Experiences using multigrid for geothermal simulation

D.P. Bullivant, M.J. O’Sullivan Z. Yang
Department of Engineering Science Centre for Petroleum Engineering
University of Auckland University of New South Wales
New Zealand Australia
Abstract

Experiences of applying multigrid to the calculation of natural states for geothermal simula-
tions are discussed. The modelling of natural states was chosen for this study because they can
take a long time to compute and the computation is often dominated by the development of phase
change boundaries that take up a small region in the simulation. For the first part of this work a
modified version of TOUGH was used for 2-D vertical problems. A “test-bed” program is now
being used to investigate some of the problems encountered with implementing multigrid. This is
ongoing work. To date, there have been some encouraging but not startling results.

1 Introduction

This work is motivated by the desire to speed up the calculation of natural states in geothermal reservoir
simulation. It was noticed that during these calculations, the time step size is limited by phase changes
in just a few blocks. This observation suggests that improvements could be made if the computational
effort was directed towards these few blocks. Yang [5] looked at a number of ways for doing this, one
of which was multigrid.

A brief introduction to multigrid is given in the following section. In the third section the feasibil-
ity study of multigrid for geothermal simulation, carried out by Yang [5], is summarized. The fourth
section describes the work in progress to solve some of the problems identified by the feasibility study.
The final section is a summary.

2 What is multigrid ?

Multigrid is a numerical method for solving differential equations, which uses two or more levels of
discretization. It can reduce the time needed to solve the problem because a full solution is only re-
quired on the coarsest level. At the other levels, “smoothing” is carried out before the error is trans-
ferred to the next coarsest level or the correction is transferred to the next finest level. The sequence of
levels the method goes through is called a cycle. Briggs [2] gives a good introduction to the multigrid
method.
For a linear differential equation
L{u)=g (1)

the discretization at level A can be written as
L (u?) =t 2)

where at the finest level r® = g®. Then the multigrid V-cycle algorithm can be written as
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1. While not at the coarsest level do

(a) “Smooth” the solution at the current level ()

K

r? = (e - Lh(uh)) 3)

(b) Transfer the error to the next coarsest level (2h) using the restriction operator 12"

(c) Move to the next coarsest level
L (u™) = v with initial estimate u?® = 0 4)
2. Solve the differential equation at the coarsest level
3. While not at the finest level do
(a) Transfer the solution to the next finest level (%/2) using the interpolation operator /| ,’: /2

uh/2 — uh/2 + I}]Z'/Q(uh/2) (5)

2

(b) Move to the next finest level
ﬁh/Z(uh/Z) — I‘h/2 (6)

(c) “Smooth” the solution at the current level (k/2)

This is called a V-cycle because of the pattern it makes moving through the levels (see Figure 1).
To converge to a solution this is repeated several times. In our latest work, we are using a full multigrid
V-cycle (see Figure 1).

coarsest

Figure 1: Multigrid cycles. a) V-cycle, b) full multigrid V-cycle

A “smoothing” sweep involves stepping through the solution vector v and solving for each value
with the other values fixed. For a linear system of equations, this is the Gauss-Seidel method. A com-
mon strategy 1s to carry out two smoothing sweeps before transferring from fine to coarse and one
smoothing sweep after transferring from coarse to fine.

For nonlinear differential differential equations, such as those solved by TOUGH, the multigrid
method needs to be modified. We are using the full approximation storage method McCormick [3].
For this method the transfer of the error from fine to coarse is modified as follows:

r¥t = L") + LI ) — IM(L(u)) Q)
The initial estimate on the coarse grid is the restriction of the fine grid solution
u® = M (uh) (8)
and the transfer of the correction from coarse to fine is also modified:
VA = VR L (R gl (v ©)

In the following sections, the interpolation and restriction operators used will be discussed.
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3 Feasibility study

Part of the work by Yang [5] is concerned with improving the computational efficiency of steady state
simulations of geothermal reservoirs. One method that was considered was multigrid. This section
summarizes Yang’s work on multigrid.

Multigrid was implemented by modifying MULKOM. The test problem for this work was a 2-D
vertical square (1km side) with heat input over a fifth of the base, atmospheric conditions at the top
and no flow through the rest of the boundary (see Figure 2). Two grids were used - a coarse 5 by 5 grid
and a fine 10 by 10 grid. The normal MULKOM/TOUGH solution routine was used to solve on the
coarse grid.

_____ bt 1000 m

...............................................

Figure 2: Test problems

When implementing multigrid, choices have to be made for the restriction operator, the interpola-
tion operator and the smoothing method. For this feasibility study the best results were obtained by:

o Transferring the right hand side from fine to coarse, /¢, by averaging over the four fine blocks
that make up the coarse block and multiplying by a damping factor w (0 <= w <= 1)

c 1

— 1 f f
rjj =wx (rzi—1,2j—1 T 3125 t Taiaj-1 + rzi,zj)/4 (10)

For strongly two-phase flow, values of w less than 0.5 were found to be necessary to ensure sta-
bility.

¢ Always using the MULKOM solution to the unmodified problem (r® not modified by fine grid)
on the coarse grid, u®, as the initial estimate rather than the restricted pressure and temperature
or saturation from the fine grid. The restriction that was used was to convert from pressure and
temperature or saturation to pressure and enthalpy for each of the four fine blocks, average these
pressures and enthalpies to get a pressure and enthalpy for the coarse block, and convert this
pressure and enthalpy to a pressure and temperature or saturation. This was found to sometimes
give an initial estimate for which MULKOM did not converge.

o Transferring the estimate from the coarse grid to the fine grid by converting the pressure and
temperature or saturation estimates on the coarse grid into pressures and enthalpies, computing
the changes in pressure and enthalpy from u*, linearly interpolating these changes multiplied by
another damping factor on to the fine grid, and converting the updated pressures and enthalpies
on the fine grid into pressures and temperatures or saturations.
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e Smoothing using box Gauss-Seidel (see Brandt [1]). Standard Gauss-Seidel involves sweeps
through all the blocks in the grid fixing the pressure and temperature or saturation in all but the
current block and solving for the pressure and temperature or saturation in the current block us-
ing Newton-Raphson. For box Gauss-Seidel, Newton-Raphson is used to solve for the current
block and some of its neighbours. As the number of neighbours in the box goes up, the smooth-
ing gets better, but the computational cost goes up.

For the test problem, four different inputs - 1 MW, 2 MW, 4 MW and 6 MW - were used. For 1 MW
there is no two-phase zone. For 6 MW there is a large two-phase zone running from the base of the
model, above the heat source, to the top of the model and halfway across the top of the model.

The multigrid implementation described above is able to solve the test problem with the four dif-
ferent heat inputs, but is slower than standard MULKOM. As the heat input is increased, multigrid has
more difficulty in solving the problem (as does MULKOM).

4 Ironing out the wrinkles

In Yang’s preliminary implementation, only two levels were used and changes to the way that standard
multigrid transfers between levels were made because of the MULKOM/TOUGH choice of primary
variables (pressure and temperature or saturation). To remove these limitations and investigate multi-
grid further, a “test-bed” program is being written. It is intended to solve the steady-state geothermal
equations (as formulated for TOUGH, Pruess [4]) on a square or a cube, with an arbitrary number of
multigrid levels, using integrated finite differences (like MULKOM/TOUGH) and with pressure and
enthalpy as the primary variables (unlike MULKOM/TOUGH). Our development schedule is:

1. Use integrated finite differences and multigrid to solve Poison’s equation. This will check that
the outer multigrid loop is working.

2. Develop a single block solver for the steady-state geothermal equations. This will solve for the
pressure and enthalpy in a single block with the pressures and enthalpies in the neighbouring
blocks fixed. It is the fundamental part of the Gauss-Seidel smoother.

3. Implement standard restriction and interpolation operators. The restriction operator, to transfer
values from the fine grid to the coarse grid, will average the values in the fine grid blocks that
make up the coarse grid block. The interpolation operator, to transfer values from the coarse grid
to the fine grid, will use the value in the coarse grid block in all the fine grid blocks contained
in the coarse grid block. These will be easier to implement than in the feasibility study because
it will not be necessary to convert between pressure and enthalpy and pressure and temperature
or saturation.

4. Investigate the performance of the method on the test problems from the feasibility study.

The implementation of integrated finite differences and multigrid to solve Poison’s equation was
relatively straight forward and the expected multigrid convergence rate, the ratio of the error at the end
of the V-cycle to the error at the beginning of the V-cycle, of 0.1 was achieved. In the implementation,
care had to be taken with the boundary conditions.

At present we are working on the single block solver. This is proving difficult. The following sub-
section discusses the single block solver.
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4.1 Single block solver

The single block solver should be able to solve for the pressure and enthalpy in a block when the pres-
sures and enthalpies in the neighbouring four, in 2-D, or six, in 3-D, blocks are specified and fixed. The
solver needs to work even when the initial guesses are poor, because it was noticed in the preliminary
implementation that poor estimates were sometimes obtained when restricting from the coarse grid to
the fine grid, especially on the boundary of two-phase zones.

Our current solver uses Newton-Raphson with time stepping and care when crossing the phase
change boundaries. This is the same method as in TOUGH, but it is using different primary variables.

To test the solver, problems in 2-D with no flow through three sides and the pressure and enthalpy
specified for the fourth. With all combinations of boundary orientation (specified pressure and en-
thalpy either on top or to the side), initial estimate (liquid, two-phase or vapour) and boundary condi-
tions (liquid, two-phase or vapour), there are 18 test problems.

TOUGH converges for all the test problems, but in some problems to the wrong answer -

¢ For two-phase boundary conditions on the side, the block converges to same pressure and tem-
perature as on the boundary, but has a different saturation (enthalpy).

¢ For vapour boundary conditions on the top, the block converges to liquid conditions, but for some
initial estimates the pressure gradient is liquid-static (correct) and for other initial estimates the
pressure gradient is vapour-static (incorrect).

We believe that these errors can be corrected by -

o Using liquid pressures

pr=p+9(d/2)(1 — s;)(1 = s1) * (py — p1) (11
for calculating the liquid flux and vapour pressures
o =p+g(d/2)s151(p — pl) (12)

for calculating the vapour flux. The concept of liquid and vapour pressures is similar to capil-
larity pressure, but is independent of rock properties. The pressures at the top and bottom of the
block were estimated by assuming that the block is hydrostatic with vapour over liquid and that
the block pressure is the average of the pressure with depth. The liquid pressure at the centre of
the block, p;, was calculated by assuming liquid-static from the bottom to the centre. The vapour
pressure at the centre of the block, p,, was calculated by assuming vapour-static from the top to
the centre.

e Modifying the gravity correction for the liquid flux from

gsin(B)(pun + pi2)/2 (13)
and the gravity correction for the vapour flux from
gsin(B) * (pu1 + po2)/2 (14)

to both be
gsin(B)(di(surn + (1 — sn)pu1) + da(sizpiz + (1 — 812)pu2) /(2 % (dv + d2)) (15)

Our single block solver with the above modifications does not converge for some of the test prob-
lems. We think that the convergence problems are due to the discretized equations not being smooth.
There are discontinuities in the slopes of the residuals across the phase change boundaries which both
TOUGH and our block solver take care over, but there are also discontinuities in the slopes across any
of the lines where a flux changes sign because of the upwinding. TOUGH does not suffer as badly as
our single block solver and this may be due to the choice of primary variables. We are now considering
making the above modifications to TOUGH to see if it can then solve all the test problems correctly.
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S Summary

A feasibility study of applying multigrid to geothermal reservoir simulation has been carried out and
showed that the method could solve the equations but the implementation was slower than standard
TOUGH. This study identified a number of problems in implementing multigrid and these are currently
being investigated.

A major problem is how to solve for the pressure and enthalpy in a single block with pressures and
enthalpies specified on the boundaries. There are difficulties with the formulation of the “capillary”
pressure and also because the residuals are not smooth across phase changes and when flows change
direction (due to upwinding).
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