Multicomponent Geochemical Computations in TOUGHREACT

Nicolas Spycher
Earth Sciences Division
Lawrence Berkeley National Laboratory
TOUGHREACT
T. Xu, E. Sonnenthal, N. Spycher, K. Pruess - LBNL

Processes

- Introduction of reactive chemistry into TOUGH2
- Reactions between gas - aqueous - solid phases, equilibrium or kinetics
- General database for minerals, aqueous and gaseous species
- Porosity and permeability change
TOUGHREACT
T. Xu, E. Sonnenthal, N. Spycher, K. Pruess - LBNL

Processes

TOUGH2
- hydrodynamic
 - advection
 - diffusion
 - dispersion
- heat transfer
 - advection
 - conduction
 - phase change

chemical reactions
- homogeneous
 - acid-base
 - redox
 - aqueous complexation
- heterogeneous
 - ion exchange
 - adsorption
 - mineral dissol./precip.
 - gas dissolution/exsol.

flow
transport
chemistry

Focus

- Introduction of reactive chemistry into TOUGH2
- Reactions between gas - aqueous solid phases, equilibrium or kinetics
- General database for minerals, aqueous and gaseous species
- Porosity and permeability change
Reactive Transport Computational Approach

FLOW (TOUGH2)

TRANSPORT

Sequential Non-Iterative (SNIA)

Sequential Iterative (SIA)

CHEMISTRY
Multicomponent Chemical System

- Multicomponent Reactions (water must be present)
 - Aqueous Species
 - Minerals
 - Gases
 - Exchange Species
 - Surface Complexes (v2.0 beta)

- Aqueous Speciation: equilibrium (v2.0 beta with kinetics)
- Surface Complexation/Exchange: equilibrium

- Mass Transfer:
 - Minerals: equilibrium or kinetic constraints
 - Gases: equilibrium

- External Thermodynamic Database: reaction stoichiometries, equilibrium constants, activity coefficient data, etc.
Geochemical Computations - General

- Chemical system definition
 - Temperature and Pressure
 - Total aqueous concentrations (e.g., analytical)
 - Mineral amounts (0 for potential secondary phases)
 - Gas partial pressures (optional, unsaturated medium)

- Numerical approach: mass balance/mass action
 - Primary aqueous species (actual unknowns)
 - Derived species (functions of primary species – mass action)
 - Secondary aqueous species (ion pairs, complexes)
 - Minerals
 - Gases
 - Newton-Raphson iterative procedure
 - Solve for concentrations of primary species and kg water
 - Derive all other concentrations, mineral amounts, and gas partial pressures from mass action laws involving primary species
Example Chemical System

• Components of interest:
 – O, H, Na, Cl, Ca, S, C

• Primary species reflecting the components:
 – H₂O, H⁺, Cl⁻, Ca²⁺, Na⁺, SO₄⁻², HCO₃⁻
 • Best to use primary species representing dominant species
 • H₂O and H⁺ always primary species in TOUGHREACT

• Secondary aqueous species
 – OH⁻, CO₃⁻², HSO₄⁻, CaHCO₃⁺ etc... (automatic selection or specified)

• Minerals (specified input)
 – Calcite (CaCO₃), Gypsum (CaSO₄) etc...

• Gases (specified input)
 – CO₂(g), HCl(g) (Note, H₂O(g) is handled by flow EOS modules!)
Mass-Action Equations

• Expressions in terms of primary species only

• Secondary aqueous species ($a_i = \gamma_i \times m_i$)

 \[
 \begin{align*}
 \text{OH}^- + \text{H}^+ &= \text{H}_2\text{O} & K_{\text{OH}^-} &= a_{\text{H}_2\text{O}} / (a_{\text{H}^+} \times a_{\text{OH}^-}) \\
 \text{HSO}_4^- &= \text{H}^+ + \text{SO}_4^{2-} & K_{\text{HSO}_4^-} &= (a_{\text{H}^+} \times a_{\text{SO}_4^{2-}}) / a_{\text{HSO}_4^-} \\
 \text{CO}_3^{2-} + \text{H}^+ &= \text{HCO}_3^- & K_{\text{CO}_3^{2-}} &= a_{\text{HCO}_3^-} / (a_{\text{H}^+} \times a_{\text{CO}_3^{2-}}) \\
 \text{CaHCO}_3^+ &= \text{Ca}^{2+} + \text{HCO}_3^- & K_{\text{CaHCO}_3} &= (a_{\text{Ca}^{2+}} \times a_{\text{HCO}_3^-}) / a_{\text{CaHCO}_3} \\
 \end{align*}
 \]

• Minerals

 \[
 \begin{align*}
 \text{CaCO}_3(s) + \text{H}^+ &= \text{Ca}^{2+} + \text{HCO}_3^- & K_{\text{calcite}} &= (a_{\text{Ca}^{2+}} \times a_{\text{HCO}_3^-}) / a_{\text{H}^+} \\
 \text{CaSO}_4(s) &= \text{Ca}^{2+} + \text{SO}_4^{2-} & K_{\text{gypsum}} &= a_{\text{Ca}^{2+}} \times a_{\text{HCO}_3^-} \\
 \end{align*}
 \]

• Gases ($f_i = \phi_i \times P_i$)

 \[
 \begin{align*}
 \text{CO}_2(g) + \text{H}_2\text{O} &= \text{HCO}_3^- + \text{H}^+ & K_{\text{CO}_2} &= (a_{\text{H}^+} \times a_{\text{HCO}_3^-}) / (f_{\text{CO}_2} \times a_{\text{H}_2\text{O}}) \\
 \end{align*}
 \]
Mass-Balance Equations

• Total moles (M^t) in terms of molal concentrations (mol/kg$_w$)
 - Solutes
 $M^t_C = \{[\text{HCO}_3^-] + [\text{CO}_3^{2-}] + [\text{CaHCO}_3] \ldots \} \times kg_w + \Delta n_{\text{calcite}} + n_{\text{CO}_2(g)} + \ldots$
 $M^t_{\text{H}^+} = \{[\text{H}^+] - [\text{OH}^-] - [\text{CO}_3^{2-}] + [\text{HSO}_4^-] + \ldots \} \times kg_w - \Delta n_{\text{calcite}} + n_{\text{CO}_2(g)} + \ldots$
 $M^t_{\text{Ca}} = \{[\text{Ca}^{2+}] + [\text{CaHCO}_3^+] + \ldots \} \times kg_w + \Delta n_{\text{calcite}} + \Delta n_{\text{gypsum}} + \ldots$
 - Solvent (water, after Reed 1982 GCA)
 $M^t_w = \{55.505 + \ldots + \ldots \} \times kg_w + \Delta n_{\ldots} - n_{\text{CO}_2(g)} + \ldots$

• Minerals – incremental change Δn_m (in moles)
 Kinetics: $\Delta n_m = R \times \Delta t$ \hspace{1cm} $R =$ kinetic rate (positive = dissolve)
 Equilibrium: solve for Δn_m by adding mass action eqn (negative = dissolve)

• Gases, at equilibrium – total moles n_i (change + initial)
 From gas law: $P_i V = n_i RT$ with gas concentration $= n_i/V$ and P_i from mass-action law (ideal, $P = f$, except with ECO2 module)
Activity Coefficients Calculations

• Charged species and water:

 Extended Debye-Hückel (Helgeson et al., 1981 AJS)

 – Assumes predominant ions are Na\(^+\) and Cl\(^-\)
 – Careful above ionic strength 1 molal for non Na-Cl dominant waters!
 – Not bad to ~ 6 m for pure NaCl solution
 – Remove NaCl\(_{aq}\) (derived species) in the database!
 – Watch! D-H \(a_0\) values are calculated from input effective radii in database (different from more standard “b-dot” equation)

• Neutral species:

 – Optional Setchenow equation: \(\log(\gamma) = (\text{const}) \times \text{(ionic strength)}\), otherwise \(\gamma\) values are set to one

• Unreleased beta-version with Pitzer ion-interaction model for concentrated solutions (Zhang et al., 2006)
Redox Reactions

• Same approach as non-redox reactions if:
 – Unique redox couple (i.e., donor and acceptor) is defined with two primary species. For example:
 • \(\text{H}_2\text{O} \) and \(\text{O}_2 \) (preferable if dealing with mostly oxidized systems)
 • \(\text{SO}_4 \) and \(\text{HS}^- \) (preferable if dealing with mostly reduced systems)
 – Electron transfer is balanced using the specific redox couple in all reactions of the database (i.e., no free electrons!).

• Example:
 – Primary species: \(\text{Fe}^{+3}, \text{H}_2\text{O}, \text{O}_2(\text{aq}), \text{etc...} \) (with \(\text{Fe}^{+2} \) as secondary species)
 \[\text{Fe}^{+2} + 0.25\text{O}_2(\text{aq}) + \text{H}^+ = \text{Fe}^{+3} + 0.5\text{H}_2\text{O} \]
 – Primary species: \(\text{Fe}^{+2}, \text{SO}_4 \) and \(\text{HS}^- \), etc... (with \(\text{Fe}^{+3} \) as secondary species)
 \[8\text{Fe}^{+3} + \text{HS}^- + 4\text{H}_2\text{O} = 8\text{Fe}^{+2} + \text{SO}_4^{--} + 9\text{H}^+ \]

• Utility provided to “switch” the redox couple in the database
• Unreleased v2.0 beta with redox disequilibrium (Xu, 2006)
Thermodynamic Data

- \(\log(K) \) values for mass-action equations and D-H parameters for activity coefficients are calculated as functions of temperature (\(T_K \), Kelvin) from coefficients read in external database for given reaction stoichiometries
 \[a + \ln(T_K) + b + cT_K + d/T_K + e/T_K^2 \]

- **Watch!!!! Crucial for confidence in results!**
 - Quality/consistency of \(\log(K) \) data
 - Applicability of activity coefficient model
 - Consistency between activity coefficient model and types of secondary aqueous species and their \(\log(K) \) values

- **DO NOT use supplied database as black box!**
- **Understand the data you are using (trash in = trash out)**
Kinetic Data

\[Rate = \pm kA_m \prod_i a_i^p \left[\left(\frac{Q}{K} \right)^m - 1 \right]^n \]

(e.g., Steefel and Lasaga, AJS, 1994)

- Rate constant \(k \)
- Surface area \(A_m \)
- Equilibrium constant \(K \)

\[k = k_0 \exp \left[-\frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{298.15} \right) \right] \]

\(Q \) is ion activity product, \(a_i \) are individual activities (e.g., \(H^+ \))
Equilibrium at \(Q/K = 1 \), dissolution at \(Q/K < 1 \), precipitation at \(Q/K > 1 \)

Large uncertainty in \(A_m \) and \(k \) !!
Beware of Data/Model Limits (!)

Cool same geothermal brine from 200°C (pH 4.9, ionic strength 1.8)

This is mostly an effect of activity coefficient uncertainty at elevated temperature when dealing with concentrated solutions.
Useful General References
(not related to TOUGHREACT)

