MODELING SUPERCRITICAL CO₂ INJECTION IN HETEROGENEOUS POROUS MEDIA

Christine Doughty and Karsten Pruess

Earth Sciences Division
E.O. Lawrence Berkeley National Laboratory
Berkeley, CA 94720, U.S.A.
e-mail: cadoughty@lbl.gov

ABSTRACT
We investigate the physical processes that occur during the sequestration of CO₂ in brine-bearing geologic formations using TOUGH2. An equation of state package that treats a two-phase (liquid, gas), three-component (water, salt, and CO₂) system is employed. CO₂ is injected in a supercritical state that has a much lower density and viscosity than the liquid brine it displaces. In situ, the supercritical CO₂ forms a gas-like phase, and also partially dissolves in the aqueous phase. Chemical reactions between CO₂ and rock minerals that could potentially contribute to mineral trapping of CO₂ are not included. The geological setting considered is a fluvial/deltaic formation that is strongly heterogeneous, making preferential flow a significant effect, especially when coupled with the strong buoyancy forces acting on the gas-like CO₂ plume. Key model development concerns include vertical and lateral grid resolution, grid orientation effects, and the choice of characteristic curves.

INTRODUCTION
The risks associated with increased concentrations of greenhouse gases in the atmosphere have prompted study of the feasibility of geological sequestration of carbon dioxide (CO₂) produced by power plants, refineries, and other industrial concerns that produce localized sources of CO₂. We investigate the physical processes that occur during the sequestration of CO₂ in brine-bearing geologic formations. Other potential sites for sequestration include coal beds and depleted oil and gas reservoirs. Among the motivations for using brine formations are their widespread availability and lack of competing uses. Brine formations associated with oil reservoirs often have the added advantages of being well characterized and in close proximity to CO₂ sources.

Several other recent studies (van der Meer, 1995; Pruess and Garcia, 2002; Pruess et al., 2003) have also investigated CO₂ sequestration in brine formations, but they have all employed rather idealized representations of the geology. The present paper is part of an on-going effort to investigate the impact of heterogeneity on the capacity of the subsurface to sequester CO₂ (Doughty et al., 2001; Doughty et al., 2002; Knox et al., 2003).

FLOW AND TRANSPORT PROCESSES
We employ TOUGH2 (Pruess et al., 1999) with the equation of state package ECO2, which treats a two-phase (liquid, gas), three-component (water, salt, and CO₂) system in the pressure/temperature regime above the critical point of CO₂ (\(P = 73.8 \text{ bars}, \ T = 31{\degree}\text{C} \)). ECO2 was adapted from EWASG (Battistelli et al., 1997), which treats the same components under sub-critical point conditions, and was designed for geothermal reservoir simulation. Supercritical CO₂ properties were taken from Altunin (1975), as implemented by Malkovsky (private communication, 1999). Although ECO2 may include temperature variations, we use it in isothermal mode here.

CO₂ is injected in a supercritical state that has a much lower density and viscosity than the liquid brine it displaces. In situ, the supercritical CO₂ partitions between an immiscible gas-like phase and dissolution in the aqueous phase. Chemical reactions between CO₂ and rock minerals that could potentially contribute to mineral trapping of CO₂ are not included. Salt may precipitate out of the brine, but the rock matrix itself is inert. Thus, chemical reactions between CO₂ and rock minerals that could potentially contribute to mineral trapping of CO₂ are not considered.

GEOLOGICAL SETTING AND MODEL DEVELOPMENT
The geological setting for our model is the fluvial/deltaic Frio formation in the upper Texas gulf coast (Galloway, 1982; Hovorka et al., 2001). We construct 3D models stochastically, with model layers derived from idealized representations of fluvial depositional settings including barrier bars (continuous very high-permeability sands), distributary channels (intermingled sands and shales, with a large high-permeability sand component), and...
shaley layers (predominantly low-permeability discontinuous shale lenses, interspersed with moderate-permeability sand), as shown in Figure 1. The program TproGS (Carle and Fogg, 1996, 1997; Fogg et al., 2001) constructs stochastic representations of individual layers consistent with the idealized representations. Each layer contains three material types, and the vertical sequence of layers is determined by analysis of well logs. Overall, permeability varies by nearly six orders of magnitude among material types, making preferential flow a significant effect, especially when coupled with the strong buoyancy forces acting on the gas-like CO₂ plume.

Figure 1. Idealized representations of fluvial depositional settings used by TproGS to generate stochastic permeability fields.

Figure 2. Well logs and interpretation of sequence of depositional settings for Umbrella Point model.

Two TOUGH2 models have been developed. The first, the Umbrella Point model, is based on the well logs shown in Figure 2. The model (Figure 3), is 1 km by 1 km by 100 m thick, and is intended to represent the scale on which CO₂ from a single power plant might be stored. The model is bounded above and below by closed boundaries, which represent continuous shale layers. Lateral boundaries are open (constant-pressure), to represent natural spill points of sequestration regions. Within the model, several discontinuous shaley layers exist that strongly retard flow. Table 1 summarizes the material properties used in the model. Due to a lack of data on two-phase flow properties of supercritical CO₂ and liquid brines, generic characteristic curves are used: van Genuchten (1980) for liquid relative permeability and capillary pressure and Corey (1954) for gas relative permeability.

As in most 3D model applications, we must balance the need for adequate spatial resolution with a computationally manageable number of grid blocks. Grid-block thicknesses vary with depth to resolve geologic layering, while the lateral grid spacing is uniform. In our basic grid, one model layer represents each of the ten depositional layers. Alternative grids that provide two or three model layers per depositional layer have also been developed.

Table 1. Material properties for Umbrella Point model. For each depositional setting, framework facies is shown in bold.

<table>
<thead>
<tr>
<th>Depositional Setting</th>
<th>Material</th>
<th>Permeability (md)</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrier bar (B)</td>
<td>Barrier core</td>
<td>700</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Washover</td>
<td>200</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Shale</td>
<td>0.001</td>
<td>10</td>
</tr>
<tr>
<td>Distributary channel (D)</td>
<td>Channel</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Splay-2</td>
<td>250</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Shale</td>
<td>0.001</td>
<td>10</td>
</tr>
<tr>
<td>Interdistributary bayfill (BF)</td>
<td>Channel</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Splay-1</td>
<td>150</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Shale</td>
<td>0.001</td>
<td>10</td>
</tr>
</tbody>
</table>
The second model (Figure 4) is 440 m by 440 m by 12 m thick, and represents the site of an upcoming pilot test of CO₂ sequestration in the Frio formation at the South Liberty field near Houston, Texas. As in the first model, closed upper and lower boundaries represent continuous shale layers, but in this model, three of the four lateral boundaries are also closed to represent the edges of a fault block. The model includes three depositional settings, each composed of multiple grid layers. In the deepest depositional setting, an upward-coarsening sand, permeability varies with depth as well as facies. Table 2 summarizes the material properties used in the model. Our basic South Liberty model uses the same generic characteristic curves as the Umbrella Point model, but characteristic curves believed to be more representative of local conditions have also been employed.

In this pilot-scale model, vertical grid spacing varies to represent geology. Lateral grid spacing is also variable, with finer resolution around injection and monitoring well locations. Unlike the Umbrella Point model, which has horizontal layers, here layers dip at 15 degrees, with the open end of the model in the down-dip direction. Hence, buoyancy flow plays two important roles, moving CO₂ to the top of the formation and also up-dip toward the closed end of the fault block. The combination of these buoyancy-driven movements and the radial flow away from the injection well provides a challenge for a rectangular grid. Our basic model uses five-point differencing, but an alternative model using nine-point differencing for lateral connections has also been developed.

Table 2. Material properties for South Liberty model. For each depositional setting, framework facies is shown in bold.

<table>
<thead>
<tr>
<th>Depositional Setting</th>
<th>Material</th>
<th>Permeability (md)</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributary channel (D)</td>
<td>Channel-2</td>
<td>286</td>
<td>114</td>
</tr>
<tr>
<td>Splay-2</td>
<td>78</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>Shale</td>
<td>0.12</td>
<td>0.012</td>
<td>5</td>
</tr>
<tr>
<td>Thin shale layer (BF)</td>
<td>Channel-1</td>
<td>63</td>
<td>16</td>
</tr>
<tr>
<td>Splay-1</td>
<td>17</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Shale</td>
<td>0.12</td>
<td>0.012</td>
<td>5</td>
</tr>
<tr>
<td>Upward-coarsening sand (B)</td>
<td>Barrier core</td>
<td>63-286</td>
<td>16-191</td>
</tr>
<tr>
<td>Washover</td>
<td>17-78</td>
<td>4-52</td>
<td>15-21</td>
</tr>
<tr>
<td>Shale</td>
<td>0.12</td>
<td>0.012</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 4a. Cut-away views of South Liberty model.

Figure 4b. Plan view of depositional settings.
SIMULATION RESULTS

For both models, we begin with single-phase liquid brine under hydrostatic, isothermal conditions, and inject supercritical CO₂ through a single injection well screened over the lower half of the model.

Umbrella Point Power Plant Model

CO₂ is injected at a rate of 680,000 metric tons per year (21.6 kg/s) for a period of 20 years, then the system is monitored for an additional 80 years to watch the evolution of the CO₂ plume. This injection rate represents about half of the CO₂ output from a 1,000 MW gas-fired power plant. Initial formation conditions are \(P = 188 \) bars, \(T = 78^{\circ} \)C, and TDS = 100,000 ppm. Under these conditions, CO₂ has a density of 577 kg/m³ and a viscosity of \(4.4 \times 10^{-5} \) Pa.s.

Figure 5 shows a time sequence of spatial distributions of CO₂ in the immiscible gas-like phase during the injection period. Strongly preferential flow occurs, as buoyant CO₂ finds gaps in the shale layers and moves into the upper half of the model.

Comparison of Figures 5 and 6 shows that after one year, the fine-grid model appears to contain more CO₂. To quantify CO₂ sequestration, we define the capacity factor \(C \) as the fraction of a specified volume of the subsurface containing CO₂. Capacity factor can be broken down by phase: \(C = C_g + C_l \), where \(C_g \) is the fraction of the subsurface containing CO₂ in the gas-like phase and \(C_l \) is the fraction containing CO₂ dissolved in the aqueous phase. We have

\[
C_g = <S_g \phi>
\]

\[
C_l = <S_l x CO_2 / \rho_l \phi>
\]

where \(S_g \) and \(S_l \) are gas and liquid saturations, respectively.
respectively, ϕ is porosity, $X_{CO_2}^{\text{aq}}$ is the mass fraction of CO$_2$ dissolved in the aqueous phase, ρ_l and ρ_g are liquid- and gas-phase densities, respectively, and the angle brackets indicate an average over the specified volume. For the Umbrella Point model, the averaging volume is simply the model volume. For sequestration sites with no natural boundaries, defining the averaging volume may require careful deliberation to enable meaningful capacity comparisons to be made (Doughty et al., 2002).

Figure 7 shows C versus time for the basic and fine-grid models. Note that C increases linearly until the first CO$_2$ reaches the outer boundary of the model (the spill point) at about 2 years. Somewhat later, a quasi-steady state is reached in which the injection rate at the well nearly balances CO$_2$ flow out the lateral model boundaries. Figure 7 shows that the amount of CO$_2$ dissolved in the aqueous phase is not very sensitive to the grid resolution, but significantly more gas-like CO$_2$ remains in the fine-grid model where intra-sand channel buoyancy flow can be resolved.

Figure 8 shows gas-phase CO$_2$ plume development for the basic South Liberty model with a sequence of plan views of the top of the upward-coarsening sand, which is the top of the injection interval. During the 20-day injection period, the distribution of CO$_2$ is nearly radially symmetric around the injection well, but after injection ends, the buoyant flow of CO$_2$ updip becomes obvious. After one year, the bulk of the plume has moved updip of both the injection and monitoring wells. The irregular shape at the leading edge of the plume reflects flow around a shaley region (Figure 4).

South Liberty Pilot Site Model

CO$_2$ is injected at a rate of 250 metric tons per day (2.9 kg/s) for a period of 20 days, then the simulation continues with no injection for one year to watch the evolution of the CO$_2$ plume. Initial formation conditions are $P = 150$ bars, $T = 64^\circ$C, and TDS = 100,000 ppm. Under these conditions, CO$_2$ has a density of 565 kg/m3 and a viscosity of 4.310$^{-5}$ Pa·s. This injection schedule is comparable to what is planned for the pilot test, where the high costs of trucked-in CO$_2$ and field time must be balanced against the goal of injecting enough CO$_2$ to be able to monitor it in the subsurface. In particular, there will be one monitoring well located about 30 m updip of the injection well (labeled “SGH-4” and “new well”, respectively, in Figure 4). One of the tasks of numerical modeling is to predict when injected CO$_2$ will arrive at the monitoring well.
During the injection period, the plan view of the CO$_2$ plume actually looks more diamond-shaped than circular (Figure 8, top row). The model has homogeneous properties close to the injection well (Figure 4), so the lack of radial symmetry may be due to grid effects. To investigate the role of the grid, two alternative models were developed.

The diamond-shape of the early CO$_2$ plume is a hallmark of the preferential flow that typically arises along the axis directions in a rectangular grid that uses five-point differencing for lateral connections (i.e., four lateral connections for each grid block, one to each of its nearest neighbors). This problem can be ameliorated by using nine-point differencing for lateral connections (i.e., eight lateral connections for each grid block, the usual four nearest neighbors, plus the four nearest diagonal neighbors).

The implementation of nine-point differencing used here (K. Pruess, private communication, 1996) requires a laterally regular grid with square grid blocks. In the original grid, lateral spacing ranges from 2 m at the wells, to about 60 m near the closed edges of the model, to several hundred meters to the southwest, where the model extends far enough to act unbounded (Figure 4). A new grid with a uniform lateral spacing of 7.5 m was created. This grid will not resolve near-well behavior as well as the original grid and it has a constant-pressure boundary rather than extending far in the down-dip direction – a concession to size limitations of the computer being used for the simulations.

Figures 9 and 10 show plume development for the uniform grid with five-point and nine-point differencing for lateral connections, respectively. During the injection period, nine-point differencing produces a more circular plume, as expected. An unanticipated result is that during the post-injection period, the added lateral flow enabled by nine-point differencing slightly increases updip translation of the plume.

Comparison to the plume resulting from the non-uniform grid (Figure 8) makes it apparent that the preferential flow in the grid axis directions is exacerbated by the coarsening of the grid away from the wells, which further distorts the shape of the plume by enhancing spreading due to numerical dispersion. Spreading due to phase dispersion is an important aspect of plume evolution; it is undesirable to mask this process with spurious numerical effects. Moreover, with the more accurate plume depiction afforded by a finer grid, subtle irregularities in the plume shape may be attributed to geological features. In particular, the small indentations in the lower left quadrant of the plume, visible starting at 20 days, reflect gaps in the overlying thin shale layer, where CO$_2$ is leaking into the upper half of the model (see Figure 4).

Figure 9. Time sequence of S_g distributions at top of upward-coarsening sand in South Liberty model with five-point differencing, a uniform grid, and generic characteristic curves.

Figure 10. Time sequence of S_g distributions at top of upward-coarsening sand in South Liberty model with nine-point differencing, a uniform grid, and generic characteristic curves.
Recent studies (M. Holtz, private communication, 2002) have indicated that typical characteristic curves for the sand facies of the Frio formation in the vicinity of the South Liberty field have somewhat different features than the generic characteristic curves used thus far. Figure 11 compares generic and “Frio-like” relative permeability curves. The generic curves use the van Genuchten (1980) functional form for liquid relative permeability k_r^l and the Corey (1954) functional form for gas relative permeability k_r^g, whereas the Frio-like curves use Corey curves for each. The more significant distinction between the two sets of curves is the residual saturations used (see Figure 11). The differences in residual saturation act to shift the Frio-like curves to the left. That is, over the entire range of saturation values, the Frio-like curves show greater liquid mobility and less gas mobility.

The differences in plume behavior for the different sets of characteristic curves have important ramifications for the pilot test. Choices about the timing, location, and sensitivity of monitoring techniques depend strongly on the nature of the CO$_2$ plume. For example, although the arrival time of the plume at the monitoring well does not depend too much on the choice of residual saturations (2-3 days in either case), the passage of the trailing edge certainly does. A series of geophysical surveys designed to image plume passage could be completed over the course of one year for the generic characteristic curves, but for the Frio-like characteristic curves the same series would show an essentially steady plume.

![Figure 11. Relative permeability curves used for the South Liberty simulations.](image)

![Figure 12. Time sequence of S_g distributions at top of upward-coarsening sand in South Liberty model with five-point differencing, a non-uniform grid, and Frio-like characteristic curves.](image)

CONCLUSIONS

Modeling the injection and storage of supercritical CO$_2$ in brine-bearing formations has provided valuable insights into flow and transport behavior. Subtle interplays between physical and numerical effects can occur, requiring that model development choices be made with care. In particular, grid resolution and orientation effects can produce results that mimic and mask physical processes accompanying buoyant flow in heterogeneous systems.
The present study has reiterated the well-known finding that the choice of characteristic curves is very important. A key issue regarding the feasibility of geologic sequestration in general is whether there is adequate capacity in the subsurface to store the extremely large quantities of CO₂ necessary to impact the global carbon balance. The typical gas saturation in the CO₂ plumes (i.e., the "concentration" of CO₂) varies by nearly a factor of two for the different characteristic curves – a significant effect. Moreover, with high residual gas saturation, sites that are not perfectly sealed become viable for sequestration, as moderate saturation decreases arising from phase dispersion cause the plume to become immobile.

ACKNOWLEDGMENT

We thank Victor Malkovsky of IGEM, Moscow, Russia for kindly providing us with his computer programs of the CO₂ property correlations of V. V. Altunin; Christopher Green, now of U.S.G.S Menlo Park, for generating the TproGS property distributions; and Paul Knox of Texas Bureau of Economic Geology for providing the idealized representations of the Frio formation. We are also grateful to Stefan Finsterle and Curt Oldenburg of Lawrence Berkeley National Laboratory for their technical reviews. This work is supported by the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems through the National Energy Technology Laboratory, and by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC03-76SF00098.

REFERENCES

Galloway, W.E., Depositional architecture of Cenozoic gulf coastal plain fluvial systems, Circular 82-5, University of Texas at Austin, Bureau of Economic Geology, 1982.