
LBNL-40933
U C- 1240

ERNEST ORLANDO LAWRENCE
B ERKELEY NATIONAL LABO RATO RY

T2SOLV An Enhanced
Package of Solvers for the
TOUGH2 Family of Reservoir
Simulation Codes

George J. Moridis and Karsten Pruess RECEIVED-
DEC 1 7 1997 Earth Sciences Division

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. While this document is believed to contain
correct information, neither the United States Government nor any
agency thereof, nor The Regents of the University of California, nor any
of their employees. makes any warranty, express or implied. or assumes
any legal responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process. or
service by its trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement. recommendation,
or favoring by the United States Government or any agency thereof, or
The Regents of the University of California. m e views and opinions of
authors expressed herein do not necessarily state or reflect those of t he
United States Government or any agency thereof, or The Regents of the
University of California.

This report has been reproduced directly from the best
available copy.

Available to DOE and DOE Contractors

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road, Springfield, VA 22161

from the Office of Scientific and Technical Information

Ernest Orlando Lawrence Berkeley National Laboratory
is an equal opportunity employer.

LBNL-40933
UC-I 240

T2SOLV: AN ENHANCED
PACKAGE OF SOLVERS FOR THE
TOUGH2 FAMILY OF
RESERVO I R SI MU LATI 0 N CO DES

George 1. Moridis and Karsten Pruess

Earth Sciences Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

November 1997,

This work was supported by the Assistant Secretary for Energy Efficiency and
Renewable Energy, Office of Geothermal Technologies, of the US. Department
of Energy, under contract No. DE-AC03-76SF00098.

T2SOLV: AN E"CED PACKAGE OF
SOLVERS FORTHE TOUGH2 FAMILY
OF RESERVOIR SIMULATION CODES

GEORGE J. MORIDIS and KARSTEN PRUESS

Lawrence Berkeley Nationa Sciences Division,
I Cyclotron Road, 90-1

Abstract - T2SOLV,is an enhanced package of matrix solvers for the TOUGH2 family of
codes. T2SOLV includes all the Preconditioned Conjugate Gradient (PCG) solvers used
in T2CG1, the current solver package, as well as LUBAND, a new direct sglver, and
DLUSTB, a PCG solver based on the BiCGSTAB method. Additionally, T2SOLV
includes the D4 grid numbering scheme and two sets of preprocessors. Results fiom test
problems indicate that LUBAND is faster, more reliable and requires less storage than
W 8 , the current direct solver. BiCGSTAB solver is showq to be superior to the other
PCG methods in T2SOLV. Finally, the preprocessors improve the performance of the
PCG solvers and allow the solution of previously intractable problems.

INTRODUCTION

This paper discusses enhancements of the linear solvers for the TOUGH2 general-
purpose fluid and heat flow simulator. TOUGH2 is capable of modeling most of the
processes arising in the n a h l state of geothermal res&o& and in response to
production and injection operations. It can handle the appearance and disappearance of
liquid and vapor phases, boiling and condensation, multiphase flow due to pressure,
gravity, and capillary forces, vapor adsorption with vapor pressure lowering, heat
conduction, and heat exchange between rocks and fluids. It is applicable to flow systems
of arbitrary geometry fiom one to three dimensions, and has special provisions for flow in
fractured-porous media. A brief summary of the equations and methods used in
TOUGH2 is given in the appendix; additional infon&tion is available in a number of

orts [Pmess, 1991, 1995; Pmess et al., 1996, 1997), and on the web at URL
://ccs.lbl.gov/TOUGH2/.

cal simulation
le media arises fiom the solution of large systems of linear equations Ax = b,

where A is a banded matrix of order N, x is the vector of the unknowns, and b the right-
hand side. These are solved using either direct or iterative methods. The most reliable
solvers are based on direct methods. The robustness of direct solvers comes at the
expense of large storag quirements and execution times. Iterative techniques exhibit

problem-specific perfomance and lack the generality, predictability and reliability of
direct solvers. These disadvantages are outweighed by their low memory requirements
and their speed especially in the solution of very large matrices.

In the TOUGH2 general-purpose reservoir simulator [Pruess, 1991] the matrix A
is a Jacobian with a consistent structure. For a flow problem with AEQ mass-and-energy
balance equations per grid block, the Jacobian consists of many AEQ-dimensional sub-
matrices. For a grid block n, derivatives corresponding to accumulation terms will generate
a sub-matrix in location (n,n). Each flow term between n and a neighboring grid block m
will give rise to two off-diagonal sub-matrices in locations (n,m) and (m,n), and will also
contribute to the diagonal sub-matrices at (n,n) and (m,rn). Thus, the incidence matrix will
be symmetric, although, for multi-phase and non-isothermal problems, matrix A generally
may be far from symmetric. Each grid block is typically connected only to a few other
blocks so that A will be sparse. The Integral Finite Difference Method, IFDM,
[Narasimhan and Witherspoon, 19761 used in TOUGH2 does not need to make reference
to a global system of coordinates. Very irregular grid systems may be used, which may
result in a nearly random, but symmetric, sparsity structure. However, for regular grid
systems involving global coordinates, such as (r,z) and (x,y,z) grids, the IFDM is
equivalent to conventional finite differences, giving rise to Jacobian matrices with regular
banded structure.

The Jacobian matrices generated fiom mass and heat balance equations for multi-
phase non-isothermal flows have a number of properties that can make linear equation
solution quite challenging. Matrix elements can have a very large numerical range, often
spanning 20 orders of magnitude or more. Off-diagonal elements are proportional to time
step size, and for “practical” time steps may be orders of magnitude larger than diagonal
elements. In fact, diagonal elements may often be zero (see below). Thus, TOUGH2
creates very challenging matrices which can be non-symmetric, not positive definite, not
diagonally dominant and ill-conditioned, i.e., all the attributes that cause most iterative
techniques to fail. In addition, the general-purpose nature of TOUGH2 allows simulation
of a great diversity of flow problems which may produce quite different matrix
characteristics. This explains the past heavy reliance of TOUGH2 on the robust but slow
direct solver MA28 [Dug 19773, which has large and imprecise memory requirements
and in 3-D simulations is limited to impractically small problems (l500 gridblocks).

In the current TOUGH2 version, T2CG1 [Moridis and Pruess, 19951, a package of
preconditioned conjugate gradient solvers, complements the MA28 direct solver and
significantly increases the size of tractable problems. T2CG1 includes three
Preconditioned Conjugate Gradient (PCG) solvers: (a) DSLUBC, a routine based on the
Bi-Conjugate Gradient (BiCG) method, (b) DSLUCS, a Conjugate Gradient Squared
(CGS) routine, and (c) DSLUGM, a Generalized Minimum Residual (GMRES) routine.
Tests of T2CG1 on a variety of computing platforms and for problems with Jacobian
matrices of order 30,000 have shown that the PCG routines in T2CG1 are significantly
(and invariably) faster than MA28 and require far less memory [Moridis and Pruess,
19951.

T2CG1 is a reliable and fast solver package for most TOUGH2 simulations. In
limited cases, however, the PCG solvers in T2CG1 are challenged by classes of certain
very demanding numerical simulation problems, as well as by limitations in the underlying

2

algorithms of the PCG (such as occasional oscillato avior as steady-state is
approached).

olvers for the TOUGH2
family of codes, which was develhped as a replacement for-T2CG1, the current solver
package. T2SOLV includes all the PCG solvers used in T2CG1 as well as a new .routine,
DLUSTB, based on the Bi-Conjugate Gradient Stabilized (BiCGSTAB) method.
T2SOLV also replaces MA28 by LUBAND, a.genera1 banded-matrix direct solver.
Additionally, it -includes an option for using the D4 ordering scheme and two sets of
matrix preprocessors to enhance the PCG performance.

In this paper we discuss , an enhanced pac

THE LUBAND SOLVER

LUBAND is a direct solver that replaces the direct solver MA28 currently used in the
TOUGH2 family of codes. It is derived from routines in the LAPACK [1993] package,
which have been enhanced and extensively. modified to conform to
architecture and memory management approach. It is based on a LU de
partial pivoting and row interchange, and allows the solution of systems with a large
number of zeroes on the main diagonal. Unlike MA28 (which is a general solver),
LUBAND is a banded matrix solver, and as such it capitalizes on the significantly lower
and well-defined memory requirements of this class of solvers. Athough the savings in
execution time and memory are maximized in matrices with banded structure, LUBAND
is capable of solving any matrix generated by TOUGH2 (i.e. even matrices with nearly-
random sparsity structure) faster than MA28. <

LUBAND can be applied without any problem in the current TOUGH2 version and
is fully backward compatible with all older input data files. The MESHMAKER routine
[Pruess, 19911, which discretizes the domain and generates the simulation grid in
TOUGH2, was also enhanced to minimize the bandwidth of matrix A. Defining work W
as the number of multiplications and divisions necessary to convert the full matrix to an
upper triangular form and to perform back substitution, Price and Coakr [1974] showed
that for direct solvers W = NM2 and the minimum storage S = NB, where N is the order of
the matrix and Mits half-bandwidth, the fill bandwidth being B = 2M+ 1.

For a given problem size N, work and storage are minimized when M is minimized. If
I , J , K areL the number of subdivisions in the x-, y- and z-directions respectively, the
shortest half-bandwidth is M=JK when PBK. This is called standard ordering [A&
and Settari, 19791, and the resulting matrices are banded. As W increases with the square
of M, it is obvious that the penalty for non-optimization of the o
be substantial.

THE DLUSTB SOL
-

DLUSTB was developed based on the BiCGSTAB(m) algorithm [SZeijpen and
Fokkema, 19931, an extension of the BiCGSTAB algorithm of van der Vorst [1992]
which is still an option in T2SOLV. It was developed to solve nonsymmetric linear
systems while avoiding the irregular convergence patterns of PCG solvers in situations

where the iterations are started close to the solution (e.g. when approaching steady state).
This is a weakness which afflicts most PCG solvers, and may lead to severe residual
cancellation errors. BiCGSTAB(m) alleviates the irregular (oscillatory) convergence
common to the BiCG [Fletcher, 9761 and CGS [SonneveZd, 19891 methods, thus
improving the speed of convergence. It also alleviates potential stagnation or even
breakdown problems which may be encountered in traditional BiCGSTAB. According to
SZeijpen and Fokkema [1993], BiCGSTAB(m) combines the speed of BiCG with the
monotonic residual reduction in the Generalized Minimum Residual (GMRES) method,
while being faster than both. Theoretical analysis indicates that the BiCGSTAB(m)
algorithm is especially well-suited to the solution of very large (i.e. N>50,000) problems
[van der Yorst , 19921.

The BiCGSTAB(m) algorithm is shown as pseudocode in Figure 1. The vectors r are
residuals, and M is the preconditioner. The preconditioner used in DLUSTB is based on
an incomplete LU (ILU) factorization of the matrix A, which can be obtained by the
slightly modified Gaussian elimination procedure described in Moridis and Pruess [19921.
The modified BiCGSTAB(m) can be interpreted as the product of the BiConjugate
Gradient method BiCG [Fletcher, 197611 and repeatedly applied Generalized Minimum
Residual GMRES(1) method [Saad and Schultz, 19861. At least locally, a residual vector
is minimized, leading to a considerably smoother convergence behavior. In the traditional
BiCGSTAB, if the local GMRES(1) stagnates, then the Krylov subspace does not expand
and the method breaks down, in addition to failure possibilities due to weaknesses of the
underlying BiCG algorithm. BiCGSTAB(m) addresses this problem by combining BiCG
with GMRES(m).

DLUSTB uses the Boeing-Harwell matrix storage scheme of TOUGH2, and has the
same architecture as the other routines in T2SOLV. As in all other PCG solvers in
T2SOLV, it uses a modified LU decomposition for preconditioning. Its memory
requirements increase linearly with the order M ofthe Minimal Residual polynomial. For
m = 4, it requires twice the memory of BiCG or CGS. The optimum value of M is
calculated internally in DLUSTB.

THE D4 SCHEME

The Alternating Diagonal Scheme (D4) for gridblock ordering was added as an option
to T2SOLV. The ordering of unknowns can drastically affect the amount of computation
and storage. For a long time the best ordering scheme was the standard ordering [Aziz and
Settari, 19791. Figure 2 shows the standard ordering of a 2-D grid.

D4 is a matrix-banding technique, which derives its benefits from the numbering of the
grid points. For the 2-D problem shown in Figure 2, Figure 3 depicts the D4 numbering
scheme. More details can be found in Price and Coats [1974]. D4 ordering partitions the
matrix into four distinct entities according to the equation

4

where Am and AM are diagonal submatrices, and ALL and AUR are sparse submatrices.
This structure allows forward elimination on the equations in the lower half of A, which
zeroes all original entries in ALL and transforms it into a atrix, while creating non-
zero entries in the submatrix Am in the lower right qua

klx=b* *[A, 0 A',

sk denotes transformed ces. In the transformed equation Am and
Am remain unchanged, while A', is a banded matrix. The equation

- A',x, = bt

can then be solved independently. The submatrix A', is of order N/2, and allows the
calculation of x,, the lower half of x, from which the upper half xu is obtained by simple
substitution. The resulting reduced m using either direct (D4-
direct) or iterative @%iterative) methods.

D4 numbering reduces the order of the matrix by 50% while not increasing the
bandwidth. Depending on the grid geometry, D4 makes possible execution speed
improvement by a factor ranging between 2 and 5.85 [Price and Coats, 19741 over
standard ordering. Moreover, it reduces storage requirements by a factor of 2. Compared
to iterative solvers, D4-direct is competitive in 2-D problems but slower in 3-D
problems, while yielding a robust solution. D4 with LUBAND makes possible the
robust direct solution of large multi-dimensional problems. However, D4 can only be
used with regular grids.

THE 2-PREPROCESSORS

ally challenging matrices arisi UGH2 simulations
involve a large number of zero entries on the main diagonal of the Jacobian. Such matrices
are quite common in non-isothermal 'two-component systems (such as modeling of "two-
water" geothermal systems involving separate tracking of two different masses of water in

non-zero entries on the main diagonal of the es) and result in at least

affected by the diagonal dominance of
es on the main diagonal. Up to 0.1N zero elements have little

effect on the PCG solvers in T2SOLV. Matrices with as many as 0.3N (and occasionally
up to 0 may be tractable without any'special treatment, but usually
require rations for convergence, i.e. exceeding 0.5N.

The three Z-preprocessors implemented in T2SOLV enhance the pedormance of the
PCG solvers in matrices with a large number of main-diagonal zeroes. These
preprocessors are invoked only when (a) PCG solvers are used, (b) the matrices have

'

main diagonals populated with a large number of zeroes and (c) the number of the primary
variables NEQ> 1.

The first option, 21, replaces the zeroes with a small number (typically lO-S), and
can substantially decrease the number of iterations for convergence in matrices with as
many as 0.5Nzero main-diagonal elements. The performance of the PCG solvers in Z1-
processed matrices deteriorates rapidly when the number of the main-diagonal zero
elements exceeds 0.5N.

The second pre-processing option, 22, is computationally more intensive and
involves linear combinations of the flow equations in each gridblock. 22 includes a search
algorithm that identifies the appropriate equation to be added to the equation
corresponding to the zero main-diagonal element. By adding the two equations, the
corresponding elements in the Jacobian are replaced with the non-zero sum of the original
elements. The 22 option requires limited computational effort and significantly improves
the performance of the PCG solvers.

While very effective, Z2-preprocessing can still suffer from poor conditioning because
of persistent lack of diagonal dominance and large differences in the magnitude of the
added elements. The problem can sometimes be alleviated by the 23 option, which
precedes the linear combination with normalization with respect to the largest element in
the corresponding row. Addition of the normalized elements leads to an improved PCG
performance because the relative magnitude of the elements and the corresponding
roundoff error can be reduced. The 23 option is computationally more intensive than 22.
The 22 and 23 preprocessors can easily handle up to 0.75N zero diagonal elements.

THE 0-PREPROCESSORS

The 0-preprocessors are applied to matrices with no zero entries on the main
diagonal and aim to improve the PCG solver performance by improving the matrix
conditioning. Three such preprocessors are available in T2SOLV. These options, 01
through 03, are in essence steps in the replacement of the AM submatrix by the unit
matrix through a central pivoting process, and involve increasing levels of computational
effort.

The 01 option eliminates the lower half of the main-diagonal submatrix, and thus
removes NEQ-I subdiagonals fiom the global matrix. This reduces the computational
effort by reducing the number of non-zero matrix entries and can improve the PCG
performance. Execution times are burdened by the additional work for the elimination of
the lower half of the matrix, but usually this is overcome by the savings in the PCG
computations.

In the 0 2 option, in addition to 01 the upper half of the main-diagonal submatrix is
eliminated, resulting in a diagonal submatrix and eliminating an additional NEQ-1
superdiagonals fkom the global matrix. Compared to the original, the 02-preprocessed
matrix is significantly sparser and better-conditioned and the performance of the PCG
solvers can be enhanced. The increased computational effort for the 0 2 preprocessing is
usually compensated by the reduction in the PCG iterations.

6

,

The 03 option involves normalization of the 0 2 matrix, resulting in a unity main
diagonal. 03 does not further increase matrix sparsity, but may improve the matrix
conditioning .

TEST PROBLEMS

Test Problems la and Ib
Test problems la and lb involve studies of non-isothermal flow in a “two-water”

system. Such systems are known to be the most challenging for the solvers in TOUGH2,
as they routinely create matrices with 0.67Nzeros on the main diagonal. The PCG rou-
tines in T2CGl have in the past been unable to solve even the smallest of this class of
problems. The problem discussed here involves injection of “water 2” at a temperature of
30 OC into a geothermal reservoir of “water 1” at 280 “C. The EOS 1 module of TOUGH2
is used [Pruess, 1991 1. The two different masses of water are tracked independently.
This system is composed of 2 water components and involves 3 equations per gridblock
(NK = 2 and AEQ = 3, respectively, in the TOUGH2 nomenclature). The geometry,
properties and discretization of the two problems are shown in Table 1.

Problem l a is one-dimensional, and consists of 5 gridblocks at the geothermal
reservoir conditions. Cold water is injected into the first gridblock at the rate indicated in
Table 1 for a total of 20 timesteps. The small size of the problem demonstrates that the
computational difficulties encountered in this class of problems are not related to the size
of the matrix, but rather to fundamental issues of matrix conditioning. Table 2 and Figures
4 through 8 show the performance of the various solvers in T2SOLV. For comparison,
the same scale was used in Figures 4 through 8, in which the closure criterion of the
conjugate gradient (CG) iterations (104) is indicated by a horizontal dashed line.

The results are shown in Table 2. MA28 and LUBAND can solve this problem
without difficulty. None of the PCG methods is capable of solving the matrix with 20
(Le. no preprocessing) or 21 matrix preprocessing. With 22 and 23 preprocessing, all
iterative methods can solve the problem but their performance differs significantly.

The pdormance of DSLUBC with the 22 and 23 preprocessors (Figure 4) is
practically the same, requiring a total of 146 and 142 CG iterations respectively. With
22, the maximum number of allowable iterations (21) is reached only once and the CG
closure criterion is always met. With 23, the maximum number of allowable iterations is
reached only once but at a different time step than for 22. The CG closure criterion is
not met once. However, this does not pose a problem as the solution is sufficiently
accurate to satisfy the Newtonian convergence criterion of 10-5. It is obvious that the
most challenging matrices arise during the first few timesteps, after which solutions are
obtained within 2-4 iterations.

DSLUCS with 22 (Figure 5) reaches the maximum number of allowable iterations (21)
at the first timestep (which needs a single Newtonian iteration), at which the CG closure
criterion is not met, but which satisfies the Newtonian convergence criterion. At the first
timestep, <DSLUCS with 23 requires a single Newton& iteration and a single’CG
iteration to obtain a very accurate solution (a residual of 9.4~102). After the f h t
timestep, the DSLUCS performance with 23 has a distinct advantage in terms of total
number of CG iterations (70 vs. 92 for 22). With both 22 and 23, 6 to 10 iterations are

,

i

7

required for the CG solutions, a relatively large number compared to the size of the
problem (15 equations).

The performance of DSLUGM (Figure 6) is practically the same with either 22 or 23
preprocessing, and requires the least number of total CG iterations (61 and 60
respectively). CG convergence in this case is achieved within 1 or 2 iterations at all the
timesteps and Newtonian iterations. DSLUGM with either 22 or 23 appears to be the
best overall solver of Test Problem la.

DLUSTB with 22 (Figure 7) is unable to solve the problem, and the matrix solution is
stopped by the TOUGH2 main program at the fourth timestep after Newtonian
convergence on the fmt iteration at two successive timesteps (and following repeated
timestep cutbacks). When employing DLUSTB with 22, the maximum number of
allowable iterations (21) is reached at each Newtonian iteration, while the residuals do not
meet the CG closure criterion. The problem can be alleviated by reducing the A Q to 0.4 s.
DLUSTB with 23 has a much better performance, and while it reaches the limit of 21 CG
iterations in the fmt three timesteps, it is capable of solving the problem at all 20
timesteps. The residual at the third timestep exceeds the CG closure criterion, but the
solution is sufficiently accurate to satisfy the Newtonian convergence criterion. It is
noteworthy that after the first few iterations, DSLUGM with 23 requires consistently
the fewest iterations to convergence, i.e. 1 or 2.

The problem specificity of the PCG solvers is demonstrated in Figure 8, which shows
the performance of DLUSTB with 22 and 2 3 in a variant of test Problem la, in which
water is injected into the third (as opposed to the frst) gridblock. With this minor
change, DLUSTB with 22 manages to solve the problem despite reaching the limit of 21
iterations on the first 6 timesteps and not achieving the CG closure criterion three times.
After the sixth timestep, the solution of the matrix poses no particular problem and is
attained within 1-3 iterations. The DLUSTB performance with 23 is better than with 22
in the first timesteps, and similar to that shown in Figure 7. After the sixth timestep, the
22 and 23 preconditioning have practically the same effect on the DLUSTB perfQmance,
which requires 1-2 iterations for convergence.

With 22 and 23 preprocessing, the execution times are practically the same for all
solvers (Table 2). The Jacobians at the first Newtonian iteration of the fmt timestep of
Problem la for ZO, 22 and 23 preprocessing are shown in Figures 9, 10, and 1 1
respectively. The zeros on the main diagonal in Figure 9 are replaced by non-zero entries
in Figure 10 after linearly combining the gridblock equations by the 22 preprocessor.
Further manipulations result in the 23 matrix of Figure 1 1.

Problem lb involves a 3-D domain consisting of 9 x 8 ~ 5 = 360 gridblocks in (x,y,z),
resulting in a total of N = 1080 equations. The fundamental weakness of MA28, i.e. its
large (especially for 3-D problems) and not well defined memory requirement, i s obvious
in the problem. Despite memory allocation 15 times larger than the one needed for the
LUBAND solution, MA28 could not complete the LU decomposition due to insufficient
memory.

Table 3 and Figure 12 show that DLUSTB has the best performance. It is the fastest
and requires the least number of PCG iterations to convergence. DLUSTB seems to be
the only solver that can proceed with Z1-preprocessing. Note that the use of the Z-
preprocessors makes possible the solution of a previously-intractable problem by all the

8

PCG solvers in T2SOLV.
performance.

Test Problem 2
a laboratory experiment in a heat convection

cell. A porous medium consisting of glass beads fills the annular region between the two
vertical concentric cylinders. Application of heat generates a thermal buoyancy force,
giving rise to the development of convection cells. This problem has been’discussed in
detail by Moridis and Pruess [1992]. The EOSl module is used. The domain consists of
16x26 = 416 gridblocks in (r,z), with NK = 1 and NEQ = 2, ting in a total of N = 832
equations.

Table 4 and Figures 13 and 14 show the performance of the various solvers in
Problem 2, which does not pose any significant challenges to the T2SOLV routines.
DLUSTB is the fastest routine and requires the least number of iterations to convergence.

In this 2-D problem, LUBAND appears as a competitive alternative. The effect of
the 0 1 preprocessor is pronounced in terms of PCG iterations and execution times in
DSLUBC and DLUSTB, but seems to be limited in DSLUCS and DSLUGM. The
evolution of residuals of DSLUCS and DSLUGM in the first Newtonian iteration of the
first timestep is identical with and without 01 preprocessing (Figures 13 and 14);while
the DSLUCS execution time with 0 1 increases. Conversely, the use of the 0 2 and 0 3
preprocessors seems to offer the greatest improvement in the performance of DSLUCS
and DSLUGM.

Test Problem 3
id and mass flow in a mid-sized three-dimensional model

of a geothermal reservoir. The basic computational grid is composed of 15x15~20 = 4500
grid blocks in (XJJ). Cold water is injected through 4 wells, while hot water is with-
drawn from 5 wells. EOSl is used with NK = 1, NEQ = 2, resulting in a total of N =
9000 equations; I

The solver performance is shown in Table 5. This is a relatively large but well-
behaved problem, the size of which precluded the use of a direct solver. The use of D4
allowed a direct solution by LUBAND, which is competitive with the PCG solutions.
D4 with DLUSTB had a performance on a par with DLUSTB, the fastest PCG solver. In
light of the minor overhead needed to set up the D4 system, this result is very
encouraging.

DLUSTB demonstrated its superiority by being the fastest solver and requiring the
least number of PCG iterations to convergence. DSLUGM seems to be a6 inappropriate
method for this type of problem. As expected, the benefits of 0-preprocessing in this
well-behaved system are not evident in the execution times, although the number of PCG
iterations are often reduced. It is noteworthy, however, that despite the increased
computational load, the execution times for the 0-preprocessed solutions are practically
identical to those without any preprocessing.

An important feature of TOUGH2 is the user’s complete control over the numbering
sequence of the gridblocks. To demonstrate the robustness of the iterative solvers, the
order of the elements in the input file was rearranged by (a) generating 4500 random
numbers, (b) ranking them, and (c) renumbering the sequence of grid elements according to

The 22 preprocessor seems to offer the best overall

Test problem 2 involves simulation

Test problem 3

9 i

the ranking of the corresponding random number. This resulted in a matrix which, while
maintaining the same number of non-zero entries, had a sparsity pattern which was
almost symmetric but practically random in appearance. The effect of random numbering
on the ability of the iterative solvers to produce a solution is shown in Table 6. All the
solvers were capable of solving the problem, but required longer execution times than for
the well-ordered case because the sparsity pattern of the matrix does not allow taking full
advantage of the benefits of preconditioning and PCG solvers, which are most
pronounced in well-ordered banded matrices. DLUSTB is again the fastest solver and
rquires the least number of PCG iterations, and DSLUCS is the second best solver. The
execution times of the solvers are about 50% longer than for the well-ordered case, while
that for DSLUGM is about 150% longer. It is remarkable that the relative speed of the
solvers also remains the same as in the well-ordered case.

T a t Problem 4.
This problem examines non-isothermal flow in a simple two-dimensional model of a

heterogeneous porous medium. The basic computational grid has a grid spacing of dx =
0.25 M, Ay = 0.125 my for a total of 80 x 120 = 9600 grid blocks (Figure 15). The y-axis is
rotated 900 against the horizontal to make the section vertical. A mesh preprocessing
program is then used to place impermeable obstacles with lengths uniformly distributed in
the range of 2-4 m (Figure 15). Problem parameters are chosen representative of typical
alluvial soils and are given in Table 7.

The heterogeneous medium described above has been used to study the behavior of
liquid infiltration plumes in isothermal systems [Pruess, 19941, and has been discussed in
detail by Moridis and Pruess [19951. In this problem, water at a temperature of 30 OC is
injected uniformly at a total rate of 1 kgh into the fully-saturated domain across the top
of the domain, while the bottom boundary is maintained at a constant pressure and
temperature. The entire domain is initialized in single-phase conditions, at a pressure of P
= 4.0~107 Pa, and a temperature of 280 OC. The simulation is performed with the EOSl
fluid property module using NK = 1 and NEQ = 2, for a total of N = 19200 equations.
This problem was chosen because it had confounded both the DSLUBC and the
DSLUGM solvers [Moridk and Pruess, 19951, i.e. the building blocks of the traditional
Bi-CGSTAB method. The pedormance of the DLUSTB was expected to be an indicator
of the robustness of the Bi-CGSTAB(m) algorithm.

The simulation results are shown in Table 8. The size of the problem precluded
the use of direct solvers. The superiority and efficiency of the DLUSTB routine in the
solution of this problem is clear. DLUSTB required 181 1 CPU sec and was significantly
faster than DSLUCS, which required 2213 CPU sec. They were both significantly faster
than DSLUBC (10063 sec) and DSLUGM (10139, both of which reached repeatedly the
maximum number of iterations (because of break-down or stagnation) and needed repeated
timestep size reductions in order to complete the 10-timestep run.

10

. .
CONCLUSIONS AND SUMMARY

The following conclusions can be drawn:
(1) Without any matrix p essing, the BiCGSTAhfgorithm coded in DLUSTB

is shown to be a fast and efficient solver which outperforms the other PCG routines. It is
the fastest and the yost robust in T2SOLV and is shown to be practically.fiee of
stagnation, oscillation, and divergence problems.

(2) The use of the 2-preprocessors makes pos le the solution of problems which
were previously intractable to all the PCG solvers. The combination of the Z-

’ preprocessors with the BiCGSTAB routine gives the best performance in such problems.
(3) In problems which are known to confound the other PCG solvers, DLUSTB

converges smoothly thout invoking the matrix-preprocessing
facility.

(4) The 0-preprocessors are shown to improve the robustness and decrease the
number of iterations to convergence, but their effect depends on the PCG solver in
T2SOLV. DLUSTB appears to be the solver most consistently responsive to the 0-
preprocessors. In well-behaved proble of the 0-preprocessors on the
execution speed is not significant.

(5) LUBAND is shown to be consistently faster and more reli than MA28, and
can solve much larger problems.

(6) The gains in execution speed when the D4 scheme is used in regular grids are
shown to be significant (especially compared to the direct solution). D4-direct seems to
be competitive (in speed) to the PCG solvers in medium-sized problems.

In large problems (especially in 3-D systems) and when not limited by significant
memory requirements, D4-direct will still offer a predictably large improvement in
execution speed over the direct solution, but is expected to be consistently and
significantly outperformed by the PCG solvers. The performance of the D4-iterative
approach (in which the reduced matrix is solved by the PCG solvers) has not yet been
fully assessed.

SOLV enables the user of the TOUGH2 family of codes to solve some of the most
challenging numerical problems (previously tractable only with direct solvers) using the
PCG routines. The suite of PCG solvers includes all the T2CG1 routines, and is en-
hanced by the addition of DLUST3 (based on the BiCGSTAB(m) algorithm), which
combines speed of convergence with monotonic residual reduction and alleviates the
oqcillatory behavior of solutions as steady-state is approached (a common problem to
most PCG solvers). T2SOLV enhances the performance ustness of the PCG
solvers by introducing a set of matrix preprocessors. onally, it introduces
LUBAND, a new direct solver capable of solving problems orders of magnitude larger
than the MA28 routine in T2CG1. It also doubles ,the size of problems tractable with
direct solvers by implementing a 04 ering option.

t - This wo Assistant Secretary for Energy
Efficiency and Renewable Energy, Office of Geothermal Technologies, of the U.S.
Department of Energy, under contract No. DE-ACO3-76SFOOO98. Drs. Curt Oldenburg and
Stefan Finsterle are thanke their helpfid review comments.

i 1
i

, !

I

11

REFERENCES

Azk, K. and A. S e e (1979), Petroleum Reservoir Simulation, Elsevier, London and
New York.

Battistelli, A., C. Calore and K. Pruess (1997), The Simulator TOUGH2EWASG for
Modeling Geothermal Reservoirs with Brines and Non-Condensible Gas,
Geothermics, 26(4), pp. 437-464.

Duff, I.S. (1977) MA28 - A set of Fortran Subroutines for Sparse Unsymmetric Linear
Equations, AERE Harwell Report R 8730.

Fletcher, R. (1976), Conjugate gradient methods for indefinite systems. Numerical
Analysis, Lecture Notes in Mathematics 506, Springer-Verlag, New York.

International Formulation Committee (1967), A Formulation of the Thermodynamic
Properties of Ordinary Water Substance, IFC Secretariat, Dusseldorf, Germany.

LAPACK (1993), Univ. of Tennessee, Univ. of California at Berkeley, NAG ltd.,
Courant Institute, Argonne National Lab., and Rice University, Version 1.1.

Moridis, G.J. and K. Pruess (1992), TOUGH simulations of Updegrafls set of fluid and
heat flow problem, Lawrence Berkeley Laboratory report LBL-32611, Berkeley, CA.

Moridis, G.J. and K. h e s s (1995), T2CGl: A package of preconditioned conjugate
gradient solvers for the TOUGH2 family of codes, Lawrence Berkeley Laboratory
report LBL-36235, Berkeley, CA.

Narasimhan, T. N. and P. A. Witherspoon (1976), An Integrated Finite Difference
Method for Analyzing Fluid Flow in Porous Media, Water Res. Res., 12(l), 57-64.

Price, H. S. and K. H. Coats (1974), Direct methods in reservoir simulation, Trans. SPE

Pruess, K. (1991), TOUGH2-A general-purpose numerical simulator for multiphase fluid
and heat flow, Lawrence Berkeley Laboratory Report LBL-29400, Berkeley, CA.

Pruess, K. (1994), On the validity of a Fickian diffusion model for the spreading of liquid
infiltration plumes in partially saturated heterogeneous media, Lawrence Berkeley
Laboratory Report LBL-35 134, Berkeley, CA.

Pruess, K., editor (1995), Proceedings of the TOUGH Workshop '95, Lawrence Berkeley
Laboratory Report LBL-37200, Berkeley, CA.

Pruess, K., A. Simmons, Y.S. Wu and G. Moridis (1996), TOUGH2 Software
Qualification, Lawrence Berkeley National Laboratory Report LBL-38383, Berkeley,
CA.

Pruess, K., S. Finsterle, G. Moridis, C. Oldenburg, and Y.S. Wu (1997), General-Purpose
Reservoir Simulators: The TOUGH2 Family, GRC Bulletin, pp. 53-57, February
1997. (also: Lawrence Berkeley National Laboratory Report LBL-40 140)

Saad, Y. and M.H. Schultz (1986), GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7(3), 856-869.

Sleijpen, G.L.G. and D. Fokkema (1993), BiCGSTAB(m) for linear equations involving
unsymmetric matrices with complex spectrum, Electronic Transactions on Numerical
Analysis, 1, 11-32.

Sonneveld, P. (1989), CGS, A fast Lanczos-type solver for nonsymmetric linear systems.
SIAM J. Sci. Stat. Comput., 10(1), 36-52.

van der Vorst, H.A. (1992), Bi-CGSTAB: A fast and smoothly converging variant of Bi-
CG in the presence of rounding errors, SIAM J. Sci. Statist. Comput., 13,63 1-644.

of AIME (SPEJ), 257,295-308.

12

Table 1. Parameters for Test Problems l a and l b

Initial Pressure
Initial Temperature
Permeability
Porosity

Relative Permeability
All phases perfectly mobile

Capillary Pressure

krl= krg= I

Zero capillary p ressure

Geometry of Flow Domain -Problem l a
1-D horizontal (x) section

fidding

Injection wells
Rate and location

of Flow Domain -Problem l b

gridding
3-D horizontal (XJ) section

Injection wells
Rate and location

P= 4.0x107Pu
T= 280 *C
k = 2.0~1043 m2
4= 0.15

5x1~1 blocksin (x,y,z)
Ax= 200m
Ay= 200m
&= loom
1
30 kgkat (l,l,l)

9x8~5 = 360 bIocks
Ax= 200m
Ay = 200 m
Az= l o o m
1
30 kg/s at (3,3,5)

13

Table 2. Solver Performance in Problem la - At0 = 4 s
(Macintosh PowerPC 9500/132)

SOLVER I PP I D ~ S I NI (Imx(#)l imn I IT I ET(S)

- - - - MA28 20 51 0.58
LU BAN D 20 51 - 0.52 - - -

- DSLUBC I Fails
z1 Fail<

23
DSLUCS - I Failz

I - -..- _ _

z1 Fails
22 20 I 51 I 21 I 2 1 92 I 0.57 I I 23 I 20 I 51 1 4 1 1 1 70 I 0.56

I 1 I 1 I

- DSLUGM I I Fails
21 Fails
22 20 51 3 1 61 0.57
23 20 51 3 1 60 0.56

DLUSTB - Fails

z1 Fails
22 Fails

22 (Ato=O.4~) 20 46 21 1 171 0.58
23 20 51 21 1 136 0.58

PP: Preprocessing
Dts: Number of timesteps
NI: Newtonian iterations
Imx(#): Maximum number of PCG iterations (number of times reached)
Imn: Minimum number of PCG iterations
IT: Total PCG iterations
ET: Execution time

14

Table 3. Solver Performance in Problem 1 b
(Macintosh PowerPC 9500/132)

21
22
23

SOLVER I PP I Dts I NI I Imx I Imn I I T I ET(s)

Fails
8 29 109 5 830 29.0
8 28 109 7 877 29.6

MA28 I Fails - insufficient memorv I

22
23

LUBANDI - I 8 1 2 5 1 - 1 - 1 - I . 63.9

8 25 20 4 289 16.9
8 25 27 4 288 17.0

DSLUBC 1 - I Fails I

DSLUCS I - I Fai Is I
I 1

Fails
Fails

22 8 30 51 7 531 21.3
23- 8 28 27 2 496 19.3

DLUSTB I - I Fails I
I I I 21 I 15 I 94 I 109 I 7 I 6 4 2 193.2 I

15

Table 4. Solver Performance in Problem 2
(Macintosh PowerPC 9500/132)

t

i

i
i
i

i

i

i
i
i i

t
i i

i

i

i
i

i

i
i

i
f
i
i
i

i

f 16

\

SOLVER

MA28

Table 5. Solver Performance in Problem 3
(IBM RS/6000 370)

PP I Dt I NI I Imx I Imn I IT I ET

Insufficient Memory

LUBAND

0 4 +
LU BAN D

D4 +
DLUSTB

. Insufficient Memory

- 10 46

- 10 46
~

0 2
I I I

DSLUCS I - -1 10 1 46

10 46
0 1 10 46
0 2 10 46

q 75

94 50

930 95
930 95
930 95

- - -
1736

2623
-
2477
2475

205 1
2034
2033

4842
4994
51 13

1736
1695
1719

-

-

-

-

-
786

426

579
565
563

488
485
487

2087
21 78
21 89

423
42 1
429

-
-

-

-

-

-

Table 6. SoIver Performance in Problem 3 with
Random Element Numbering (No 0-Preprocessing)

(IBM RS/6000 370) I
SOLVER I PP At- NI Imx Imn I IT 1 ET(sec).

I - I I
DSLUBC - I 25 165 417 78 13697 1954

DSLUCS - 25 165 901 61 11998 1847

DSLUCM - 25 175 930 138 84702 7383

DLUSTB - 25 164 513 52 8899 1520

17

I

Table 7. Parameters for Test Problem 4

Permeability
Porosity

Relative Permeability
van Genuchten function [1980]

irreducible water saturation
exponent

Capillary Pressure
van Genuchten function [1980]

irreducible water saturation
exponent
strength coefficient

Geometry of Flow Domain
2-D vertical (x,y) section

width (x)

gridding
depth 0

heterogeneity: stochastic distribution of
I impermeable obstacles

@= 0.35

Si,-= 0.15
I = 0.457

SI,= 0.0 or 0.15
A = 0.457
a = 5 m-1

20 m
15 m
80 x 120 = 9600 blocks
Ax= 0.25 m
Av= 0.125 m

18

Table 8. Solver Performance in Problem 4
(IBM RS/6000 370)

DSLUBC

DSLUCS

DSLUGM

DLUSTB

SOLVER I PP I Dt I NI I Imx I Imn I I T I ET(sec) I

- 10 100 1601 62 I 83041 10063

- 10 84 321 36 14994 221 3

- 10 83 1620 49 90516 10135

- 10 84 315 117 11681 181 1

19

Fig. 1. The BiCGSTAB(m) algorithm.

5

j l 4

20 5 10 30 25 15

19 24 4 14 29 9

23 3 8 ' - 13 28 18

7 12 17 2 22 27

26 1 1

-
1

6 11 16 21

4 5 6 -2 3

X i

Fig. 2. Natural or standard ordering for a 2-D grid.

21

3

2

1

Yt 1 2 3 4 5 6
d

i
t

X

Fig. 3. D4 ordering for the 2-D grid in Figure 2.

22

20

15

!

4 :I I

5

0

0 5 15 20

Fig. 4. DSLUBC performance in Test Problem la.

>

loo]

1 o-20

1 o - ~ ~

Residuals
4 with 22
-0- with 23

1 DSLUCS I

. I 2 O

-tl with 22
-..-e with23

15

n E 0

0 5 10 15 20
Number of At's

Fig. 5. DSLUCS performance in Test Problem 1 a.

24

0 5 10 15 20
Number of At's

Fig. 6. DSLUGM performance in Test Problem la.

25

0 5 10 15 20
Number of At's

Fig. 7. DLUSTB performance in Test Problem la (injection into the first gridblock).

26

1 O’O

1 o5

1 oo

-
cr: 10-10

1 o - ’ ~

1 o-20

1 o-*’

tu
3
IEl

Q)

.-
v1

20

15

8 =
10

E*
5

5

0

0 5 10 15 20
Number of At’s

Fig. 8.
gridblock).

DLUSTB performance in Test Problem la (injection into the middle

27

-1.5896E-07
0

-4.6528E-Ul
1.S219E-10

0
IIHWE-04

2.13878-01 I.1921EtM 1.52198-10

-2.42ASEto6 0 I.8708E-04 2.0000E-04
0 . o -1.S9IlE-07 2.1387E-01
0 0 0 0

2.ma)E-04 0 -4.671JE-02 -2.4ME t 06
1.5219E-I0 0

0 0
1.8708E-04 2.0000E-04

0 -1.1921E tM 0

1.1921Et02 1.5219E- IO

0 I.8708E-04
0 -1.59llE-07
0 0
0 -4.6715E-02

1.5219E-IO
0

I.87o(LE-04

-1.1921E t o 2 0
0
0

2.0000E-04
2.1387E-01

0
-2.4U8E to6

0
0

2.0000E-04

0
0
0

1.1921Et02
-1.1911E t M

0
0
0
0

1.5219E-IO
0

I.8HWE-G
-1.591 IE-07

0 '
-4.6715E-02
1.S219E-IO

0
IJ708E-O(

0
0

Z0000E-04
2.13878-01

0
-2.4248EtM

0
0

2.OaX)E-04

0
0
0

L1921EtM LS219E-10 0 0
-1.1921Eto2 0 0 0

(AHWE-04 XOMXIOOOOE-04 0 0
0 -1.SWE-07 2.1387E-01 1.1921E+OZ
0 0 0 -L1921E t02
0 -4.6528E-02 -2.4248EtM , 0

h, Fig. 9. The Jacobian in Problem la with no Z-preprocessing at the first Newtonian iteration of the first timestep.
Q)

'-1.58968-07 2.13818-01
-1.58968 - 07 2.13878 -01
-4.65298 - 02 -2.42488 + 06
1.52198-10 0
1.52198- IO 0
1.87088-04 2.M)oE-04

1.19218+02 1.52198-10 0 0
0 1.52198- 10 0 0

1.19218+02 1.87088-04 2.0000E-04 0
0 -1.59118-07 2.13878-01 1.1921E+02 1.5219E-IO 0
0 -1.59118-07 2.13878-01 0 1.52198- IO 0
0 4.67158-02 -2.42488+06 1.1921E+02 1.87088-04 2.00008-04

1.52198- 10 0 0 -1.59118-07 2.13878-01
1.52198 - 10 0 0 -1.599118-07 2.13878-01
1.87088-04 2.00008-04 0 4.67158-02 -2.42488+06

1.52198-10 0
1.52198- 10 0
1.8708E-04 2.M)oE-04

0
0
0

1.1921E+02
0

1.19218+02
0
0
0

1.52198-10
1.52198-10
1.87088-04
-L.59118-07
-1.59118-07
-4.671SE-02
1.52198- IO
1.52198- IO
1.87088-04 1

0
0

2.M)oE-04
2.13878-01
2.13878 - 01

-2.42488+06
0
0

Z.MXX)E-04

0
0
0

1.19218+02 1.52198- 10 0 0
0 1.52198-IO 0 0

1.19218+02 1.87088-04 2.00008-04 0
0 -1.58968- 07 2.13878 - 01 1.19218+ 02
0 -1.56968-07 2.1387E-01 0
0 -4.65298-02 -2.42488+06 1.192IE+M

N

Fig. 10. The Jacobian in Problem la with 22 preprocessing at the first Newtonian iteration of the first timestep.

_ _ . - -. . .

-1.33358-09 1.79428-03 I.00008+00 1.27678-12 0 0 .
-1.33358-09 1.79428-03 2.00008+00 1.27678-12 0 0
1.78558-08 1.00188+00 I.00008+00 -7.58758- 1 I -8.24818- 1 I 0
1.27678-12 0 0 -1.33488-09 1.79428-03 I.OOOOE+00 1.27678-12 0 0
1.27678 - 12 0 0 -1.33488-09 1.79428-03 2.00008+00 1.27678-12 0 0
-7.58758 - I I -8.24818- I I 0 1.79318-08 1.0018E+ 00 1.0000E+00 -7.58758 - I I -8.24818 - 1 I 0

1.27678-12 0 0 -1.33488-09 1.79428-03 I.OWOE+W 27678- I2
1.27678- I2 0 0 -1.33488-09 1.79428- 03 2.00008+00 8.27678- 12
-7.58758 - I I -8.2481 E - I I 0 1.79318-08 1.00188+00 I.OWOE+00 -7.58758- I I

1.27678-12 0 0 -1,33488-09
1.2767E-12 0 0 -1.33488-09
-7.58758-11 -8.24818-11 0 1.79318-08

I. 2767 E - 12
1.27678- 12
-7.58758-11

0
0

-8.24818-11
1.79428-03
1.79428-03
I.Oo18Et00

0
0

-8.24818 - I I

0
0
0

1.00008+00 1.27678-12 0
2.OOOOE+00 1.2767E-12 0
I.OOOOE+ 00 -7.5875E - I I -8.24818 - I I

0 -1.33358-09 1.79428-03
0 -1.33358-09 1.79428 - 03
0 1.78558-08 1.00188+00

w
0

Fig. 11 . The Jacobian in Problem la with 23 preprocessing at the first Newtonian iteration of the first timestep.

-e DSLUGM+Z2

I

I

Fig. 12. PCG solvers with 22 preprocessing in Te

i

0 10 20 30 40
Number of CG iterations

Fig. 13. DSLUBC and DSLUCS performance with and without 0 1 preprocessing in
Test Problem 2 (1st NI of the 1st Dt).

32

1 o2

1 0'

1 oo
lo-'

lo-*

z 10-4

1 o-'

1 o-6
1 o-'

1 o-8
1 o-'

1 o-'O

3 - 10-

%

t8
J

0 10 20 30 40
Number of CG iterations

Fig. 14. DSLUGM and DLUSTB performance with
Test Problem 2 (1st NI of the 1st Dt).

and without 0 1 preprocessing in

33

-1 5.

Length (m)

Fig. 15. The computational grid in Problem 4. The regions shown in black indicate
impermeable obstacles.

34

APPENDIX

or for nonisothemal flows of NK fluid
ases. Its moduiiw structure was built on the

recognition that th ance equations for flow in permeable media have
the same form, regardless of the nature and number of fluid components and phases
present. The balance equations for component k (k = water, C02, NaCl, tracers, ...) are
written in integral form for an arbitrary flow region Vn with surface area G, as follows

Here Mk is the mass of component k per unit PO volume, Fkis the mass
nent k into Vn, n is the inward unit normal vector, and qk is the rate of mass

'generation of component k per unit volume. For the heat balance, Mk is the amount of
energy (heat) per unit PO s medium volume, Fk is the heat flux, and qk is the rate of heat
generation per unit vo The mass accumulation terms contain a sum over the phases b
(b = g-gas, w-aqueous).

$ denotes porosity, SB is the saturation (pore volume fraction) occupied by phase p, rB is
the f3 phase density, and Xb is the mass fiaction of component k in phase p. The heat
accumulation term (k = h) includes contributions from both the solid and the fluid phases,

where x i s the soil grain density, CR is the heat capacity of the soil grains, T is the
temperature, and us is the specific internal energy of phase g.

The mass flux F is a sum over the fluxes in liquid and vapor phases, which are written
as a multiphase version of Darcy's law, as follows (p = g, w).

k denotes the permeability tensor, kr is relative permeability, m is viscosity, Pp is the
pressure in phase By and g is acceleration of gravity. Heat flux contains conductive and
convective components:

F h = -KVT+(h,F,+hgFg) (A.5)

,

with K the thermal conductivity of the rock-fluid mixture, and h the specific enthalpy.
Thennophysical properties of water substance are calculated, within experimental
accuracy, from steam table equations given by the International Formulation Committee
[IFC, 19671. Empirical correlations are used for thermophysical properties of fluid
mixtures that contain non-condensible gases and dissolved solids [Battistelli et al., 199rJ.

For numerical solution, the continuum equations (A.l) are discretized in space and
time. Space discretization is made with the “Integral Finite Difference” method [IFD;
1967; Narasimhan urd Witherspoon, 19761. This method permits irregularly shaped grid
blocks in 1, 2, and 3 dimensions. It includes double porosity, dual permeability, and
multiple interacting continua (h4.INC) formulations for fractured-porous media as special
cases. For grid systems of regular blocks referred to a fixed global coordinate system, the
IFD reduces to conventional finite differences. Time is discretized fully implicitly as a
ht-order (backward) finite difference.

Discretization results in a system of coupled non-linear algebraic equations. These are
cast in residual fonn and solved simultaneously by means of Newton-Raphson iteration.
Iteration is continued until all residuals are reduced below a user-specified convergence
tolerance. A choice of different algorithms is available for solving the linear equations
arising at each iteration step.

36

