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ABSTRACT 

Reliable prediction of subsurface flow and contami-
nant transport depends on the accuracy with which 
the values and spatial distribution of process-relevant 
model parameters can be identified. Successful char-
acterization methods for complex soil systems are 
based on (1) an adequate parameterization of the sub-
surface, capable of capturing both random and struc-
tured aspects of the heterogeneous system, and (2) 
site-specific data that are sufficiently sensitive to the 
processes of interest. We present a stochastic 
approach where the high-resolution imaging capabil-
ity of geophysical methods is combined with the 
process-specific information obtained from the inver-
sion of hydrological data. Geostatistical concepts are 
employed as a flexible means to describe and char-
acterize subsurface structures. The key features of the 
proposed approach are (1) the joint inversion of geo-
physical and hydrological raw data, avoiding the 
intermediate step of creating a (non-unique and 
potentially biased) tomogram of geophysical proper-
ties, (2) the concurrent estimation of hydrological and 
petrophysical parameters in addition to (3) the deter-
mination of geostatistical parameters from the joint 
inversion of hydrological and geophysical data; this 
approach is fundamentally different from inference of 
geostatistical parameters from an analysis of spatially 
distributed property data. The approach has been 
implemented into the iTOUGH2 inversion code and 
is demonstrated for the joint use of synthetic time-
lapse ground-penetrating radar (GPR) travel times 
and hydrological data collected during a simulated 
ponded infiltration experiment at a highly heteroge-
neous site. 

INTRODUCTION 

It is recognized that subsurface flow and contaminant 
transport processes are critically affected by the soil 
structure and heterogeneity of the subsurface as well 
as the related distribution of soil moisture. While 
geophysical methods—such as ground penetrating 
radar (GPR)—may provide high-resolution images of 
the subsurface, the relation between these images and 
parameters affecting flow and transport remains 

ambiguous. On the other hand, although hydrological 
data contain information about properties relevant to 
flow and transport, their spatial coverage and resolu-
tion are usually insufficient to capture the features 
governing the system behavior. A joint inversion 
approach (in which geophysical and hydrological 
data are inverted concurrently to obtain high-resolu-
tion models of hydrologic parameters and soil mois-
ture distribution) has the potential to combine the 
strengths of both characterization methods. 

The difficulty of predicting unsaturated flow and 
transport in porous or fractured media stems largely 
from the development of preferential flow patterns, 
which are mostly induced by heterogeneities of 
hydrologic properties on multiple scales [Pruess et 
al., 1999a]. Ignoring such heterogeneities in a 
simulation model leads to a volume-averaged 
behavior that does not adequately capture the highly 
localized water flow occurring along preferential 
pathways. Methods have been developed to describe 
and simulate heterogeneity with various degrees of 
randomness, spatial correlation, and inclusion of 
deterministic structures [Deutsch and Journel, 1992; 
McLaughlin and Townley, 1996; Zimmerman et al., 
1998; Yeh and Šimunek, 2002; Finsterle, 2005]. In 
these methods, the random component of the hetero-
geneity is often described by a stochastic model with 
parameterized distributional assumptions about the 
spatial variability of the property. These parameters 
are then estimated, and geostatistical simulation and 
ensemble averaging are employed to identify the sub-
surface structure and its uncertainty. It should be 
noted that this averaging process may again lead to 
an overly smooth model, which potentially masks the 
preferential flow patterns that lead to early contami-
nant breakthrough. To perform accurate site-specific 
simulations, it is therefore crucial to identify 
realizations of the property field that are as close to 
the actual distribution as possible. This requires an 
approach that determines hydrologic properties over 
the relevant domain directly rather than through 
interpolation or geostatistical simulation. As 
mentioned above, geophysical imaging has the 
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potential to provide the needed high-resolution 
information.  

Geophysical data have been routinely used for the 
development of hydrological models. Most 
commonly, geophysical data are inverted to create 
images that are used to identify the soil stratigraphy, 
which is then assigned to zones with constant hydro-
logical properties. These properties may be deter-
mined by the inversion of hydrological data. In this 
sequential approach, any artifact in the geophysical 
inversion or misinterpretation of the geophysical 
image leads to an error in the conceptual model, 
which in turn biases the estimates of the hydrological 
parameters and potentially corrupts the model 
predictions. 

Certain geophysical data, such as GPR travel times, 
are sensitive to changes in the water content, and can 
thus be used to measure soil water content [Huisman 
et al., 2003], provided that an accurate petrophysical 
model is given that relates the composite dielectric 
constant to the volumetric water content. This 
approach allows for state estimation, and if the time-
lapse tomography is employed, the changes in the 
inferred water content distribution can be the basis 
for hydrological interpretation [Binley et al., 2002]. 
The water content maps can also be used—as derived 
data—in a formal calibration of a hydrological 
model. This approach relies again on a tomographic 
inversion and also an accurate petrophysical relation-
ship, the parameters of which may be determined by 
the inversion of data from laboratory experiments. To 
avoid the related pitfalls (inversion artifacts, errors in 
the petrophysical model, and scaling issues), geo-
physical and hydrological raw data can be analyzed 
simultaneously in a joint inversion, in which a geo-
physical and hydrological forward model are linked 
and used as part of an algorithm that minimizes the 
differences between calculated and measured data  
[Kowalsky et al., 2004; Lambot et al., 2004; Rucker 
and Ferré, 2004; Kowalsky et al., 2005]. This 
approach combines parameter and state estimation. 
Moreover, the use of complementary hydrological 
and geophysical data may reduce the inherent ambi-
guity and nonuniqueness of the inverse problem.  

In this paper, we expand our previously published 
joint inversion approach [Kowalsky et al., 2004; 
2005] to include concurrent estimation of geostatisti-
cal parameters in an attempt to identify the soil 
structure along with the physical parameters. In this 
approach, geostatistical parameters are determined 
simultaneously with hydrological and petrophysical 
parameters by jointly inverting geophysical and 
hydrological data. It should be noted that this is 
fundamentally different from inference of geostatis-

tical parameters from a direct analysis of spatially 
distributed property data. While such property data 
can be included in the inversion as prior information, 
their availability is not a condition of the method. 
Instead, the geostatistical parameters are inferred 
from the impact the property field has on water flow 
through the vadose zone, which in turn is reflected by 
the measured hydrological and geophysical data. A 
key presumption of the approach is that a suitable 
parametric model can be found that is flexible 
enough to describe both the random and deterministic 
aspects of the soil structure. In this demonstration, we 
rely on standard geostatistical simulation techniques 
to create random spatial structures that are condi-
tioned on property values to be estimated at selected 
pilot points  [RamaRao et al., 1995; Gomez-Hernan-
dez et al., 1997]. 

We first discuss the hydrological and geophysical 
forward models, followed by the parameterization of 
the soil structure to make it amenable to joint inver-
sion. Finally, we demonstrate the approach using 
synthetic time-lapse ground-penetrating radar (GPR) 
travel times and hydrological data collected during a 
ponded infiltration experiment at a highly heteroge-
neous site. 

HYDROLOGICAL FORWARD MODEL 

We are concerned with water flow through the 
vadose zone, which can be described using Richards’ 
equation [Richards, 1931] as implemented in the 
integral finite-difference simulator TOUGH2 [Pruess 
et al., 1999b]: 
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Here, t is time, φ is porosity, S is liquid saturation, ρ 
is liquid density, k is absolute permeability, kr is rela-
tive permeability, µ is viscosity, g is gravitational 
acceleration, z is the vertical coordinate (positive 
upward), and P = Pref + Pc is liquid-phase pressure, 
where Pref is a reference gas pressure and Pc is capil-
lary pressure. Relative permeability and capillary 
pressure are functions of liquid saturation as given by 
van Genuchten [1980]: 
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In the van Genuchten-Mualem model, Slr is the resid-
ual liquid saturation, and α and m are fitting parame-
ters. The capillary-strength parameter 1/α appearing 
in (3) is assumed to be correlated to the heterogene-
ous permeability field according to Leverett’s scaling 
rule [Leverett, 1941]: 
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Here, kn and 1/αn are, respectively, the permeability 
and the capillary-strength parameter of gridblock n in 
the numerical model, kref is the reference permeabil-
ity, and 1/αref is the reference capillary-strength 
parameter, both being determined in the joint inver-
sion process.  Residual liquid saturation Slr was set to 
0.08, and the parameter m was chosen to be 0.63.  

GEOPHYSICAL FORWARD MODEL 

For computational efficiency, we simulate GPR 
travel times using the straight-ray method, which is 
based on a high-frequency approximation that calcu-
lates the arrival time of the first amplitude departure 
of the transmitted wave, ignoring the remainder of 
the waveform. As demonstrated in Kowalsky et al. 
[2005], the errors introduced by assuming the GPR 
energy travels along a straight path does not, in many 
cases, significantly impact the estimated parameters 
and predicted system behavior for the system 
considered in this study. In the straight-ray method, 
the travel time T for an electromagnetic (EM) wave 
propagating between the transmitting and receiving 
antennas can be calculated by connecting the 
antennas with a straight line and summing the travel 
times of the EM wave as it travels through the 
discretized model domain: 
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Here, Li is the length of the linear travel segment in 
block i, N is the number of blocks through which the 
ray passes, and c is the EM wave velocity in free 
space. The term in brackets results from a volumetric 
mixing formula [Roth et al., 1990] used as the petro-
physical function that calculates the effective dielec-
tric constant from the local water saturation Si, 
porosity φi, and the dielectric constants of the indi-
vidual phases (with κs being the dielectric constant 
for the solid, and κw and κa the known dielectric 
constants for water and air, respectively). The expo-
nent n is related to the geometric arrangement of 
materials relative to the applied electric field [Ansoult 
et al., 1984].  

PARAMETERIZATION OF SOIL STRUCTURE 

Geological structures or stratal soil architectures are 
results of complex geologic processes (deposition, 
erosion, deformation, intrusion, fracturing, etc.). 
Depending on the scale of observation, these proc-
esses and the resulting morphology can be considered 
to be deterministic, random, or a combination of the 
two, which is reflected in the emergence of hierarchi-
cal structures with randomly distributed attributes 
that exhibit both spatial continuity and discrete inter-
faces. Characterization of these subsurface structures 
is an attempt to capture the underlying complexity 
with a few categorical terms or parameters that are 
part of a descriptive model. To handle the random-
ness inherent in the subsurface, almost all of these 
models are stochastic in nature. Among the most 
widely applied techniques are semivariogram-based 
geostatistical models [Deutsch and Journel, 1992] 
and concepts relying on the fractal distribution of soil 
properties [Neuman, 1990; Molz et al., 1997]. 
Sediments can also be described with a hierarchical 
transition probability model [Carle and Fogg, 1996], 
with relative proportions of lithofacies and mean and 
variance of their lengths being the key parameters. 

We currently rely on geostatistical simulation as a 
flexible means to generate subsurface structures that 
exhibit (1) small-scale randomness (on the grid-block 
scale) and (2) some medium-scale spatial continuity 
(on a scale larger than a grid block but smaller than 
the size of the domain of interest). These two scales 
of heterogeneity capture two significant controls on 
subsurface flow and transport. Moreover, the targeted 
resolution is comparable to the resolution of geo-
physical methods and is on a scale on which effective 
flow parameters can be reasonably defined. Note that 
using geostatistical simulation (instead of interpola-
tion techniques such as kriging) enables small-scale 
heterogeneities to be included in the model (even 
though only in a stochastic sense). This feature 
counters the tendency of overdetermined or regular-
ized inverse solutions to smooth out the property 
field. 

Modeling of site-specific spatial variability by geo-
statistical simulation essentially consists of estimat-
ing a property field using sampled values and some 
prior knowledge about the spatial correlation of the 
attribute. The latter is usually expressed through a 
semivariogram. In our approach, neither the values at 
the sampling points nor the semivariogram parame-
ters are assumed to be known; instead, they are esti-
mated as part of the joint inversion of geophysical 
and hydrological data. Estimating property values at 
discrete locations for use as conditioning points in the 
subsequent geostatistical simulation is part of the 
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pilot point method described by RamaRao et al. 
[1995] and Gomez-Hernandez et al. [1997]. We 
expand this concept by concurrently estimating 
semivariogram parameters, such as the correlation 
length, anisotropy ratio, and orientation; we assume 
the functional form of the semivariogram as well as 
the sill value to be given. This framework is consid-
ered flexible enough to adapt to a variety of realistic 
subsurface structures during the joint inversion 
process.  

In the following example, the spherical semi-
variogram model is used to describe spatial 
correlation as a function of lag distance h: 
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Here, a is the correlation length, and c is the sill 
value. Two-dimensional orientation and geometric 
anisotropy are defined through a rotation angle β and 
an anisotropy factor ω applied to the range parameter 
a, respectively. Sequential Gaussian simulation  
[Deutsch and Journel, 1992] is used to generate reali-
zations of spatially correlated permeability fields that 
are consistent with the semivariogram model (7) and 
are conditioned on permeability values estimated at 
prelocated pilot points.  Note that the number and 
positions of pilot points should be related to the 
resolution of the observation data and the degree of 
heterogeneity expected. Moreover, the choice of pilot 
points affects the degree of freedom of the inverse 
problem and averaging occurring during the inver-
sion (i.e., the flexibility with which heterogeneity can 
be represented, and thus the spatial correlation of the 
final residuals (for an excellent discussion of these 
issues, see Moore and Doherty [2006]). 

INVERSE METHODOLOGY 

The joint inversion methodology employed here 
closely follows that presented in Kowalsky et al. 
[2005], in which the best-estimate parameter set a 
(holding hydrogeological, petrophysical, and geosta-
tistical parameters) is determined by minimizing the 
weighted differences between measured (z) and 
calculated (F(a)) hydrological and geophysical data.  
Assuming that (1) the final residuals are randomly 
distributed and can be characterized by a known 
covariance matrix Czz (i.e., the contribution of 
modeling errors to the residuals—which often leads 
to systematic residuals with significant spatial 
correlations—is small), (2) measurement errors are 
uncorrelated (i.e., Czz, is diagonal), and (3) no prior 
information about the parameters to be estimated is 

available, the objective function to be minimized has 
the following form: 

 [ ] [ ])()()( 1 azCaza FFOF zz
T −−= −  (8) 

The forward operator F(a) represents three models, 
namely (1) the hydrological model (Equations 1–5), 
which is combined with (2) the spherical 
semivariogram model (Equation 7) used for the 
generation of random, spatially correlated permeabil-
ity fields using geostatistical simulation, and (3) the 
geophysical model for calculating the travel time of 
GPR waves between transmitting and receiving 
antennas (Equation 6). The input parameters 
contained in vector a include hydrological parameters 
(reference permeability and capillary-strength 
parameters, permeability modifiers at pilot points), 
petrophysical parameters (dielectric constant and 
mixing exponent), and geostatistical parameters 
(correlation length, orientation angle, and anisotropy 
ratio); Table 1 summarizes the parameters to be 
estimated in the following example; the resulting 
heterogeneous permeability field is visualized in 
Figure 1a.  The set of parameters to be estimated is 
obviously limited in this illustrative example. While 
some parameters (such as the residual liquid 
saturation) are fixed because of insignificant 
sensitivity, others (such as the spatial distribution of 
porosity) may be considered unknown or uncertain 
and should thus be subjected to parameter estimation 
in field applications. 

Measured data are contained in vector z and include 
hydrological observations (flow rates, saturations) 
and geophysical data (GPR arrival times); Table 2 
summarizes the observations used in the following 
example, with the GPR straight-ray pattern visualized 
in Figure 2. The covariance matrix Czz contains the 
variances of the measurement errors on its diagonal. 
This approach properly weighs data of different type 
and quality in a joint inversion.  

In the following example, the Levenberg-Marquardt 
algorithm [Levenberg, 1944; Marquardt, 1963] as 
implemented in iTOUGH2 [Finsterle, 1999] is used 
to minimize the objective function (8). Since the 
permeability fields are created using a random 
process, multiple inversions will be performed. The 
non-random components of the soil structure can then 
be identified by averaging the results from the indi-
vidual realizations. In addition, the impact of small-
scale variability on the estimated parameters can be 
examined. The approach is demonstrated using 
synthetically generated data, as discussed in the 
following section. 
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(b) 

Figure 1. Spatially structured random permeability 
field, position of infiltration pond, loca-
tion of GPR antennas (squares: transmit-
ting; circles: receiving) and position of 
pilot points (crosses): (a) true field; (b) 
initial field prior to joint inversion. 

 

 

Figure 2. Liquid saturation distribution after one 
day of water release, locations of neutron 
probes in boreholes (squares), and GPR 
straight-ray paths used for inversion. 

 

 

Table 1.  Hydrological, Petrophysical, and Geo-
statistical Parameters Fixed and Estimated by Joint 

Inversion of Hydrological and Geophysical Data 

Description Param.
Value 

Fixed or 
To Be 

Estimated 

Hydrological parameters, Equations (1)–(5) 
Reference absolute 
permeability, log(kref [m2])  -13.0 estimated 

Permeability modifiers at pilot 
points, log(k/kref) 

0.0 estimated 

Reference capillary-strength 
parameter, log(1/αref [Pa])  3.0 estimated 

Porosity, φ 0.3 estimated 
Residual liquid saturation, Slr 0.08 fixed 
van Genuchten parameter, m 0.63 fixed 

Petrophysical parameters, Equation (6) 
Mixture exponent, n 0.5 estimated 
Dielectric constant, solid, κs 4.0 estimated 
Dielectric constant, water, κw 80.0 fixed 
Dielectric constant, air, κa 1.0 fixed 

Geostatistical parameters, Equation (7) 
Correlation length, a [m] 0.4 estimated 
Geometric anisotropy ratio, ω  5.0 estimated 
Orientation, β [°] 70.0 estimated 
Sill value, log(c) 1.0 Fixed 

 

EXAMPLE 

The joint inversion methodology is demonstrated 
using a synthetic field experiment.  In the simulation, 
water is released from a pond into a highly heteroge-
neous but structured vadose zone with a shallow 
water table at a depth of 3 m. The initial saturation 
distribution is in capillary-gravity equilibrium with 
the water table. The infiltration rate is measured as 
the water level in the pond is maintained at 2 cm for 
3 days. Two monitoring boreholes are equipped with 
neutron probes for water content measurements; the 
same boreholes are used for GPR surveys (see 
Figure 2). Measurements are taken prior to infiltra-
tion, and once every day for 5 days. Gaussian noise is 
added to the synthetic data using the standard devia-
tions given in Table 2. 

Permeabilities at the 14 pilot points were initialized 
to a uniform value of 10-14 m2, yielding a 
heterogeneous permeability field (Figure 1b) that is 
substantially different from the true field (Figure 1a). 
Specifically, the area between the two boreholes is 
essentially homogeneous with no indication of 
dipping structures (the orientation parameter β was 
set to 90°, i.e., horizontal bedding). The infiltration 
and redistribution of water in this initial system leads 
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to flow rates and saturation patterns (and thus GPR 
arrival times) that deviate significantly from the 
measured data. 

Table 2.  Hydrological and Geophysical Data Used 
for Joint Inversion 

Description Number of  
Data Points 

Data 
Error 

Hydrological data 
Release rate from 
infiltration pond 6 daily averages 0.1 L/day 

Neutron probe water 
content measurements 
in two boreholes 

6 daily 
measurements at  

2×20 Points 
0.02 

Geophysical data 

GPR travel times 
6 daily surveys 

involving  
133 antenna pairs 

0.5 ns 

 
The Levenberg-Marquardt algorithm as implemented 
in iTOUGH2 is used to minimize the weighted least-
squares objective function (8). During the iterative 
inversion procedure, permeability modifier values at 
the pilot points are adjusted to capture local low- and 
high-permeability zones. At the same time, the 
parameters of the geostatistical model (orientation, 
correlation length, and anisotropy ratio) are updated 
along with porosity, reference permeability, and 
capillary strength. Adjusting these parameters affects 
the infiltration rate as well as the time-dependent 
saturation values measured by the neutron probe and 
reflected by the GPR data. Mismatches between the 
observed and calculated GPR data are further reduced 
by determining the unknown parameters of the petro-
physical models. 

An estimated permeability field obtained by the joint 
inversion process is shown in Figure 3a. The distri-
bution not only exhibits the random nature of subsur-
face heterogeneity, but also includes the more deter-
ministic, larger-scale features. Most importantly, the 
result is site-specific in that low- and high-perme-
ability regions are not randomly positioned (as would 
be the case if standard geostatistical simulation were 
employed). Because the inversion is conditioned on 
information contained in the hydrological and geo-
physical data, these features closely match the actual 
soil structure (see Figure 1a). Recall that no prior 
information about the permeability field was avail-
able for direct conditioning of the permeability field 
in the traditional, geostatistical sense. 

The resulting permeability field depends on the seed 
number used by the random number generator 
implemented in the geostatistical simulation program. 
Changing the seed number affects the small-scale 
random structure of the initial permeability field as 
well as any field created during the optimization 

process, as the statistical properties are updated.  To 
remove the impact of this unidentifiable component, 
multiple joint inversions were performed with differ-
ent seed numbers. The median of the resulting 
permeability fields is shown in Figure 3b. The salient 
features of the soil structure are well identified 
between the two boreholes, whereas the averaging 
process results in an unstructured effective perme-
ability in the regions where no geophysical data are 
available. This is also reflected by the standard 
deviation shown in Figure 3c. 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Permeability field estimated by joint 
inversion; (a) single realization; (b) 
median from 20 realizations; (c) standard 
deviation showing estimation uncertainty. 
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CONCLUSIONS 

Subsurface fluid flow and contaminant transport are 
highly affected by the spatial distribution of unsatu-
rated hydraulic properties as well as the in situ 
saturation distribution. Characterization of this distri-
bution at a given site is challenging as both random 
and deterministic subsurface features need to be 
identified. Standard parameter estimation methods 
assume that the soil structure is given, i.e., flow and 
transport properties are determined for predefined 
zones. Any error in the predefined soil structure is 
likely to lead to substantial estimation biases in the 
hydrogeologic parameters. 

We developed a joint inversion methodology that 
takes advantage of the high-resolution information 
contained in geophysical data, and combines it with 
process information contained in hydrological data. 
In addition, the soil structure is assumed to be 
unknown and parameterized using geostatistical 
concepts. The inversion process concurrently 
matches hydrological and geophysical data by jointly 
estimating hydrogeological, geostatistical, and 
petrophysical parameters. This approach provides the 
site-specific soil structure and its properties, captur-
ing both the random and systematic components of 
the heterogeneity. 

Additional numerical experiments and applications to 
field sites are being performed to examine the 
strengths and limitations of the proposed approach. 
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