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ABSTRACT 

The non-linear partial differential equations solved in 
TOUGH by the Integral Finite Difference Technique 
need meshes with diverse degrees of sophistication to 
model the geometry of physical systems in 2D or 3D 
domains with boundaries that can be of complex 
shapes. The main mathematical tools required to 
create efficient grids are differential geometry, tensor 
analysis and topology. We present several results 
from topology and geometry applied to practical grid 
generation. Structured mesh generation is the first 
step in the solution of problems with boundary 
conforming meshes. Structured meshes deal with the 
construction of coordinate curves in 2D and of 
coordinate surfaces in 3D. The intersection of these 
curves and surfaces produces mesh points and cells 
inside the solution domain. The grid cells are 
generally four sided geometric objects in 2D and 
finite volumes with six curved faces in 3D. The 
connectivity of points is the manner in which grid 
points are connected to each other in the solution 
domain. This connectivity depends on the overall 
generation scheme used. The Cartesian coordinates of 
every point can be stored in specific matrices with 
geometric and topological information. A variational 
approach is used for grid properties (orthogonality, 
longitude, area and smoothness) that can be 
controlled by the minimization of a functional. In 
unstructured meshes the connectivity between grid 
points can vary from point to point and it has to be 
described explicitly by an appropriate and particular 
data structure. This characteristic makes the 
unstructured solution algorithms more expensive in 
computational cost but more flexible and useful when 
employed in adaptive solutions of transient flows and 
moving boundary problems. This scheme is widely 
used in many applications of the Finite Element 
Method and in the Galerkin Discontinuous approach. 
We introduce an unstructured mesh generation using 
the Delaunay triangulation in 2D. The Delaunay 
tetrahedrization holds in 3D. In the first part we work 
in two dimensions using classic constructions from 
Euclidean geometry. In the second part we introduce 
topological concepts to generate meshes in three 
dimensions. We developed Fortran and Visual C 
codes to show some results in 2D. The practical 
aspects of this work could be useful as enhanced 
options for the TOUGH2 Meshmaker module. 

VORONOI DIAGRAMS 

Given a finite set of points in the plane, the idea is to 
assign to each point a region of influence in such a 
way that the regions decompose the plane. To 
describe a specific way to do that, let S ∈ \2 be a set 

of n points and define the Voronoi region of p ∈ \2 

as the set of points x ∈ \2 that are at least as close to 
p as to any other point in S; that is: 
 

Vp={x ∈ \2 | &x-p& ≤ &x-q& , "q ∈ S }           (1) 

This definition is illustrated in Figure 1. Consider the 
half-plane of points at least as close to p as to q: 
Hpq={ x ∈ \2 | &x-p& ≤ &x-q& }. The Voronoi region of 

p is the intersection of half-planes Hpq, for all 
q S p∈ − , it follows that Vp is a convex polygonal 
region, possibly unbounded, with at most n - 1 edges. 
Each point x ∈ \2 has at least one nearest point in S, 
so it lies in at least one Voronoi region. It follows 
that the Voronoi regions cover the entire plane. Two 
Voronoi regions lie on opposite sides of the 
perpendicular bisector separating the two generating 
points. It follows that Voronoi regions do not share 
interior points, and if a point x belongs to two 
Voronoi regions, then it lies on the bisector of the 
two generators (Fig. 1). The Voronoi regions together 
with their shared edges and vertices form the Voronoi 
diagram of S: 
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Figure 1. A Voronoi Region in the Plane. 
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DELAUNAY TRIANGULATION 

We get a dual diagram if we draw a straight 
Delaunay edge connecting the points  if and 
only if their Voronoi regions intersect along a 
common line segment. In general, the Delaunay 
edges decompose the convex hull of S into triangular 
regions, which are referred to as Delaunay triangles: 

,p q S∈
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Figure 2. DelaunayTriangles. 
 
To count the Delaunay edges we use some results on 
planar graphs, defined by the property that their 
edges can be drawn in the plane without crossing. It 
is true that no two Delaunay edges cross each other, 
but to avoid an argument, we draw each Delaunay 
edge from one endpoint straight to the midpoint of 
the shared Voronoi edge and then straight to the other 
endpoint (Figs. 2 & 3). It is obvious that any pair of 
these edges does not cross. With the use of Euler's 
relation, it can be shown that a planar graph with 

 vertices has at most 3n-6 edges and at most 2n-
4 faces. The same bounds hold for the number of 
Delaunay edges and triangles. There is a bisection 
between the Voronoi edges and the Delaunay edges, 
so 3n-6 is also an upper bound on the number of 
Voronoi edges. Similarly, 2n-4 is an upper bound for 
the number of Voronoi vertices (Fig. 3). 
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Figure 3. Voronoi and Delaunay edges. 

Degeneracy  
There is an ambiguity in the definition of a Delaunay 
triangulation if four or more Voronoi regions meet at 
a common point u. The points generating four or 
more regions have the same distance from u: they lie 
on a common circle around u. Probabilistically, the 
chance of picking even just four points on a circle is 
zero because the circle defined by the first three 
points has zero measure in \2. A common way to say 
the same thing is that four points on a common circle 
form a degeneracy or a special case. An arbitrarily 
small perturbation suffices to remove the degeneracy 
and to reduce the special case to the general case. In 
this paper we will assume a general position, which 
is the absence of any degeneracy. 

Circles and Power 
For now we assume general position. For a Delaunay 
triangle, abc, consider the circumcircle, which is the 
unique circle passing through a, b, and c. Its center is 
the corresponding Voronoi vertex, , 

and its radius is 
a bu V V V= ∩ ∩ c

u a u b u cσ = − = − = − . We 
call the circle empty because it encloses no point of S. 
It turns out that empty circles characterize Delaunay 
triangles. 

Circumcircle Claim 

Let S ⊆ \2 be finite and in general position, and let 

, ,a b c S∈  be three points. Then abc is a Delaunay 
triangle if and only if the circumcircle of abc is 
empty. It is not entirely straightforward to see that 
this is true. Instead of proving the Circumcircle 
Claim, we focus our attention on a new concept of 
distance from a circle. The power of a point x ∈ \2 

from a circle U with center u and radius σ is 
2( )U x x uπ σ= − − . If x lies outside the circle, then 

πU is the square length of a tangent line segment 
connecting x with U. In any case, the power is 
positive outside the circle, zero on the circle, and 
negative inside the circle. We sometimes think of a 
circle as a weighted point and of the power as a 
weighted distance to that point. Given two circles, the 
set of points with equal power from both is a line. 

Acyclicity 
We use the notion of power to prove an acyclicity 
result for Delaunay triangles. Let x ∈ \2 be an 
arbitrary but fixed viewpoint. We say a triangle abc 
lies in front of another triangle def if there is a half-
line starting at x that first passes through abc and then 

  



 - 3 - 

through def.  We write abc ≺ def if abc lies in front of 

def. The set of Delaunay triangles together with ≺ 
forms a relation. General relations have cycles, which 
are sequences 0 1 k 0τ τ τ≺ ≺ " ≺ ≺ τ

=

. Such cycles 
can also occur in general triangulations, but they 
cannot occur if the triangles are defined by empty 
circumcircles. 

Acyclicity Lemma 
The in-front relation for the set of Delaunay triangles 
defined by a finite set S ⊆ \2 is acyclic. 
 
Proof: We show that abc ≺  def implies that the 
power of x from the circumcircle of abc is less than 
the power from the circumcircle of def. Define 
abc=τ0 and write π0 (x) for the power of x from the 
circumcircle of abc. Similarly define def=τk y πk (x). 
Because S is finite, we can choose a half-line that 
starts at x, passes through abc and def, and contains 
no point of S. It intersects a sequence of Delaunay 
triangles: . For any two 
consecutive triangles, the bisector of the two 
circumcircles contains the common edge. Because 
the third point of 

0 1 kabc defτ τ τ= ≺ ≺ " ≺

1iτ
+

 lies outside the circumcircle of 

iτ , we have 1( ) ( )i ix xπ π
+

< . Hence 0 ( ) ( )kx xπ π< . 
The acyclicity of the relation follows because real 
numbers cannot increase along a cycle.  

Edge Flipping 
This section introduces a local condition for edges; it 
implies that a triangulation is of Delaunay type. Here 
we derive an algorithm based on edge nipping. The 
correctness of the algorithm implies that, among all 
triangulations of a given point set, the Delaunay 
triangulation maximizes the smallest angle. 

Empty circles 
Recall the Circumcircle Claim, which says that three 
points  are vertices of a Delaunay triangle 
if and only if the circle that passes through a, b, c is 
empty. A Delaunay edge, ab, belongs to one or two 
Delaunay triangles. In either case, there is a pencil of 
empty circles passing through a and b. The centers of 
these circles are the points on the Voronoi edge 

. What the Circumcircle Claim is for triangles 
the Supporting Circle Claim is for edges. 

, ,a b c S∈

aV V∩ b

Supporting Circle Claim 

R Let S ⊆ \2 be finite and in general position and let 
. Then ab is a Delaunay edge if and only if 

there is an empty circle that passes through a and b. 
,a b S∈

Delaunay lemma 

A triangulation is a collection of triangles with their 
edges and vertices. A triangulation K triangulates S if 
the triangles decompose the convex hull of S and the 
set of vertices is S. An edge  is locally 
Delaunay if: 

ab K∈

(i) it belongs to only one triangle and 
therefore bounds the convex hull, or  

(ii) it belongs to two triangles, abc and abd, 
and d lies outside the circumcircle of 
abc. 

A locally Delaunay edge is not necessarily an edge of 
the Delaunay triangulation, and it is fairly easy to 
construct such an example. However, if  every edge is 
locally Delaunay, then we can show that all are 
Delaunay edges circumcircles. 

Delaunay Lemma 
If every edge of K is locally Delaunay, then K is the 
Delaunay triangulation of S. 
 
Proof: Consider a triangle  and a vertex abc K∈
p K∈  different from a, b, c. We show that p lies 

outside the circumcircle of abc. Because this is then 
true for every p, the circumcircle of abc is empty and 
because this is then true for every triangle abc, K is 
the Delaunay triangulation of S. Choose a point x 
inside abc such that the line segment from x to p 
contains no vertex other than p. Let abc = 

0 1, , ,τ τ … kτ be the sequence of triangles that intersect 
xp. We write πI (p) for the power of p to the circum-
circle of iτ , as before. Since the edges along xp are 

all locally Delaunay, we have . 
Since p is one of the vertices of the last triangle, we 
have

0 ( ) ( )kp pπ π> >"

( ) 0k pπ = . Therefore  which is equi-
valent to p's lying outside the circumcircle of abc. 

0 ( ) 0pπ >

Edge-flip algorithm 
If ab belongs to two triangles, abc and abd, whose 
union is a convex quadrangle, then we flip ab to cd. 
Formally, this means we remove ab, abc, abd from 
the triangulation and we add cd, acd, bed to the 
triangulation. The picture of a flip looks like a 
tetrahedron with the front and back superimposed. 
We can use edge flips as elementary operations to 
convert an arbitrary triangulation K to the Delaunay 
triangulation. The algorithm uses a stack and 
maintains the invariant that unless an edge is locally 
Delaunay, it resides on the stack. To avoid duplicates, 
we mark edges stored on the stack. Initially, all edges 
are marked and pushed on the stack. 
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The general Algorithm 
While stack is non-empty  
  do pop ab from stack and unmark it; 
  if ab is not locally Delaunay then  
     flip ab to cd; 
     for xy ∈  {ac,cb,bd,da} do  
          if xy not marked then.  
             mark xy and push it on stack  
          endif  
     endfor  
  endif  
endwhile. 
 
Let n be the number of points. The amount of 
memory used by the algorithm is 0(n) because there 
are at most 3n-6 edges, and the stack contains at most 
one copy of each edge. At the time the algorithm 
terminates, every edge is locally Delaunay. By the 
Delaunay Lemma, the triangulation is therefore the 
Delaunay triangulation of the point set. 

Simplicial Complexes 
We use simplicial complexes as the fundamental tool 
to model geometric shapes and spaces. They genera-
lize and formalize the somewhat loose geometric no-
tions of a triangulation. Because of their combinato-
rial nature, simplicial complexes are perfect data 
structures for geometric modelling algorithms. 

Simplices 
A finite collection of points is affinely independent if 
no affine space of dimension i contains more than i 
+1 of the points, and this is true for every i. A k-
simplex is the convex hull of a collection of k+1 
affinely independent points, σ = conv(S). The dimen-
sion of σ is dim σ = k. In \d, the largest number of 

affinely independent points is d+1, and we have 
simplices of dimension -1,0,..., d. The (-l)-simplex is 
the empty set. The convex hull of any subset  
is again a simplex. It is a subset of conv(S) and called 
a face of σ, which is denoted 

T S⊆

τ σ≤ . If dimτ = l then 
r is called an l-face. τ = ∅  and τ σ=  are improper 
faces, and all others are proper faces of σ. The 
number of l faces of σ is equal to the number of ways 
we can choose l + 1 from k + 1 points, which is equal 

to  . The total number of faces is: 
1
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Simplicial Complexes 
A simplicial complex is the collection of faces of a 
finite number of simplices, any two of which are 
either disjoint or meet in a common face. More 
formally, it is a collection K such that: 
 

1) K Kσ τ σ τ∈ ∧ ≤ ⇒ ∈  and 
2) , , .Kσ υ σ τ σ τ∈ ⇒ ≤∩  

 
Note that ∅  is a face of every simplex and thus 
belongs to K by Condition 1). Condition 2) therefore 
allows for the possibility that σ and υ be disjoint. 

TOPOLOGY 

The most fundamental concept in point set topology 
is a topological space, which is a point set X together 
with a system X of subsets A X⊆  that satisfies: 
 

1. , X τ∅ ∈  
2. Z τ⊆  implies  Z τ∈∪ , and 
3. Z τ⊆  and Z finite, implies Z τ∈∩  

 
The system X is a topology and its sets are the open 
sets in X. This definition is exceedingly general and 
non intuitive, but later we will get a better 
understanding of what is a topological space. The 
most important example is the d-dimensional 
Euclidean space, denoted as \d. We use the 
Euclidean distance function to define an open ball as 
the set of all points closer than some given distance 
from a given point. The topology of \d is the system 
of open sets, where each open set is a union of open 
balls. All other topological spaces in this book are 
subsets of \d. A topological subspace of the pair 
(X,τ) is a subset Y  together with the subspace 
topology consisting of all intersections between Y 
and open sets, 

X⊆

{ }|
Y

Y A A .τ τ= ∩ ∈  An example is 
the d-ball, defined as the set of points at distance 1 
or less from the origin: 

Bd={x∈\d | gxg≤1}                    (3) 
 
Its open sets are the intersections Bd with open sets in 
\d . An open set in Bd is not necessarily open in \d. 

Homeomorphisms 
Topological spaces are considered the same or of the 
same type if they are connected the same way. There 
are several possibilities to define this notion. The 
most important one is based on homeomorphisms, 
which are functions between topological spaces. Such 
a function is continuous if the preimage of every 
open set is open, and if it is continuous it is referred 
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to as a map. A homeomorphism is a function 
:f X Y→  that is bijective, continuous, and has a 

continuous inverse. If a homeomorphism exists then 
X and Y are homeomorphic, and this is denoted as 

. For  example, consider the open unit disk 
which is the set of points in \
X Y≈

2 at distance less than 
one from the origin. This disk can be stretched over 
the entire plane. Define ( ) /(1 )= −f x x x , which 
maps x to the point on the same radiating half-line at 
the original distance times /(1 )x x−  from the 
origin. Function f is bijective and continuous, and its 
inverse is continuous. It follows that the open disk is 
homeomorphic to R2. More generally, every open k-
dimensional ball is homeomorphic to \k. 

Triangulation 
The meaning of the term changes from one area to 
another. In geometry, there is no generally agreed 
upon definition, but it usually means a simplicial 
complex. In topology, a triangulation has a precise 
meaning, and that meaning is similar to the idea of a 
mesh that gives combinatorial structure to space. Let 
K be a simplicial complex in \d. Its underlying space 

is the union of its simplices together with the 
subspace topology inherited from \2, 

|K|={ x∈\d | x∈σ∈K}                         (4) 
 
A polyhedron is the underlying space of a simplicial 
complex. We can think of K as a combinatorial 
structure imposed on |K|. There are others. Using 
homeomorphisms, we can impose the same structure 
on spaces that are not polyhedra. A triangulation of a 
topological space X is a simplicial complex K whose 
underlying space is homeomorphic to X, K X≈ . 
The space X is triangulable if it has a triangulation. 

Manifolds 

The Manifolds are particularly nice topological 
spaces. They are defined locally. A neighborhood of 
a point x e X is an open set that contains x. There are 
many neighborhoods, and usually it suffices to take 
one that is sufficiently small. A topological space X 
is a k-manifold if every x e X has a neighbourhood 
homeomorphic to \k. It is more intuitive to substitute 

a small open k-ball for \k, but this makes no 
difference because the two are homeomorphic. A 
simple example of a manifold is the k-sphere, which 
is the set of points at unit distance from the origin in 
the (k+1)-dimensional Euclidean space, 

Sk={x∈\k+1 | gxg =1} 
 
Euler Characteristic 
A topological invariant that predated the creation of 
topology as a field within mathematics is the Euler 
characteristic of a space. This section introduces the 
Euler characteristic, talks about shelling, and proves 
the shellability of triangulations of the disk. 

Alternating Sums 

The Euler characteristic of a simplicial complex K is 
the alternating sum of the number of simplices, where 
d = dim K and s, is the number of i-simplices in K. 

 
               0 1 2( ) ( 1) ,d

dK s s s sχ = − + − + −"           (5) 
 
It is common to omit the (-l)-simplex from the sum. 

2 - Manifolds 
A two-dimensional manifold can be constructed from 
a piece of paper by gluing edges along its boundary. 
As an example consider the torus, T, which can be 
constructed from a square by gluing edges in 
opposite pairs as shown in Figure 4. The square, 
together with its two edges and one vertex, forms a 
cell complex for the torus, with Euler characteristic: 
 
                      ( ) 1 2 1 0Tχ = − + =                          (6) 
 
The straightforward treatment of the torus can be 
extended to general 2-manifolds by using the 
complete characterization of 2-manifolds, which was 
one of the major achievements in nineteenth-century 
mathematics. The list of orientable 2-manifolds 
consists of the 2-sphere, the torus with one hole, the 
torus with two holes, and so on. The number of holes 
is the genus of the 2-manifold. The torus with g holes 
can be constructed from its polygonal schema, which 
is a regular 4g-gon with edges: 
 
      1 2 1 2 3 4 3 4 2 1 2 2 1 2 ,g g g ga a a a a a a a a a a a− − − − −

− −
" −

g

          (7) 
 
where an edge without minus sign is directed in 
anticlockwise and one with minus is directed in 
clockwise order around the 4g-gon The g-holed torus 
is constructed by gluing edges in pairs as indicated by 
the labels. After gluing we are left with 2g edges and 
one vertex. The Euler characteristic is therefore 

. Given a triangulated orientable 2 -
manifold, we can use the Euler characteristic to 
compute the genus and decide the topological type of 
the 2-manifold. 

( ) 2 2
g

Tχ = −
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      Figure 4.  A  2 - Manifold 
 

SOME THEORY AND PRACTICAL ASPECTS 
OF VARIATIONAL MESH GENERATION  

Def. A mesh ( , ) ( ( , ), ( , ))ε η ε η ε η= tX x y  over a 
region is a continuous function , 
where U

2Ω ⊂ R 2: → ΩX U

2 is the unit square [ ] [ ]0,1 0,1× . The 
boundaries are: . 2( )∂ = ∂X U Ω
 
 
 
 
 
 
 
 
 

U2         W 

          Figure 5. An illustration of the map ( , )ε ηX . 

If we consider a coordinate line for e = cte or h = cte 
inside the unit square, its image will be a curve in W. 
In this way a grid in U2 will produce a mesh in W. 
Every mesh  is associated to a real value 
by considering some mathematical property: area, 
longitude, orthogonality and smoothness. This 
relation will produce a functional of the form: 

2: → ΩX U

 
   ( ) (1 1 1 1

0 0 0 0
, , , , )ε η ε η ε η= =∫ ∫ ∫ ∫ x xF L x x y y L        (8) 

 
This functional can be minimized. Two methods of 
mesh generation emerge from this minimization. The 
first method arises by solving the Euler-Lagrange 
equations; this is called the Continuous Variational 
Generation. In the second method the functional is 
discretized first and then a minimization is performed 
on the multivariate function; this is called the 

Discrete Variational Generation. In this work we use 
this latter technique. 

DISCRETIZATION OF BARRERA - PEREZ 

The functional can be discretized using a bilinear 
map which allows a better control of the 
mathematical properties at each cell. Let us assume a 
rectangular domain W and a map X defined by: 
 
               ( , )ε η ε η ε η= + + +X A B C D               (9) 
 
 
 
 
 
 
 
 
 
 

           Figure 6. A map X over a rectangle. 

The points are: X(0,0) = P, X(1,0) = Q, X(1,1) = R, 
X(0,1) = S; therefore: 
  
 ( ) ( ) ( )( , )ε η ε η= + − + − + − + −X P Q P S P R Q P S ε η      (10) 
 
Each functional ( )1 1

0 0
,ε η∫ ∫ x xL is replaced by an 

expression (Tinoco, 1997) of the form: 
1 1

,
1 1

− −

= =
∑∑
m n

i j
i j

f , 

( ) ( )( ) ( ) ( )( )
,:

1 [ 0,0 , 0,0 1,0 , 1,0
4 ε η ε η

=

+ +

i j

ij ij ij ij

Where f

L X X L X X

   ( ) ( )( ) ( ) ( )( )0,1 , 0,1 1,1 , 1,1 ]ε η ε η+ij ij ij ijL X X L X X  
  (11) 

 
And 2: ( , ,→,ij

ij , )X U P Q R S  is the map associated 
to the cell (i, j); but by definition:  
 

Xe (0,0) = Xe (1,0) =  Q – P,  
Xe (0,1) = Xe (1,1) =  R – S,   
Xh (0,0) = Xh (0,1) = S - P,  
Xh (1,0) = Xh (1,1) = R – Q. 

 
Therefore: 
 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1

2

3

4

0,1 , 0,1

1,0 , 1,0

0,0 , 0,0

1,1 , 1,1

ε η

ε η

ε η

ε η

Δ = Δ =

Δ = Δ =

Δ = Δ =

Δ = Δ =

ij ij
ij ij ij ij

ij ij
ij ij ij ij

ij ij
ij ij ij ij

ij ij
ij ij ij ij

f f R S P L X X

f f P Q R L X X

f f S P Q L X X

f f Q R S L X X

      (12) 
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With these results we obtain: 
 

                                  (13) (
1 1 1 1 4

,
1 1 1 1 1

− − − −

= = = = =

=∑∑ ∑∑∑
m n m n

k
i j ij

i j i j k
f f )Δ

jΔ

Δ

jΔ

Δ

Δ

 
This expression can be written as: 
 

1
4( 1)( 1) 4 3m j j i− − + −Δ =  

2
4( 1)( 1) 4 2m j j ij− − + −Δ =  

3
4( 1)( 1) 4 1m j j i− − + −Δ =   

4
4( 1)( 1) 4m j j ij− − +Δ =  

 
We deduce the discrete functional: 
 

                                (14) ( )
4( 1)( 1)1 1

,
1 1 1

− −− −

= = =

=∑∑ ∑
m nm n

i j i
i j i

f f

 

CLASSIC FUNCTIONALS 

Definition: Let  be a triangle and: PQRΔ
  

2 2( )Δ = − + −l PQR P Q R Q  
( ) 2 ( )α Δ = ΔPQR Area PQR  

( ) ( )( )Δ = − −to PQR P Q R Q  
 
The classic functionals are:  
 

           Longitude:            (15) ( )
4( 1)( 1)

1

− −

=

= ∑
m n

i
i

FL l Δ

Δ

                  Area: .         (16) ( )
4( 1)( 1)

2

1
α

− −

=

= Δ∑
m n

i
i

FA

   Orthogonality: .          (17) ( )
4( 1)( 1)

2

1

− −

=

= ∑
m n

i
i

FO o

       Smoothness: 
( )
( )

4( 1)( 1)

1 α

− −

=

Δ
=

Δ∑
m n

i

i i

l
FS            (18) 

 

APPLICATIONS 

In order to illustrate the theory and praxis we have 
developed and briefly exposed in this work, we 
present an application of a structured mesh 
generation for Tejamaniles, the southern sector of the 
Los Azufres, Mexico geothermal field. Using the 
available geological and geophysical data, we employ 
the general two-dimensional contour commonly 
accepted for this reservoir (Suárez, 1991). Two 
different meshes were constructed. The first one is a 
“coarse” grid with 1600 curved rectangles. The 

second one is a global refinement of the first one and 
contains 10,000 four sided elements. For a reservoir 
area of approximately 12 Km2, the local resolution of 
each mesh is equal to 7500 m2 /cell and 1200 m2 /cell 
respectively. This means an average element size of 
about 86 x 87 m2, for the first mesh and of about 34 x 
35 m2, in the refined mesh. Both grids are shown in 
Figure 7. Nevertheless, it is clear from the numerical 
results obtained and from this figure that many 
elements are smaller than the averages, having a real 
size around 30 x 30 m2, and 10 x 10 m2  respectively. 
Therefore, some portions of the second mesh could 
be further refined to attain the real local scale of the 
production and injection wells to simulate their 
evolution. The construction technique of both meshes 
is based on the functionals described in the preceding 
section. A computer code was developed in Visual C 
language and two graphical results are shown in 
Figure 7. More results will be presented at the 
Symposium, including non structured meshes. The 
code also generates the coordinates of each element 
of the mesh; it can calculate each element area and 
the corresponding volume. It is very simple to extend 
this application to make the code totally compatible 
with the MESHMAKER module of TOUGH2 
(Pruess et al., 1999). Potential interested users could 
obtain a free copy of the code sending a message to 
the e-mail address at the first page of this paper.   
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Figure 7. Two structured meshes of the Los Azufres, Mexico geothermal field (southern sector), with 1600 and 
10,000 cells respectively. Both meshes are generated using a combination of Area and Longitude 
Functionals. The axes show approximately the Mercator Coordinates for this reservoir in 10 3 m. 
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Figure 8. Two unstructured meshes of the Los Azufres, Mexico geothermal field (southern sector), with 256 and 
5337 triangles respectively. Both meshes were generated using Delaunay triangulation. The numbers at 
the axes are approximately the Mercator Coordinates of this reservoir in 10 3 m. The last mesh has a 
hole to illustrate a forced refinement due to the curvature of the circle.  
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