
PROCEEDINGS, TOUGH Symposium 2003 
Lawrence Berkeley National Laboratory, Berkeley, California, May 12–14, 2003 

 - 1 - 

TOUGH2_MP: A PARALLEL VERSION OF TOUGH2  
 

Keni Zhang, Yu-Shu Wu, Chris Ding, and Karsten Pruess 
 

Earth Sciences Division 
Lawrence Berkeley National Laboratory 

Berkeley, CA, 94720, USA 
e-mail: kzhang@lbl.gov 

 
 

 
ABSTRACT 

TOUGH2_MP is a massively parallel version of 
TOUGH2. It was developed for running on 
distributed-memory parallel computers to simulate 
large simulation problems that may not be solved by 
the standard, single-CPU TOUGH2 code. The new 
code implements an efficient massively parallel 
scheme, while preserving the full capacity and 
flexibility of the original TOUGH2 code. The new 
software uses the METIS software package for grid 
partitioning and AZTEC software package for linear-
equation solving. The standard message-passing 
interface is adopted for communication among 
processors. Numerical performance of the current 
version code has been tested on CRAY-T3E and IBM 
RS/6000 SP platforms. In addition, the parallel code 
has been successfully applied to real field problems 
of multi-million-cell simulations for three-
dimensional multiphase and multicomponent fluid 
and heat flow, as well as solute transport. In this 
paper, we will review the development of the 
TOUGH2_MP, and discuss the basic features, 
modules, and their applications. 

INTRODUCTION 

TOUGH2 (Pruess, 1991) is a general-purpose 
numerical simulation program for modeling multi-
dimensional, multiphase, multicomponent heat and 
fluid flows in porous and fractured media. The code 
is written in standard ANSI FORTRAN 77 and in a 
modular structure. TOUGH2_MP was developed 
based on TOUGH2 version 1.4 (Wu et al., 1999).  
 
The parallel prototype scheme for the TOUGH2 code 
was first developed by Elmroth et al. (2001).  Zhang 
et al. (2001) implemented more modules, and further 
optimized the code for solving extremely large 
simulation problems by improving memory use and 
computation efficiency. The current version includes 
four modules: EOS2, EOS3, EOS9, and T2R3D. It 
has been successfully applied to real-field large-scale 
simulation problems (Wu et al., 2002).  
 
To parallelize the TOUGH2 code, a new massively 
parallel computing method for conducting large-scale 
multiphase and multicomponent reservoir simulation 
was developed. The method uses the METIS 

software package (Karypsis and Kumar, 1998) for 
partitioning the unstructured computational domain, 
the AZTEC software package (Tuminaro et al., 1999) 
for solving linear equations, and the standard 
message-passing interface (MPI, Message Passing 
Interface Forum, 1994) for communication among 
processors. The primary objective of the new 
development is to present a machine- or platform-
independent parallel algorithm that can be easily 
implemented into a mainframe supercomputer, a 
multiprocessor workstation, or a cluster of PCs or 
workstations. Secondly, this work is intended to 
overcome numerical problems with the efficiency 
and robustness characteristic of the developed 
parallel-computing technology for handling severely 
nonlinear problems. These goals are achieved by 
integrating and optimizing the following procedures: 
(1) efficient domain partitioning; (2) parallel 
Jacobian matrix calculations; (3) parallel-solving 
linearized equation systems; (4) fast communication 
and data exchange between processors; and (5) 
efficient memory sharing among processors.   
 
This paper reviews this parallel version of the 
TOUGH2 family of codes and demonstrates its 
applications to large-scale, real-world simulation 
problems. 

DEVELOPMENT OF THE TOUGH2_MP 

The numerical scheme of the TOUGH2 code is based 
on the integral finite difference (IFD) method 
(Narasimhan and Witherspoon, 1976). Conservation 
equations involving air, water, and chemical 
components as well as thermal energy are discretized 
in space using the IFD method. Time is discretized 
fully implicitly using a first-order backward finite-
difference scheme. The resulting discretized finite-
difference equations for mass and energy balances 
are nonlinear and are solved simultaneously using the 
Newton/Raphson iterative method.  
 
The TOUGH2_MP is implemented with dynamic 
memory management, modules, array operations, 
matrix manipulation, and other FORTRAN 90 
features. Some important modifications to the 
original TOUGH2 code are also made in the time-
step looping subroutine. This subroutine now 



 - 2 - 

  

provides general control of problem initialization, 
grid partitioning, data distribution, and memory 
requirement balancing among all processors (in 
addition to time stepping and output options). In the 
following sections, we will discuss the most 
important implementations in the parallel code, 
including domain partitioning, distribution of 
memory requirements, parallel assembly of Jacobian 
matrix, parallel solving of linear equations, and 
message passing. 

Domain Partitioning and Gridblock Reordering  
Developing an efficient and effective method for 
partitioning unstructured grid domains is a first and 
critical step for a successful parallel scheme. To 
obtain optimal performance, the partitioning 
algorithm should ideally take the following five 
issues into account: (1) Evening the computational 
load balance; (2) Minimizing the average (or total) 
communication volume; (3) Evening the load balance 
in communication volume; (4) Minimizing the 
average (or total) number of neighboring processors; 
(5) Evening the load balance in number of 
neighboring processors. To find an optimal trade-off 
between these five issues, computer system 
characteristics, such as floating-point performance 
and bandwidth and latency of the communication 
subsystem, must be taken into account. Because this 
is a very complex problem, commonly used 
algorithms and software for partitioning large grids 
do not generally take all these five issues into 
account. The current practice typically finds a trade-
off between computation load balance and low total 
communication volume, even though they may not be 
theoretically optimal. More discussion of these issues 
is given in Elmroth (2000). 
 
In a TOUGH2 simulation, a model domain is 
represented by a set of three-dimensional gridblocks 
(or elements) and the interfaces between any two 
gridblocks are represented by connections. The entire 
connection system of gridblocks is treated as an 
unstructured grid. From the connection information 
of a gridblock, an adjacency matrix can be 
constructed. The adjacency or connection structure of 
a model grid is stored in a compressed storage format 
(CSR). Figure 1a shows the connection of a 12-
element domain; Figure 1b illustrates its 
corresponding CSR-format arrays.  
 
We utilize three partitioning algorithms of the 
METIS package (version 4.0) (Karypsis and Kumar, 
1998) for partitioning a grid domain. The three 
algorithms are here denoted as the K-way, the VK-
way, and the Recursive partitioning algorithms. K-
way is used for partitioning a global mesh (graph) 
into a large number of partitions (more than 8). The 
objective of this algorithm is to minimize the number 
of edges that straddle different partitions. If a small 

number of partitions are desired, the Recursive 
partitioning method, a recursive bisection algorithm, 
should be used. VK-way is a modification of K-way, 
and its objective is to minimize the total 
communication volume. Both K-way and VK-way are 
multilevel partitioning algorithms.    

1

2 3

4 5

6

7

8
9

10 11

12

(a) A 12-elements domain partitioning on 3 processors

(b) CSR format

Processor 0

Processor 2

Processor 1

Elements 1 2 3 4 5 6 7 8 9 10 11 12
xadj 1 2 5 8 10 12 14 16 18 20 23 26 27
adj 2 1,3,7 2,4,10 3,5 4,6 5,11 2,8 7,9 8,10 3,9,11 6,10,12 11

 
Figure 1. An example of domain partitioning and 

CSR format for storing connections. 

 
Figure 1a shows a scheme for partitioning a sample 
domain into three parts. Gridblocks are assigned to 
particular processors through partitioning methods 
and reordered by each processor to a local index 
ordering. Elements corresponding to these blocks are 
explicitly stored in the processor and are defined by a 
set of indices referred to as the processor’s update 
set. The update set is further divided into two 
subsets: internal and border. Elements of the internal 
set are updated using only the information on the 
current processor. The border set consists of blocks 
with at least one edge to a block assigned to another 
processor. The border set includes blocks that would 
require values from other processors to be updated. 
The set of blocks not in the current processor, but 
needed to update components in the border set, is 
referred to as an external set.  Table 1 shows the 
partitioning results for the sample problem presented 
in Figure 1a.  
 
Local numbering of gridblocks is carried out to 
facilitate the communication between processors. The 
numbering sequence is internal blocks, followed by 
border blocks, and finally by the external set. In 
addition, all external blocks from the same processor 
are in consecutive order (see Table 1).  
 
Only nonzero entries of a submatrix for a partitioned 
mesh domain are stored in the processor. Each 
processor stores only the rows that correspond to its 



 - 3 - 

  

update set. These rows form a submatrix whose 
entries correspond to variables of both the update set 
and the external set defined on this processor.  

Table 1.  Example of domain partitioning and local 
numbering. 

Update  
Internal Border 

 
External 

Gridblocks       1 2    3  4 5   7  10  
PE0 Local 

Numbering 
      1          2    3  4       5   6   7 

Gridblocks 8     9 7   10 2   3  11  
PE1 Local 

Numbering 
1     2         3     4         5   6   7 

Gridblocks 6    12 5   11 4  10  
PE2 Local 

Numbering 
1     2         3    4          5   6 

 

Organization of Input and Output Data  
The input data include hydrogeologic parameters and 
constitutive relations of domain media, such as 
absolute and relative permeability, porosity, capillary 
pressure, thermophysical properties of fluids and 
rock, and initial and boundary conditions of the 
system. Other processing requirements include 
specification of space-discretized geometric 
information (grid) and various program options (such 
as computational and time-stepping parameters). In 
general, a large-scale, three-dimensional simulation 
requires at least several gigabytes of memory, and the 
memory requirements should be distributed to all 
processors at input.  
 
To make efficient use of the memory of each 
processor (considering that each processor has 
limited memory available), the input data files for the 
TOUGH2 simulation are organized in sequential 
format.  There are two large groups of data blocks 
within a TOUGH2 mesh file, one with dimensions 
equal to the number of gridblocks and the other with 
dimensions equal to the number of connections 
(interfaces). Large data blocks are read one by one 
through a temporary full-sized array and then 
distributed to PEs (processing elements or 
processors). This method avoids storing all input data 
in a single PE (which may be too small). Other small-
volume data, such as simulation control parameters, 
are duplicated on all PEs. 
 
Initialization of the parallel code requires full-
connection information, for such tasks as domain 
partitioning and local-connection index searching. 
These parts can exhaust the memory requirement 
when solving a large problem. Since the full-
connection information is used only once at the 
beginning of a simulation, it may be better to handle 
these tasks in a preprocessing procedure. 

Parallel Assembly of Jacobian Matrix  
In the TOUGH2 formulation, the discretization of 
mass and energy conservation equations in space and 
time using the IFD leads to a set of strongly coupled 
nonlinear algebraic equations, which are solved by 
the Newton method. The resulting system of linear 
equations is then solved using an iterative linear 
solver with different preconditioning procedures. 
 
The Jacobian matrix needs to be recalculated at each 
Newton iteration, and thus computational efforts may 
be extensive for a large simulation. In the parallel 
code, the assembly of the linear equation system is 
shared by all the processors, and each processor is 
responsible for computing the rows of the Jacobian 
matrix that correspond specifically to blocks in the 
processor’s own update set. Computation of the 
elements in the Jacobian matrix is performed in two 
parts. The first part consists of computations relating 
to individual blocks (source/sink terms). Such 
calculations are carried out using the information 
stored on the current processor; no communications 
with other processors are needed. The second part 
includes all computations relating to the connections 
or flow terms. Calculation of flow terms at elements 
in the border set requires information from the 
external set, which in turn requires communication 
with neighboring processors. Before performing 
these computations, an exchange of relevant primary 
and secondary variables is necessary. For elements 
corresponding to border set blocks, one processor 
sends these elements to other related processors, 
which receive these elements as external blocks. 
 
The Jacobian matrix for local gridblocks in each 
processor is stored in the distributed variable block 
row (DVBR) format, a generalization of the VBR 
format (Carney et al., 1993). All matrix blocks are 
stored row-wise, with the diagonal blocks stored first 
in each block row. Scalar elements of gridblocks are 
stored in column major order. The data structure 
consists of a real vector and five integer vectors, 
forming the Jacobian matrix. Detailed explanation of 
the DVBR data format can be found in Tuminaro et 
al. (1999).  

Parallel Solving of Linear Equations 
The linearized equation system arising at each 
Newton step is solved using an iterative linear solver 
from the Aztec package (Tuminaro et al., 1999). We 
can select different solvers and preconditioners from 
the package. The available solvers include conjugate 
gradient, restarted generalized minimal residual, 
conjugate gradient squared, transposed-free quasi-
minimal residual, and bi-conjugate gradient with 
stabilization methods. The work of solving the global 
linearized equation is shared by all processors, with 



 - 4 - 

  

each processor responsible for solving its own 
portion of the partitioned domain equations.  
 
During a simulation, time steps are automatically 
adjusted (increased or reduced) depending on the 
convergence rate of iterations. In the parallel version 
code, the time-step size is calculated at the first 
processor (master processor, named PE0) after 
collecting necessary data from all processors. The 
convergence rates may be different in different 
processors. Only when all processors reach stopping 
criteria will the time march to the next time step. At 
the end of a time step or a simulation, the solutions 
obtained from all processors are then transferred to 
the master processor for output.  

Communication Among Processors 
Communication of data between processors working 
on neighboring/connected gridblocks, partitioned into 
different domains, is an essential component of the 
parallel algorithm. Moreover, global communication 
is also required to compute norms of vectors, 
contributed by all processors, for checking the 
convergence. In addition to the communication 
taking place inside the Aztec routine to solve the 
linear equation system, communication between 
neighboring processors is necessary to update 
primary and secondary variables (for example, a new 
Jacobian matrix is calculated for each Newton 
iteration). A subroutine is used to manage data 
exchange between processors. When the subroutine is 
called by a processor, an exchange of vector elements 
corresponding to the external set of the gridblocks is 
performed. During time stepping or Newton iteration, 
exchange of external variables is also required for the 
vectors containing the primary and secondary 
variables. More discussion on the scheme used for 
data exchange is given in Elmroth et al. (2001). 

 
All data input and output are carried out through the 
master processor, while the most time-consuming 
efforts (assembling the Jacobian matrix, updating 
thermophysical parameters, and solving the linear 
equation systems) are distributed to all processors. In 
addition, the memory requirements are also 
distributed to all processors. Distributing both 
computing and memory requirements is essential for 
solving large-scale field problems. 

APPLICATION EXAMPLES 

Five examples are presented in the following sections 
to demonstrate applications of the TOUGH2_MP and 
the computational performance of the code. 

Unsaturated Flow Simulation 
The first problem is based on the site-scale model 
developed for investigations of the unsaturated zone 
at Yucca Mountain, Nevada (Wu et al., 1999). The 

problem involves using a much-refined grid to 
evaluate the numerical performance of the 
TOUGH_MP. The problem concerns steady-state 
unsaturated flow through fractured rock under 
ambient conditions, using a 3-D, unstructured grid. A 
dual-permeability approach is applied to handle 
fracture-matrix interactions. Model domain and the 
numerical grid encompass approximately 40 km2 of 
the Yucca Mountain area. There are approximately 
9,900 blocks per grid layer and about 60 
computational grid layers vertically from land surface 
to water table. This results in a total of 1,100,000 
gridblocks for fractures and matrix, and 4,050,000 
connections. A distributed-memory Cray T3E-900 
computer was used for this simulation example. This 
simulation was run as a single-phase flow (water with 
Richards’ equation using the EOS9 module of 
TOUGH2). 
 

0

1 00

2 00

3 00

4 00

5 00

6 00

0 1 00 2 00 3 00 4 00 5 00 6 00

Num be r of pr oce s s ors

S
p

e
e

d
u

p

 
Figure 2. Speedup for the 3-D unsaturated flow 

simulation 

 
In performance evaluation, the unsaturated flow 
problem was solved for 200 time steps using 32, 64, 
128, 256, and 512 processors, respectively. Because 
of the automatic time-step adjustment, based on the 
convergence rate of the iteration process, the 
cumulative length of simulation times over 200 time-
steps with different numbers of processors may be 
slightly different. However, the computational targets 
and efforts are similar, and comparing the 
performance of different numbers of processors with 
the same number of time steps is reasonable for 
evaluating parallel-computing efficiency.  
 
Figure 2 illustrates the speedup of the code versus 
processor numbers used for a 200-time-step 
simulation. The speedup is defined as relative to the 
performance of 32 processors as 32T32/Tp, where Tp 
denotes the total execution time using p processors. 
Speedup factors using 32 to 64, 128, 256, and 512 
processors are 2.63, 2.16, 1.87, and 1.54, 
respectively. Super-linear speedup appears when the 
processor number doubles from 32 to 64, and to 128 
with a speedup of 2.63 and 2.16. The overall speedup 



 - 5 - 

  

for 512 processors is 523. This behavior was 
extensively analyzed, including performance results 
for the different parts of the execution, for smaller 
problems in Elmroth et al. (2001). The computational 
performance for this example indicates that the 
parallel scheme implemented in TOUGH2_MP code 
is very efficient. 

Two-Phase Fluid and Heat Flow  
The second example is used to evaluate the numerical 
performance of the TOUGH2_MP for highly 
nonlinear, two-phase fluid and heat flow in fractured 
rock. The model domain and numerical grid for this 
problem are the same as the previous unsaturated 
flow case. The difference is that the current problem 
models flows of water, gas, and heat in a two-active- 
phase system using the multicomponent EOS3 
module. The previous example handles only one 
active phase, using Richards’ equation. Therefore, 
there are three equations per gridblock, and a total of 
3 × 1,075,522 equations need to be solved per 
Newton iteration for the simulation. A distributed-
memory IBM RS/600 SP was used for simulation.  

Figure 3. Speedup for the 3-D site-scale model of 
nonisothermal two-phase fluid and heat 
flow as a function of number of 
processors used 

 
Figure 3 presents the speedup of the parallel-code 
simulation versus processor numbers used in this 
problem for a 1,000-year simulation. Similarly, the 
speedup is defined to be relative to the performance 
with 16 processors (i.e., equal to 16 for using 16 
processors). Figure 3 also shows a better than linear 
speedup until the number of processors reaches 512. 
However, the speedup curve (as shown in Figure 3) 
for more than 512 processors becomes flat, which is 
very different from Figure 2. This deterioration in 
speedup performance using a larger number of 
processors results primarily from the increasing 
communication in the linear solver. Since this 
performance test is performed for a relatively short 

simulation time, the one-time expenses for the input, 
distribution, and initialization phases, also contribute 
to this effect, because this part is relatively large for 
this problem. For example, the one-time expense 
takes 35% of the total execution time in the case of 
using 1,024 processors, compared to 8.5% for 16 
processors. Nevertheless, the effect of this one-time 
expense in the input, distribution, and initialization 
phase will diminish as total simulation times or time 
steps increase. 

Liquid Flow Through Unsaturated Fractures  
The third application is for analysis of flow focusing 
and discrete flow paths within the unsaturated zone 
of the Yucca Mountain site. In particular, the model 
is used to assess the frequency and flux distributions 
of major water-bearing flow paths from the bottom of 
the Paintbrush nonwelded (PTn) unit, a unit 
immediately above the Topopah Spring welded 
(TSw) unit. Flow focusing along the preferential 
paths or well-connected fracture networks may play 
an important role in controlling patterns of 
percolation through highly fractured tuffs. To 
quantify flow-focusing behavior, we developed a 
stochastic fracture-continuum model to incorporate 
fracture data measured from the welded tuffs and to 
study flow allocation mechanisms and patterns. 
Fracture permeability of the simulation domain is 
prescribed stochastically for its spatial distribution, 
conditioned using measured air-permeability data. 
 
The model domain of the 3-D flow problem is a 50 m 
× 50 m × 150 m parallelepiped, with the upper 
boundary at the bottom of the PTn and the lower 
boundary at the repository horizon. The horizontal 
dimension was considered sufficient because the 
correlation length for variability in fracture 
permeability and spacing is approximately 1 m. The 
150 m vertical extent of the model corresponds to an 
average distance from the interface between the PTn 
and TSw units to the repository horizon. The model 
covers five hydrogeological subunits from TSw31 to 
TSw35. The bottom of the PTn was chosen as the 
upper boundary because this unit behaves as a porous 
medium, leading to more uniform percolation flux to 
the units below.  
 
A refined grid is generated with each gridblock size 
of 0.5 m × 0.5 m × 0.75 m, in the same order in 
dimension as observed for fracture spacing. Such a 
refined grid captures flow behavior through 
individual discrete fractures. This leads to 2 × 106 
gridblock elements and 6 × 106 connections with the 
3-D grid. 
 
Table 2 presents a summary of execution times for 
two steady-state simulations of different boundary 
conditions (infiltration rates on the top boundary are 
1 mm/year and 25 mm/year, respectively). The 

0

100

200

300

400

500

600

0 200 400 600 800 1000
Processor number

S
pe

ed
up



 - 6 - 

  

simulations were run on a Cray T3E-900 machine. 
Table 2 shows that it took only about two hours to 
complete a two-million-gridblock simulation, 
demonstrating the efficiency of the parallel 
implementation. In addition, Table 2 shows that CPU 
times used in calculations of secondary parameters 
and assembly of the Jacobian are longer than those 
used in solving linear equations for this problem. 
This is very different from what we observed using a 
single-processor simulator with the Newton iteration 
scheme. This is because of the increase in overheads 
caused by communication between processors during 
setup of the linear equation system. Note that the 
longer execution times for the case of 1 mm/yr 
infiltration (compared with 25 mm/yr in Table 2) 
result from lower infiltration, leading to drier, 
unsaturated fractures or a more nonlinear problem. 
Therefore, a smaller infiltration case takes in general 
a longer simulation time for the example. 
 
Table 2.   Summary of execution times (seconds) used 
for two simulations of the 3-D flow-focusing problem, 

using 128 processors. 

Simulation 
scheme 

1 mm/yr 
Infiltration 

25 mm/yr 
infiltration 

Input, distribution, and 
initialization 

218 218 

Update parameters and 
setup Jacobian matrix 

 
4865 

 
4655 

Solve linear equations 2109 1194 
Total execution time 8111 6960 

Transport Simulation 
This example demonstrates the application and 
efficiency of the parallel code for modeling 3-D 
tracer/radionuclide transport within the unsaturated 
zone at Yucca Mountain, using the steady-state, 3-D 
flow field of the first example. In this case, the 
calculation was run to 2,000,000 years using 64 
processors on the distributed-memory IBM RS/6000 
SP computer.  

The tracer is treated as a conservative component. 
Mechanical dispersion effects through the fracture-
matrix system are ignored, and a constant molecular 
diffusion coefficient of 3.2 × 10-11 (m2/s) is used for 
matrix diffusion. The transport simulation is run to 
2,000,000 years, with a constant initial concentration 
source released at the repository from fracture or 
matrix blocks. 

Table 3 presents parallel-code performance in 
simulating radionuclide transport of the initial 
radionuclide release from fractures. A comparison of 
the execution times, spent in different portions during 
the two-million year simulation (shown in Table 3), 
indicates that solving the linear equations takes a 
much smaller percentage (17%) of the total 

simulation time than that for the flow simulation. 
This is because the transport problem becomes 
simply linear with the computational options 
selected.  

Table 3.   Summary of execution times and iterations 
for the transport simulation with fracture release 

using 64 processors. 

Input, distribution, and initialization (s) 139.7 

Update thermophysical parameters, 
Jacobian matrix (s) 

333.7 

Solve linear equations (s) 124.5 

Total execution time (s) 727.7 

Total Newton iterations 118 

Total time steps 118 
Total Aztec iterations/PE of solving linear 
equations 

1,096 

 

Unsaturated Discrete Fracture Flow Simulation 
This example pertains to investigating flow-focusing 
phenomena in a large-scale discrete-fracture network, 
constructed using field data collected from the 
unsaturated zone of Yucca Mountain, Nevada. We 
constructed the two-dimensional, vertical-cross-
section fracture network using fracture mapping data, 
including field-measured fracture density, trace 
lengths, and orientations. For simplicity, each 
fracture in the network is randomly distributed. 
However, generation of the fracture network is 
governed by statistical information from field 
measurement data. The statistical properties of the 
generated fracture network should reflect the 
corresponding properties of fracture distribution in 
the study domain. This generated two-dimensional 
fracture network for an area of 100m×50m contains 
more than 20,000 fractures. 
 
The fracture network is discretized into 126,432 
linear elements that have a maximum length of 1 m. 
The elements have a total connection of more than 
300,000. The intersection point of any two fractures 
is treated as an element. The volume of these 
intersection elements is possibly extremely small.  In 
fact, the volume of the fracture elements may vary 
over several orders of magnitude.  
 
Flow simulations are carried out by introducing water 
infiltration at the top of the fracture network. Because 
of the strong heterogeneities and complex fracture 
connections present in fractures along the top 
boundary, it is impossible to simply distribute desired 
infiltration water uniformly over all fractures 
crossing the top boundary. In response to this 
limitation, we accomplish infiltration by attaching an 



 - 7 - 

  

additional gridblock to the top of the fracture 
network. The entire top boundary of the network is 
connected to this single block, and a prescribed 
infiltration rate is applied to it.  As water is injected 
into this block, water eventually flows into the 
fractures beneath the block. This outflow will in 
general partition non-uniformly among the fractures. 
After a rapid initial transient, this infiltration block 
will reach a steady flow condition. In this way, a 
constant infiltration rate is applied to the top 
boundary of the fracture network. Side boundaries 
are considered impermeable, and a free-drainage 
condition is imposed at the bottom boundary.  

x(m)

z(
m

)

0 25 50 75 100

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Infiltration=5mm/y

 
Figure 4. Steady-state flux distribution in the 

fractures. Each color represents a one-
order-of-magnitude difference in flux 
(from high to low: blue, green, red, and 
grey).  

 
Steady-state unsaturated water flow through the 
fracture network is simulated using the 
TOUGH2_MP. Because randomly distributed 
fractures can lead to an extremely complex element 
connection system, and elements have large 
differences in volume, numerical difficulties can 
arise, requiring intensive computational work. All 
computations are conducted using 64 processors on 
an IBM SP RS/6000 supercomputer. This simulation 
is very time consuming. Without using the parallel 
code, we would have difficulty obtaining a steady-
state solution for this simulation. Figure 4 shows the 
simulation result of steady-state flux distribution in 
the fracture network. 

SUMMARY AND CONCLUSIONS 

This paper reviews the development of 
TOUGH2_MP code and presents application 
examples for the code to large-scale simulations. The 
code was written in Fortran 77 and 90, using MPI for 

interprocessor communication. It uses the METIS 
software package for partitioning the unstructured 
computational domain and the AZTEC software 
package for solving linear equations. In 
TOUGH2_MP, both computing time and memory 
requirements are distributed among and shared by all 
processors of a multi-CPU computer or cluster. The 
best numerical performance has been achieved by 
integrating and optimizing the following procedures: 
(1) efficient domain partitioning; (2) parallel 
assembly of the Jacobian matrix; (3) parallel 
preconditioned iterative linear solving; (4) fast 
communication and data exchange between 
processors; and (5) efficient utilization of the 
processors’ aggregate memory.   
 
Five application examples of the TOUGH2_MP code 
have been presented. These examples are run on a 
Cray T3E or IBM RS/600 SP system. Code 
performances are evaluated through modeling 
flow/transport in the unsaturated zone at Yucca 
Mountain, using different numbers of processors. 
Test results indicate that the overall performance of 
the parallel code shows significant improvement in 
both efficiency and ability in solving large-scale 
reservoir simulation problems. The major benefits of 
the code are that it (1) allows for accurate 
representation of reservoirs with sufficient resolution 
in space, using refined grids, (2) allows for adequate 
description of reservoir heterogeneities, and (3) 
overcomes the limits on problem size and 
computational requirements experienced in large-
scale modeling studies that use conventional single-
CPU simulators. 

 

ACKNOWLEDGMENT 

The authors would like to Guoxian Zhang and Dan 
Hawkes for their review of this paper. This work was 
supported by the Laboratory Directed Research and 
Development (LDRD) program of the Ernest Orlando 
Lawrence Berkeley National Laboratory. The support 
is provided to Berkeley Lab through the U. S. 
Department of Energy Contract No. DE-AC03-
76SF00098. 

REFERENCES 

Carney S., M. Heroux, and G. Li, A Proposal for a 
Sparse BLAS Toolkit, Technical Report, Cray 
Research Inc., Eagen, MN, 1993. 
 
Elmroth E., On Grid Partitioning for a High 
Performance Groundwater Simulation Software, 
Engquist et al. (eds), Simulation and Visualization on 
the Grid, Springer-Verlag, Berlin, Lecture Notes in 
Computational Science and Engineering, No. 13, pp. 
221-233, 2000. 



 - 8 - 

  

Elmroth, E., C. Ding, and Y. S. Wu, High 
Performance computations for Large-Scale 
Simulations of Subsurface Multiphase Fluid and Heat 
Flow, The Journal of Supercomputing, 18(3), 233-
256, 2001. 
 
Karypsis, G. and V. Kumar, METIS. A Software 
Package for Partitioning Unstructured Graphs, 
Partitioning Meshes, and Computing Fill-Reducing 
Orderings of Sparse Matrices, V4.0.  Technical 
Report, Department of Computer Science, University 
of Minnesota, 1998. 
 
Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, International Journal of 
Supercomputing Applications and High performance 
Computing, 8(3-4), 1994. 
 
Narasimhan, T. N. and P. A. Witherspoon, An 
Integrated Finite Difference Method for Analyzing 
Fluid Flow in Porous Media, Water Resources 
Research, 12(1), pp. 57-64, 1976. 
 
Pruess K., TOUGH2 – A general-purpose numerical 
simulator for multiphase fluid and heart flow, 
Lawrence Berkeley Laboratory Report LBNL-29400, 
Berkeley, CA, 1991. 
 
Tuminaro R.S., M. Heroux, S.A. Hutchinson, and 
J.N. Shadid, Official Aztec user’s guide, Ver 2.1, 
Massively Parallel Computing Research Laboratory, 
Sandia National Laboratories, Albuquerque, NM, 
1999. 
 

Wu Y. S., C. Haukwa, and G.S. Bodvarsson,  A Site-
Scale Model for Fluid and Heat Flow in the 
Unsaturated Zone of Yucca Mountain, Nevada, 
Journal of Contaminant Hydrology, 38(1-3), 185-
217, 1999. 
 
Wu Y. S., C. Haukwa, and S. Mukhopadhay,  
TOUGH2 V1.4 and T2R3D V1.4 Verification and 
Validation Report, Rev. 00, Earth Sciences Division, 
Lawrence Berkeley National laboratory, 1999. 
 
Wu Y. S., K. Zhang, C. Ding, K. Pruess, E. Elmroth, 
and G. S. Bodvarsson, An efficient parallel-
computing method for modeling nonisothermal 
multiphase flow and multicomponent transport in 
porous and fractured media, Advances In Water 
Resources, 25,243-261, 2002 
 
Zhang K., Y. S. Wu, C. Ding, K. Pruess, and E. 
Elmroth, Parallel Computing Techniques for Large-
Scale Reservoir Simulation of Multi-Component and 
Multiphase Fluid Flow, Paper SPE 66343, 
Proceedings of the 2001 SPE Reservoir Simulation 
Symposium, Houston, Texas, 2001. 

 


