. Doing harmonic or geometric averaging
rather than arithmetic averaging did not make much
difference in the averaged aperture distribution, and using
a more finely discretized 123 by 123 array of apertures
(averaging over 3 by 3 blocks) did not greatly alter the
nature of the heterogeneity. The averaged aperture values
were divided into eight ranges, and the element aperture
value was assigned as the midpoint of the range minus 25
microns, a somewhat arbitrary value chosen to enhance
the effects of asperities.

The cubic law was then used to determine the per-
meability of the element. Modified van Genuchten
characteristic curves which exhibited strong phase
interference (A = 0.4) were employed, using the same
relative permeability functions for each element and a
capillary pressure strength inversely proportional to aper-
ture.

A numerical simulation of flow from right to left
through the model was done to compare with a laboratory
experiment using the same flow geometry. Initial condi-
tions consisted of a single-phase liquid at a uniform pres-
sure of 5 bars, with a dissolved gas mass fraction of
7x10™ (5% gas by volume at STP), which corresponds to
a bubble pressure of 3.1 bars. The pressure was held
fixed at 5 bars at the right side of the flow domain and 1
bar at the left side; the top and bottom boundaries were
closed.

Figure 7 shows the variation of normalized flow g
with time for both the model with asperities and an ear-
lier version of the model without asperities and less reso-
lution of small apertures. Both simulations required over
800 time steps to reach steady state. The oscillation in



flow rate that is seen before steady-state conditions are
reached suggests that there are multiple physical
processes occurring on different time scales, which gen-
erally makes numerical simulation difficult. In particular,
the use of strongly interfering relative permeability curves
forces TOUGH2 to take small time steps in order for the
Newton-Raphson iterations to converge. This occurs
because a small increase in gas saturation due to degass-
ing can cause a large decrease in fluid mobility, which
results in a large decrease in flow rate, and hence a
significant build-up of pressure up-gradient of the degass-
ing location. When pressure increases above the bubble
pressure, gas is redissolved, liquid relative permeability
increases, fluid flow rate increases, and pressure
decreases, setting the stage for degassing to resume,
repeating the cycle. Thus, it is the intrinsic physics of the
problem, which involves a subtle balance of forces, that
makes the problem difficult to numerically simulate.
Only the direct solver MA28, which is generally slower
but more robust than the conjugate gradient solvers, could
be used to reach steady state. Use of MA28 also limits
the resolution of the fracture aperture distribution that
may be achieved, as the maximum number of elements
and connections is much smaller than for the conjugate
gradient methods.

Figure 7 shows that the decrease in apertures which
resulted from the addition of asperities decreases flow
whether or not gas is present, as expected based on the
cubic law. However, the steady-state normalized flow §
does not change. The final normalized flow value is
slightly larger than the analytical solution, and not nearly
as small as laboratory values using this fracture replica,
indicating ‘that simply adding heterogeneity to the model
is insufficient to produce a significantly greater flow
reduction.

The modeled steady-state pressure and gas-
saturation distributions are shown in Figure 8. As
expected, variations in the aperture distribution are mani-
fested in the pressure distribution, such as the greater
variability in aperture in the left half of the model result-
ing in greater irregularities in the pressure contours.
Furthermore, there is a close correspondence between
pressure and saturation distributions, with two-phase con-
ditions occurring only below the bubble pressure. The
gas saturation distribution shown in Figure 8 compares
favorably with the experimental gas distribution, which is
shown in Figure 9, indicating that some features of the
actual fracture replica are being represented correctly in
the numerical model, despite the incorrect prediction of
g. The earlier version of the model, which did not
resolve the small-aperture distribution, did not reproduce
the observed saturation distribution nearly as well.

Several other variations on the numerical model of
flow through the fracture replica were made, but none
predicted a greater flow reduction than given by the
analytical solution. These variations included using a
different gas content, a uniform aperture distribution, a
non-zero irreducible gas saturation, modeling flow in the
opposite direction through the fracture replica, and vary-
ing the choice of characteristic curves.
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Conclusions and Plans for Future Work

Our theoretical study began with a simple analytical
solution for the flow reduction due to degassing under
steady-state conditions in a finite one-dimensional homo-
geneous medium. When this solution did not predict
laboratory or field conditions adequately, some the
assumptions required for the analytical solution were
relaxed and the problem was numerically simulated using
TOUGH2. In particular, the model was extended from
steady-state to transient conditions, finite to infinite
media, from linear to radial, spherical, and non-integral
flow geometries, and from a homogeneous medium to a
heterogeneous medium. None of the extensions to the
conceptual model has significantly increased the flow
reduction due to degassing from that predicted by the
analytical solution. Hence all the modeling studies
significantly underpredict the effect of degassing on fluid
flow measured in the laboratory and at the Stripa SDE.
The next assumption to be investigated is that of equili-
brium between degassing and redissolution. Adding non-
equilibrium effects to TOUGH2 will be a significant
effort, and three possible approaches are being con-
sidered. In order of increasing complexity (and rigor)
they are: to consider degassing only, with no redissolution
possible; to use a hysteretic form of Henry’s law which
makes degassing occur more readily than dissolution; and
to use kinetic rate equations for both degassing and disso-
lution.
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Figure 1. Top frame: conceptual model of flow reduction
due to degassing for steady-state flow through a one-
dimensional homogeneous medium with pressure held
fixed at either end. Bottom frame: normalized flow
versus normalized gas content for the analytical solution
and the Stripa SDE result.
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Figure 2. Normalized flow g as a function of normalized
time for linear flow geometry (n = 1), finite and infinite
media, and various gas contents.
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Figure 3. Normalized flow § as a function of normalized
time for radial flow geometry (rn = 2), finite and infinite
media, and various gas contents.
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Figure 4. Normalized flow g as a function of normalized
time for spherical flow geometry (n =3), finite and
infinite media, and various gas contents.
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Figure 5. Normalized flow g as a function of normalized
time for non-integral flow geometry between linear and
radial (n = 1.4), finite and infinite media, and various gas
contents.
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Figure 6. Aperture distribution for the Dixie Valley fracture. The left frame illustrates the overall aperture distribution,
whereas the right frame focuses on the small-aperture distribution. For the numerical model, 25 microns were subtracted
from each aperture value to enhance the effect of asperities. Flow is from right to left.
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Figure 7. Flow rate as a function of time for two versions of the fracture model.
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Figure 8. Modeled steady-state pressure (left) and gas saturation (right). Pressure is held fixed at 5 bars at the right edge
and at 1 bar at the left edge. The bubble pressure is shown bold.

Figure 9. Observed steady-state gas distribution [white = gas, from Geller et al., 1995].
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