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Computational Approach

• Sequential Iterative (SIA)

• Sequential Non-Iterative (SNIA)



CAPABILITIES OF TOUGHREACT (1)

Processes:

� Multiphase fluid and heat flow:  
TOUGH2 V2 (Pruess, et al., 
1999)

� Transport: advection and 
diffusion in both liquid and gas 
phases

� Chemical reactions:

� Aqueous complexation

� Acid-base

� Redox

� Mineral dissol./precip. 
(equilibrium and/or kinetics)

� Gas dissol./exsol.

� Cation exchange

� Surface complexation

� Linear Kd adsorption 

� Decay 

Special Features:

� Changes in porosity and 
permeability, and unsaturated 
zone properties due to mineral 
dissol./preci. and clay swelling

� Gas phase and gaseous species 
are active in flow, transport, and 
reaction

� Pitzer and Debye-Hückel activity 
models

� General: Porous and fractured 
media;  5 φ-k models; rate laws; 
any number of chemical species

� Two types of thermodynamic 
database including EQ3/6 
(Wolery, 2004)

� Wide range of conditions

� Widely used: in-house projects, 
21 institutions, 22 J. papers

� http://esd.lbl.gov/TOUGHREACT/



CAPABILITIES OF TOUGHREACT (2)

Other Features:

� Sequential iteration

� Transport equations: component 
by component

� Reaction equations: grid block 
by grid block

� Newton-Raphson iteration

� Preconditioned conjugate 
gradient solvers  

� Integral finite difference

� Implicit time weighting 

� 1-D, 2-D, or 3-D

� Porous and fractured media

� Non-isothermal, multiphase

� Physical and chemical 
heterogeneity

Equations for fluid and heat flow, and chemical transport. 
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Chemical components in the liquid phase ( lN1,2,...,=j ): 

 jllj CSM φ=    jlljllj CDCF ∇−= u    jgjsjlj qqqq ++=  

Chemical components in the gas phase ( gN1,2,...,=k ): 
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where  RT/fC kgkg =  (gas law) 

 

Example of chemical reaction equations 
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Modeling Examples

� Overview of modeling capabilities

� Nuclear waste disposal

� CO2 geological sequestration

� CO2 co-injection with H2S or SO2 

� Formation damage from 

waterflooding

� Geothermal well scaling

� Groundwater quality 

� Biogeochemistry

� Ongoing and future developments

Drinking Water Aquifer

CO2 Phase with SO2, H2S, NO2

Aquitard

Dissolved CO
2

with SO
2
, H

2
S, NO

2
+ Brine

Brine

CO
2

Injection Well

5

4

1 2

3

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Distance (m)

0

5

10

15

20

25

C
o

n
ce

n
tr

a
ti

o
n

 (
m

g
/l)

O2

NO3-

SO4-2



THC Coupled Processes (1)

� Reaction rates increase with 
temperature

� Evaporation concentrates 
aqueous species in remaining 
liquid phase

� pH affected by CO2 degassing 
and mineral alterations

� Mineral dissolution and 
precipitationSpycher et al., JCH , 2003  

Sonnenthal et al., Rock Mechanics, 2005



THC Coupled Processes (2)

� TH validation � THC validation
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Japan Horonobe URL Site

� Previous work

� Current TMVOC-REACT degassing modeling

Degass
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Rock
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Canister Corrosion and H2 Generation

� Nuclear waste

� Geological repository (right Fig)

� Corrosion of steel canisters 
leads to H2 gas generation 

� Pressure buildup affects long-
term repository safety

� Previous used a constant H2
generation rate

� H2 generation rate depends on 
factors such as water chemistry, 
water availability, and water 
contact area

� We developed a chemistry 
model related to iron corrosion, 
coupled with two-phase flow

Land Surface

 3 Fe + 4H2O ↔ Fe3O4 + 4 H2  

Land Surface 

 

 

Schematic representation of a nuclear waste repository with single waste canister, 

bentonite backfill, and opalinus clay host rock (NAGRA, 2002). 
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CO2 SEQUESTRATION

� Sequestration: 

� Geological

� Ocean 

� Terrestrial

� Geological Sequestration: 

� Deep saline aquifers

� Depleted oil and gas 
reservoirs (EOR, EGR)

� Unminable coal beds

� Processes: 

� Capture

� Sequestration/Storage

� Monitoring and 
verification

(Adapted from: 2005 IPCC Special Report on 
Carbon Dioxide Capture and Storage;

http://www.ipcc.ch/activity/srccs/index.htm)



CO2 Storage in Saline Aquifers:
Issues to be Addressed by Numerical Modeling

� What is the long-term fate of injected CO2?

� What fraction of CO2 is stored as a free phase (mobile or trapped), dissolved in 
the aqueous phase, or sequestered in solid minerals?

� How do the relative proportions of CO2 in these different storage modes change 
over time?

� Can CO2 leaks self-seal or self-enhance?

� How fast can the CO2 be injected?

� What fraction of subsurface volume can be accessed by CO2? 

� What is the storage capacity of a given site? 

� Leakage of stored CO2: Will it leak? How much? How?

� Where does all the brine go that is displaced by CO2?

� Ancillary benefits?  (EOR, EGR, EGS with CO2) 

� Identify and characterize potential storage sites.

� Design and analyze tests.

� Design monitoring systems.

� What is the role of chemical, mechanical, and thermal effects in CO2 leakage?

(Doughty and Pruess, 2004)



Modelling of CO2 injection in a saline aquifer at 
the Sleipner
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Audigane et al., 2007; AJS
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CO2 injection at the Sleipner (2)
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Representation of the Utsira formation by a 2D mult- layered mesh with cylindrical 
symmetry. The CO2 is injected in a cell at 160 m from the top of the formation. The 
porous media consist of highly permeable sands, separated by four semi-permeable 
shale layers. b) Vertical section and planar views of the seismic images three years 
after CO2 injection (SACS, 2002; Arts et al., 2004).



CO2 injection at the Sleipner (3)

CO2 gas saturation Dissolved CO2



CO2 injection at the Sleipner (4)
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CO2 injection at the Sleipner (5)
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Cap Rock Alteration due to CO2 Storage

Self sealing Fracture enhanced dissolution

calcite

porosity

Fracture

Matrix

(F. Gherardi, T. Xu and K. Pruess, 2007; Chem. Geol.)



• (Reuters - 2002) The deadlock between Kazakhstan and its main source of foreign investment, 
ChevronTexaco, appears to have tightened after a court in the oil-rich Atyrau region ordered the 
Chevron-led Tengizchevroil (TCO) joint venture to pay a fine of $71 million for failing to clear huge 
piles of sulfur stacked up outside the supergiant Tengiz field. 

• (Reuters – 4/5/07) ASTANA, Kazakhstan -- Kazakhstan's Ecology Ministry said Wednesday that 
it had dropped claims against the Chevron-led firms operating a large oil field after the group 
pledged $300 million per year for environmental protection. 

• (Reuters – 4/15/07) At least five international energy companies submitted bids on Sunday for a 
giant sour gas project in the United Arab Emirates that could be have a price tag as high as $10 
billion. 

Acid (H2S) Gas Injection

(Google images)



Acid Gas Injection and Mineral Trapping

� Sequestering less-pure flue gas 

(CO2) containing H2S and/or 

SO2 requires less energy to 

separate.

� pH conditions are important for 

well corrosion.

� Here we present simulation 

results on sequestration of CO2, 

H2S and SO2 in a Gulf Coast 

Frio formation.

� Use conditions and parameters 

encountered in brine aquifers at 

a depth of order 2 km.

Xu et al., 2007; Chem Geol.
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Acid Gas: Results (1)

� Co-injection of SO2 stronger acidic zone close to the well. 

Corrosion and well abandonment are issues.
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(a) CO2 Only 
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(b) CO2 + H2S 
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Acid Gas: Results (2)

� The CO2 mineral trapping capability can reach 60 kg/m3 medium.
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Acid Gas: Results (4)

� Increase in porosity close to the well.

� Decrease at distances.
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Geothermal Injectivity at Tiwi Field (1)

� Injectivity loss from scale 
formation at well Nag-67

� Suspected precipitation of 
amorphous silica (kinetically 
controlled)

� Workover: scale drillout, 
acidizing

� Performed modeling study using 
TOUGHREACT, in cooperation 
with Unocal Corp.

� Porosity-Permeability (Verma
and Pruess, 1988)
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Geothermal Injectivity at Tiwi Field (2)

� Injectivity loss

� Injectivity recovery due to acid
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Formation Damage from Waterflooding
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Water Quality in the Aquia Aquifer (Maryland)

� Validation

� NaHCO3 type 
waters in the 
coastal aquifers 
of the eastern 
US are related 
to freshening of 
the aquifer 
(Chapelle and 
Knobel, 1983 ).

� Processes:

� Cation
exchange

� Calcite 
diss./prec.
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CONCLUSIONS

� A comprehensive general-purpose reactive chemical transport 
simulation tool TOUGHREACT has been developed, driven by 
various programmatic needs.

� The tool has been successfully applied to

� Nuclear waste disposal

� CO2 geological sequestration

� Geothermal energy development

� Environmental problems

� Natural groundwater quality

� …. 

� Our simulation capabilities continue to be improved to meet 
program needs, and to contribute to the community.

� TOUGHREACT is available to the public from DOE’s Energy 
Science and Technology Software Center (ESTSC; 
http://www.osti.gov/estsc/)
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Ongoing Development and Future Directions

�Ongoing
� Testing Pitzer ion-

interaction model and 
related parameters 

� Testing intra-aqueous 
kinetics and 
biodegradation

� Testing surface 
complexation models

� Coupling H2 generation 
due to iron corrosion to 
two-phase flow

� Fortran 90 code 
upgrading

�Future
� THCM

� Inverse

� Colloid

� Isotope

� Others ?

�TOUGHREACT V2
� V1.2 + 

� Aqueous kinetics

� Biodegradation

� Multi-site exchange

� Surface complexation

� V2/Pitzer ion-interaction 
model

Will be released from LBNL



A Multi-Region Model for Biogeochemistry
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Xu,  Vadose Zone Journal 2008



Biogeochemistry: Denitrification and Sulfate 
Reduction

�Rate law
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