
Read me for a TOUGH2

postprocessing program in

MATLAB

Written by

Antonio Pio Rinaldi

Lawrence Berkeley National Laboratory

July 8, 2014
00:25

1

Contents

Introduction 4
Cell Array . 4
How to install . 6

1 How to load TOUGH MESH data in MATLAB 6
1.1 Example of RMESH use . 6
1.2 Alternative RMESH script to read group (TOUGH2 domains)

informations . 8

2 How to extract TOUGH2 printout output 8
2.1 Example: extracting data from output 9

3 Plotting 13
3.1 Plotting simulation results for a 2D-axisymmetric regular grid 14
3.2 Plotting simulation results for a 3D regular grid 15
3.3 Plotting simulation results for a 2D non-regular grid 17

List of Figures

1 Matlab workspace after execution of script RMESH.m 7
2 Example variables after running RMESH.m 8
3 Matlab command prompt and workspace after execution of

script READ DATA . 10
4 Variables after running the script READ DATA 11
5 Variables after running the script READ DATA with option

“Compute Flow” . 12
6 Plotting of a 2D axisymmetric domain simulation results. (Left)

Plotting with command “contourf” on same discretization as
the mesh. (Right) Plotting with command “image” on a finer
mesh discretization, and including the fluid flow arrows. 15

7 Plotting of a 3D domain simulation results. Upper row:
(Left) Plotting with command “image” on a finer mesh dis-
cretization on the plane XY at z=-1810. (Right) Plotting with
command “image” on a finer mesh discretization on the plane
YZ at x=-12.5. Lower row: Plotting with command “slice”
with two different view orientation (90 degrees rotation) . . . 16

2

8 Left: 2D irregular mesh. Right: MATLAB prompt and vari-
ables after running the “main.m” file in the example. Note the
elevate number of point in x-direction (Coor{1, 1}), resulting
becuase the mesh is not regular. 18

9 Plotting of a 2D irregular domain simulation results. 18

3

Introduction

This is a sort of “How to..” guide to use the program to load data from
TOUGH2 output and to calculate gravity changes and vertical ground dis-
placement. The program loads quite properly data from TOUGH2 outputs
(and it works quite well with different EOS modules, I’m using it with EOS1,
EOS2, EOS7, EOS7r, EOS7ca, ECO2N/M/H, and ECBM), with different
kind of meshgrids (1D, 2D, 2D axysimmetrical, and 3D regular and irregu-
lar). The user should be familiar with “cell” array (i.e. a matrix with every
elements corresponding to another matrix). Cell are simple to understand,
to call a matrix within a cell array simply use braces ({}) instead of round
parentheses. E.g.:
- A is a cell array with dimension 5x5
- A{2,5} addresses the matrix in the cell that, for example, has dimension
20x20
- A{2,5}(1,20) returns the element a row 1 column 20 of the matrix in A{2,5}
Below the explanation for MATLAB User’s Guide.

Cell Arrays

Cell arrays in MATLAB are multidimensional arrays whose elements are
copies of other arrays. A cell array of empty matrices can be created with
the cell function. But, more often, cell arrays are created by enclosing a
miscellaneous collection of things in curly braces, {}. The curly braces are
also used with subscripts to access the contents of various cells. For example,

A = magic(4); C ={A sum(A) prod(prod(A))}

produces a 1-by-3 cell array. The three cells contain the magic square, the
row vector of column sums, and the product of all its elements. When C is
displayed, you see

C =

[4x4 double] [1x4 double] [20922789888000]

This is because the first two cells are too large to print in this limited
space, but the third cell contains only a single number, 16!, so there is room
to print it.

Here are two important points to remember. First, to retrieve the contents
of one of the cells, use subscripts in curly braces. For example, C{1} retrieves
the magic square and C{3} is 16!. Second, cell arrays contain copies of other
arrays, not pointers to those arrays. If you subsequently change A, nothing
happens to C.

4

You can use three-dimensional arrays to store a sequence of matrices of
the same size. Cell arrays can be used to store a sequence of matrices of
different sizes. For example,

M = cell(8,1);

for n = 1:8

M{n} = magic(n);

end

M

produces a sequence of magic squares of different order:

M =

[1]

[2x2 double]

[3x3 double]

[4x4 double]

[5x5 double]

[6x6 double]

[7x7 double]

[8x8 double]

You can retrieve the 4-by-4 magic square matrix with

M{4}

5

How to install

The installation is simple and straightforward. Just place the files in a folder
of your choice, and then add the folder to the MATLAB path. In MATLAB
menu:

File→Set Path...→Add with Subfolder...
and then you just need to select the folder containing the Matlab scripts and
”Save”. After doing this you can call the command listed in this ”ReadMe”
from the MATLAB command window.

1 How to load TOUGH MESH data in MAT-

LAB

The function to load mesh information is “RMESH” (file RMESH.m). The
use is simple and does not require any input:

[coor ID coor mesh conne ec e cc]=RMESH()

• coor: this variable returns a cell array {1,i}, with i representing the
direction (i=1:3 for 3D or i=1:2 for for 2D axisymmetric). Each element
of the matrix {1,i}(j) represents the coordinate found by the script in
the i-direction. Note that these coordinates are not block by block, but
simply the system coordinates. It may be of use for plotting and only
for a regular mesh!!

• ID: this variable returns the name label of each gridblock of the mesh
in a vector ID(n. of elem., 5 char).

• coor mesh: this variable returns a cell array {1,i}, with i representing
the direction (i=1:3 for 3D or i=1:2 for for 2D axisymmetric). Each
element of the single matrix {1,i}(j) represents the coordinate block-by-
block in the i-direction. Hence each matrix coor mesh{1,i} is basically
a vector with the value of the i-coordinate for each block of the mesh.

• conne, ec, e, and cc are only used internally for the connection table
and are used to calculate the proper fluid flow for a single block instead
of the flow through the connection.

1.1 Example of RMESH use

Let’s start from a simple TOUGH2 mesh (8 blocks only). Note that to use
RMESH, the file containing the mesh only should be rename as MESH (the

6

file used in this example can be found in the folder ”examples/RMESH”)

ELEME5 NX= 2 NY= 2 NZ= 2

A11 1 10.1000E+010.1000E+01 0.500 0.500 -0.500

A21 1 10.1000E+010.1000E+01 0.500 0.500 -1.500

A12 1 10.1000E+010.1000E+01 0.500 1.500 -0.500

A22 1 10.1000E+010.1000E+01 0.500 1.500 -1.500

A11 2 10.1000E+010.1000E+01 1.500 0.500 -0.500

A21 2 10.1000E+010.1000E+01 1.500 0.500 -1.500

A12 2 10.1000E+010.1000E+01 1.500 1.500 -0.500

A22 2 10.1000E+010.1000E+01 1.500 1.500 -1.500

CONNE

A11 1A11 2 10.5000E+000.5000E+000.1000E+01

A11 1A12 1 20.5000E+000.5000E+000.1000E+010.0000E+00

A11 1A21 1 30.5000E+000.5000E+000.1000E+010.1000E+01

A21 1A21 2 10.5000E+000.5000E+000.1000E+01

A21 1A22 1 20.5000E+000.5000E+000.1000E+010.0000E+00

A12 1A12 2 10.5000E+000.5000E+000.1000E+01

A12 1A22 1 30.5000E+000.5000E+000.1000E+010.1000E+01

A22 1A22 2 10.5000E+000.5000E+000.1000E+01

A11 2A12 2 20.5000E+000.5000E+000.1000E+010.0000E+00

A11 2A21 2 30.5000E+000.5000E+000.1000E+010.1000E+01

A21 2A22 2 20.5000E+000.5000E+000.1000E+010.0000E+00

A12 2A22 2 30.5000E+000.5000E+000.1000E+010.1000E+01

In Matlab command prompt simply enter the folder containing the mesh
and use the following command:

>> [coor ID coor_mesh]=RMESH();

the workspace should results something like in Fig. 1.
The variable coor is a cell array with dimension <1,3 cell> and each

matrix (or simply vector) of the cell has only 2 elements (since the mesh is
regular with 2 elements for each i-direction). For example Fig. 2(left) shows
the matrix coor{1, 1}, i.e. the coordinates in the x-direction (i=1). Note

Figure 1: Matlab workspace after execution of script RMESH.m

7

Figure 2: Example variables after running RMESH.m

that if the mesh is not regular (i.e. not regular brick) the variable coor must
be ignored.

The variable ID is a char vector with dimension <8,5 char> where 8 is
the number of elements in the mesh with a 5 character label for the block.
The variable ID is shown in Fig. 2(center).

Finally coor mesh is a cell array with dimension <1,3 cell> and each ith
element of this cell is a vector of double containing the coordinates of each
block in the i-direction (8 elements for each vector/matrix). Fig. 2(right)
shows the output for coor mesh for i=1.

1.2 Alternative RMESH script to read group (TOUGH2
domains) informations

An alternative way to call “RMESH” by including the groups (TOUGH2
domains) is to call the following:

[group coor ID coor mesh]=RMESH group()

however this script will not provide any information regarding the connec-
tion, and the first output variable (group) is a char vector with dimension
<N. elements,15 char>. The last 5 character of each elements represent the
TOUGH2 domain assigned to that gridblock.

2 How to extract TOUGH2 printout output

The printout from a TOUGH2 output files can be extracted with the function
“READ DATA” (file READ DATA.m.). This script is basically the MAT-

8

LAB version for the fortran ext program (see TOUGH2 website). The usage
is simple and require as a input only the filename of the TOUGH2 output.
A command can be set to specify whether flow data are needed or not (note
that using such an optional command may drastically increase the execution
speed). Note also that this program doesn’t read the secondary variables
if included in the TOUGH2 output. It read just the main printout vari-
ables and, if requested, it computes the fluxes in each grid block, since in the
TOUGH2 output fluxes are given for the connection and not for the grid block

[OUT times]=READ DATA(file,command)

INPUT variables

• file: TOUGH2 output file name (REQUIRED)

• command: this command must be the exact string ”Compute Flow” to
read the flow printout from the TOUGH output (optional)

OUTPUT variables

• OUT : Cell array 1 × L where L is the number of the printout found
in TOUGH2 output file. Each cell represent a printout in the TOUGH
output, and each cell is a N ×M matrix where N is the number of
elements in the meshgrid and M is the number of the variables such as
pressure, temperature, etc..

• times: Array 1× L of the printout time.

2.1 Example: extracting data from output

In order to load the file from a TOUGH2 output, simply place the MESH and
the output file in the same folder (or enter the folder containing both files).
Then on MATLAB command prompt simply use the following command:

>> [out times]=READ_DATA(’TOUGH2out’);

where out and times are MATLAB variable, and TOUGH2out is an output
file (example in folder: “examples/loading data”). The script will start with
reading the MESH, will indicate whether the meshgrid is 1D, 2D, or 3D, and
it will start looking for printout within the output file. The printouts are the
same as specified in block TIMES in TOUGH2, or at specific time-step as
specified in block PARAM. If no problems occur, the MATLAB command
prompt and workspace should result as shown in Fig. 3.

9

In this example, the meshgrid is 2D (axisymmetric) with 2580 elements,
and 16 printouts were found in the output file. For each printout is also
specified at what time (in seconds) the printout occur. Execution times are
also listed: the script takes about 1 s to read the mesh, and 49 s to load the
data (on old MacBook Pro laptop).

After reading the MESH, the script will save the mesh information in a file
called mesh data.mat that can be load into matlab. This is particularly useful
for large mesh that need time to be read. In this way everytime simulation
are performed with the same MESH all the information are already stored
in a MATLAB file and do not need to be read from a text file once again
(you only need to place the file mesh data.mat in the same folder with the
TOUGH2 output file).

After execution, only two variables are in the workspace: the cell array
out and a vector times (Fig. 4). The vector times contains 16 elements
corresponding to the 16 times at which a printout occurred (in seconds). out
is a <1×16> cell array (one element for each printout), and every element of
the cell array is a matrix <2580×12>. There is a row for every elements in
the meshgrid, and the columns represents the element-based variables found

Figure 3: Matlab command prompt and workspace after execution of script
READ DATA

10

in the TOUGH2 printout. The variables depends on the EOS used. In this
example with EOS2 and an axisymmetric grid we have:

- Column 1: x-coordinate of the center node;

- Column 2: z-coordinate of the center node;

- Column 3: pore pressure;

- Column 4: temperature;

- Column 5: gas saturation;

- Column 6: CO2 partial pressure;

- Column 7: average CO2 mass fraction;

- Column 8: CO2 mass fraction in gas;

- Column 9: CO2 mass fraction in liquid;

- Column 10: capillarity pressure;

- Column 11: gas density;

Figure 4: Variables after running the script READ DATA

11

- Column 12: liquid density;

If a 3D mesh is used, then column 1-3 are for the coordinates (x-, y, and
z-, respectively) and the total number of column will be 13. Obviously all
these variables will depend on the EOS used in the modeling: for example
if the module ECO2N is used with a 3D mesh the total numbers of columns
will be 14.

In order to include in the variable out also the informations regarding the
flow through the connections, the script should be run using the following
command:

>> [out times]=READ_DATA(’TOUGH2out’,’Compute Flow’);

Both the mesh reading and the printout search will take much longer, since
connection information have to be read from the MESH and output file.
Another MATLAB file will be save (mesh conne.mat), and execution of the
READ DATA command will take about 7 seconds to read the MESH and
170 s to read data for the 16 printouts (on old MacBook Pro laptop).

Figure 5 shows an example of variable after execution with “Compute
Flow” option. The script will read the connection-based variables within
the printouts and will calculated the corresponding flow (e.g. heat, fluid,
etc.) in the different direction for each element. For EOS2 there are 6

Figure 5: Variables after running the script READ DATA with option “Com-
pute Flow”

12

connection-based variables and 2 direction for a 2D-axysimmetric grid, then
the total number of printout variables for each element will be 24 (12 from
element-based variables + 6 connection-based variables×2 directions). For
the current example we have:

- Column 13: heat flow x-direction;

- Column 14: heat flow z-direction;

- Column 15: enthalpy flow x-direction;

- Column 16: enthalpy flow z-direction;

- Column 17: fluid (gas+aqueous) flow x-direction;

- Column 18: fluid (gas+aqueous) flow z-direction;

- Column 19: gas flow x-direction;

- Column 20: gas flow z-direction;

- Column 21: aqueous flow x-direction;

- Column 22: aqueous flow z-direction;

- Column 23: CO2 flow x-direction;

- Column 24: CO2 flow z-direction;

The number of connection-based variable will also depend on the EOS
used. For example for ECO2N the connection printout gives 9 variables, then
a total of 27 variables when translated to element-based in a 3D meshgrid.
Accounting for the previous 14 (position, pressure, etc.) the total number of
columns for ECO2N will be 41!

3 Plotting

Nice figures of a TOUGH2 output can be produced by using the MATLAB
commands “griddata”, “contourf”, and “image”. The command “griddata”
is very useful to redistribute the output from TOUGH2 into a MATLAB
matrix, either using the original mesh discretization or refining the mesh for
plotting purpose only. This latter case is extremely useful (or better the only
solution I found so far) when the TOUGH2 grid is not regular.

13

3.1 Plotting simulation results for a 2D-axisymmetric
regular grid

For a regular 2D-axisymmetric we have 2 dimension only. It results pretty
easy then to plot the distribution of TOUGH2 output variables on a sur-
face image. The files to run this examples can be found in the folder
“examples/plotting/2D axisymmetric”, including a main file that run what
described in this section.

After reading the printouts from a TOUGH2 outfile (TOUGHout 2Daxi),
and loading the mesh information from file mesh conne.mat created after
reading the output, we first assigned the coordinates to the vector X and Z,:

X=Coor{1,1};

Z=Coor{1,2};

the cell Coor is included in file mesh conne.mat. Then we create a MATLAB
mesh using the command “meshgrid”:

[Xcoord Zcoord]=meshgrid(X,Z);

At this point we are ready to assign the values from TOUGH2 printout to the
MATLAB grid. First we extract the variable to plot (block-by-block single
vector as described earlier, and in this case the temperature) and assign the
x- and z−coordinates block-by-block to the variables x mesh and z mesh:

Temperature=out{1,16}(:,4);

x_mesh=out{1,1}(:,1);

z_mesh=out{1,1}(:,2);

Finally we use “griddata” to assign the value from a block-by-block vector
to a matrix:

var_image=griddata(x_mesh,z_mesh,Temperature,Xcoord,Zcoord);

The variable var image is ready to be plot. Since we are using the same
discretization as the TOUGH2 mesh, it is convenient to plot simply by using
the command “contourf”:

contourf(X,Z,var_image)

The results is show in Figure 6 (left). However, for a better figure we may
want to redistribute the TOUGH2 output on a finer mesh using some inter-
polation. To do so we first create some linearly distributed coordinates with
more point (300 in this case, compared to the 30 for X or 86 for Z of the
used TOUGH2 mesh for this example), then we create the MATLAB grid,
and interpolated the block-by-block TOUGH2 output in the MATLAB grid
by using “griddata” again:

14

Figure 6: Plotting of a 2D axisymmetric domain simulation results. (Left)
Plotting with command “contourf” on same discretization as the mesh.
(Right) Plotting with command “image” on a finer mesh discretization, and
including the fluid flow arrows.

xlin=linspace(min(X),1500,300);

zlin=linspace(min(Z),max(Z),300);

[Xcoord,Zcoord]=meshgrid(xlin,zlin);

var_image=griddata(x_mesh,z_mesh,Temperature,Xcoord,Zcoord);

In this case we can use the command ”image” that produces a much smother

image(xlin,zlin,var_image,’Cdatamapping’,’scaled’)

axis image

set(gca,’YDir’,’normal’,’XLim’,[0 1500])

Moreover, we can do a similar interpolate to superimpose the fluid flow to the
plotted variable for example, by using the command “quiver” as explained
in the file “main.m”. The final figure is shown in Figure 6(right).

3.2 Plotting simulation results for a 3D regular grid

Plotting a 3D simulation results can be tricky. However, using MATLAB we
can easily plot the results in a plane horizontal to the main axes (similar to the
2D case), or we can use the command “slice” for a multiple plane plot. The
files to run this examples can be found in the folder “examples/plotting/3D”,
including a main file that run what described in this section.

We load data from the file TOUGHout 3D (this time no flow) and save
the out variables for printout and mesh. We have a single printout this time

15

Figure 7: Plotting of a 3D domain simulation results. Upper row: (Left)
Plotting with command “image” on a finer mesh discretization on the plane
XY at z=-1810. (Right) Plotting with command “image” on a finer mesh
discretization on the plane YZ at x=-12.5. Lower row: Plotting with com-
mand “slice” with two different view orientation (90 degrees rotation)

to make the example faster. At the beginning everything is similar to what
we have done before, however in order to plot at fixed depth (plot in XY-
plane) we need to find in the block-by-block vector only the blocks that are at
fixed depth. Let’s say we want to plot at z = −1810 (note that this number
has to be one coordinate of the original TOUGH2 mesh)

Press_at_fix_z=Pressure(z_mesh==-1810);

x_mesh_at_fix_z=x_mesh(z_mesh==-1810);

y_mesh_at_fix_z=y_mesh(z_mesh==-1810);

and after this we can plot refining the mesh and using the command “image”
as in the previous example. Resulting images are shown in Figure 9 for the
plane XY (left) and YZ (right)

Another way to plot a 3D simulation is by using the command “slice”,

16

which also imply the creation of 3D matrix in MATLAB and the use of the
command “griddata3” that really slow down the process of plotting:

[Xco,Yco,Zco]=meshgrid(-500:50:500,-500:50:500,-1900:50:-1400);

var_image=griddata3(x_mesh,y_mesh,z_mesh,Pressure,Xco,Yco,Zco);

the advantage is that we do not need to select the variable to plot at a certain
depth and/or x/y, the disavantage is that we need to run “griddata3” on the
entire domain (in this case with about 30000 elements). As matter of fact
the code will run slow, and we need to constrain our MATLAB mesh with 50
m blocks on a restricted domain (first of the above command lines). Then
we choose where to slice the domain and run the command “slice” to plot:

xslice=[12.5]; yslice=[450]; zslice=[-1810];

hslice=slice(Xco,Yco,Zco,var_image,xslice,yslice,zslice);

3.3 Plotting simulation results for a 2D non-regular
grid

For an irregular mesh the only way to plot a plane figure is using the refined
mesh in MATLAB and plot using “image” or “contourf”. The files to run
this examples can be found in the folder “examples/plotting/2D irregular”,
including a main file that run what described in this section.

Fig. 8(left) show the mesh used in this example. After running the
“main.m” file something similar to what show in Fig. 8(right) should result
in your MATLAB prompt: note the elevate number of point in Coor{1, 1},
that is roughly close to the total number of gridblock (6070). The subroutine
RMESH partially failed in reading the mesh: since the mesh is not regular in
x-direction, the subroutine cannot calculate the absolute coordinates in X.
However, RMESH can still output the x-coordinate block by block (x mesh).

In TOUGH2 a 2D-plane mesh can be simply represented by a 3D with a
single block in a certain direction (y in this example). As a consequence of
this the RMESH will read this mesh as 3D, and produce the output for the Y
as well, but that in fact is a vector with a single number. However be careful
if plotting the fluxes, because you need to account this kind of simulation as
performed on a 3D mesh (see paragraph on “How to load TOUGH2 output”).

Finally, since the discretization is not regular, we cannot use the command
“meshgrid” using the mesh discretization, but we need to re-discretize the
MATLAB mesh as we did previously, and the use the command “griddata”
as usual. The resulting plot for this example is shown in Fig. ??.

17

Figure 8: Left: 2D irregular mesh. Right: MATLAB prompt and variables
after running the “main.m” file in the example. Note the elevate number of
point in x-direction (Coor{1, 1}), resulting becuase the mesh is not regular.

Figure 9: Plotting of a 2D irregular domain simulation results.

18

