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1. INTRODUCTION 

iTOUGH2 (Finsterle, 2010) has been developed as an inverse modeling and parameter 
estimation (PE) tool for various modules of the non-isothermal multiphase flow and transport 
simulator TOUGH2 (Pruess et al., 2012; Falta et al., 1995; Pruess and Battistelli, 2002; 
Oldenburg et al., 2004; Pruess, 2005; Finsterle and Kowalsky, 2007; Pruess, 2011; Doughty, 
2013). As analysis capabilities have been added, iTOUGH2 has become an integrated framework 
for hydrogeological modeling under uncertainty – from test design to site characterization to 
prediction – including parameter estimation (PE), uncertainty analysis (UA), and sensitivity 
analysis (SA). Moreover, all iTOUGH2 analysis tools can be applied to any stand-alone, text-
based simulator through the use of the PEST interface (Finsterle, 2010; Finsterle and Zhang, 
2011).  

A considerable fraction of numerical simulation runs are performed in the broad context of a 
sensitivity analysis.  Modeling results are obtained for different conceptual models, scenarios, 
forcing terms, and parameter values and are compared to each other to examine the impact of 
these factors on model predictions. The motivations for performing such sensitivity analyses are 
as varied as the purposes for developing a numerical model in the first place, which range from 
improving fundamental process understanding to site characterization to predictive modeling to 
performance assessment and decision support. Depending on these ultimate modeling goals, 
sensitivity analyses are used to (1) uncover errors in mechanistic models, (2) build parsimonious 
data-driven models, (3) identify key processes in diagnostic models, (4) determine influential 
factors in prognostic models, and (5) defend the robustness of a particular model. More 
specifically, sensitivity analyses can help to (6) identify which (uncertain) parameters have the 
greatest effect on model predictions and prediction uncertainties, and consequently (7) which 
properties need to be estimated with high accuracy. This allows one to (8) establish research 
priorities, and to (9) rank, screen, and thus reduce the number of parameters to be varied or 
estimated, lowering the computational burden of the subsequent parameter estimation and 
uncertainty analyses. Complementary to the measures of parameter influence, sensitivity indices 
may be used to (10) identify which observations are likely to contain useful information about 
the relevant parameters to be estimated, and (generally referred to as a value-of-information or 
data-worth analysis) (11) evaluates an observation’s potential to reduce the uncertainty of the 
parameters to be estimated by inverse modeling, or (12) an observation’s potential to reduce 
prediction uncertainty through a more precise estimation of influential parameters.  

In general, a sensitivity analysis examines the relation between a parameter that is an input to the 
numerical model, and an observable variable that is an output of the numerical model. The input 
parameter can be a parameter to be estimated by inverse modeling, an uncertain parameter used 
in a predictive model, or an operational or design variable. Correspondingly, the output variable 
can be the observation at a calibration point or the value of an objective function, a predictive 
variable, or a cost function or other performance measure. It is therefore essential to clearly 
identify and report the objective of any sensitivity analysis for its results to be interpreted 
correctly, specifically when parameters are ranked according to their importance, or a data points 
are valued according to their worth, where worth is a measure of how much the estimation or 
prediction uncertainty can be reduced by collecting a given data point or data set. 
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In this manual, we declare observations to be sensitive or insensitive with respect to a change in a 
parameter, whereas parameters are influential or non-influential regarding the declared objective 
to be calculated by the numerical model.  

In contrast to the derivative-based, local sensitivity method (Cacuci, 2003), global sensitivity 
analysis (GSA) methods, such as the Morris and Sobol’ methods (Morris, 1991; Sobol’, 2001; 
Saltelli et al., 2008), explore the parameter space so that they provide robust sensitivity measures 
in the presence of nonlinearity and interactions among parameters. The Morris one-at-a-time 
(OAT) method is a computationally frugal method that changes one parameter at a time from 
randomly generated reference parameter sets, and computes the difference in outputs. The Sobol’ 
method provides the variance-based sensitivity indices that quantify the relative contribution of 
each parameter to the uncertainty in outputs.  

This manual explains the use of local sensitivity analysis, the global Morris OAT and Sobol’ 
methods, and a related data-worth analysis as implemented in iTOUGH2. In addition to input 
specification and output formats, it includes some examples to show how to interpret results. 
Wainwright et al. (2013; 2014) demonstrated that GSA could be used not just to identify 
important parameters but also to identify nonlinearity and interactions among parameters. This 
manual shows additional plots that can be created from the iTOUGH2 outputs to visualize such 
information.  
  



 3 

 

2. METHODS  

In this section, we introduce the three sensitivity methods implemented in iTOUGH2:  

(1)  local sensitivity coefficients,  

(2)  the Morris OAT method, and  

(3)  the Sobol’ variance-based method, as well as 

(4)  data-worth analysis. 

Although the local SA is included in the original iTOUGH2 manual (Finsterle, 2010), it is 
described here for completeness and to highlight the difference to the global methods. More 
details of GSA are documented in Morris (1991), Sobol’ (2001), Saltelli et al. (2008) and 
Wainwright et al. (2013, 2014).  

We denote a set of parameters by p = [p1, p2,…, pn] and a set of model outputs  z = [z1, z2,…, zm], 
which are a function of p, i.e., z = f(p), where n is the number of parameters, m is the number of 
output variables of interest, and f represents any hydrological or other type of forward model.  

2.1 Local Sensitivity Analysis 

The local sensitivity coefficient is defined as a partial derivative, i.e., the change of an output 
variable caused by a unit change in each parameter from the reference value.  

 Sij =
∂zi
∂pj p*

 (1) 

While there are several methods to calculate sensitivity coefficients (e.g., analytical, adjoint-state 
method, automatic differentiation, perturbation method), iTOUGH2 evaluates the derivative by 
changing each parameter i by a small increment δpi from its reference value pi* and computes 
the difference of the output. If approximating the partial derivatives using a first-order finite-
difference approximation, the total number of forward simulations required to calculate n column 
vectors of length m, each holding the sensitivity coefficients of all outputs with respect to a 
parameter, is (n+1), i.e., the reference-case simulation plus the n simulations for small 
increments in the n parameters. 

 Sij ≈
zi (p1*,…, pj *+δpj,…, pn*)− zi (p1*,…, pn*)

δpj
 (2) 

 If centered finite differences are used, the number of simulations increases to (2n+1): 
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 Sij ≈
zi (p1*,…, pj *+δpj,…, pn*)− zi (p1*,…, pj *−δpj,…, pn*)

2δpj
 (3) 

Because the units of the partial derivatives are the units of the model output over the units of the 
parameter, they cannot be readily compared to each other if we are concerned with the sensitivity 
of different model outputs with respect to parameters of different types. We therefore introduce a 
scaled, dimensionless sensitivity index, which is defined as 

 Sij = Sij ⋅
σ pj

σ zi

=
σ pj

σ zi

⋅
∂zi
∂pj p*

 (4) 

where σp is the parameter-scaling factor, and σz is the output- or observation-scaling factor, also 
referred to as parameter variation or standard deviation, and observation standard deviation.  

The choice of these scaling factors appears somewhat subjective, and alternative definitions of 
the scaled sensitivity coefficients have been proposed in the literature, specifically σp = p (e.g., 
Hill and Tiedeman, 2007) and σz = z, or various variations thereof. While all of these alternatives 
result in non-dimensional scaled sensitivity coefficients, we argue that a careful choice of these 
scaling factors enhances the interpretative power of the resulting composite sensitivity measures. 

For	example,	σp is probably best thought of as the amount by which the parameter would be 
changed in a conventional sensitivity analysis, where the parameter is perturbed from its base-
case value by an amount considered “reasonable” to examine its impact on the model output. (If 
different perturbations would be chosen depending on whether the parameter is increased or 
decreased from its reference value, a parameter transformation is probably in order.) It can also 
be viewed as the standard deviation or range of the parameter that represents the parameter 
variability or its uncertainty. If scaled sensitivity coefficients are used as measures of relative 
parameter influence, σp reflects the leverage of this parameter’s uncertainty on model predictions 
and thus indicates the potential need to obtain better estimates through independent 
measurements or inverse modeling. Accurately known parameters with a sufficiently low σp 
value are thus correctly identified as non-influential in the sense that they do not deserve our 
prime attention when designing an experiment. If sensitivity coefficients are used as rudimentary 
data-worth measures, σp reflects the target estimation uncertainty; the more accurately a 
parameter needs to be estimated, the comparatively less value does a certain data point with a 
given measurement uncertainty (σz) have when used as a calibration point in inverse modeling. 
Finally, if a sensitivity coefficient is used for a first-order uncertainty propagation analysis, σp 
reflects our current state of knowledge about this parameter, and implies our presumption that 
the model is approximately linear within the range defined by σp.  

Understanding the role that σp plays in the evaluation of scaled sensitivity coefficients is 
essential, and the interpretations given here may help obtain more meaningful results than the 
indiscriminate choice σp = p. The fact that σp has specific meaning depending on the context 
within which the sensitivity coefficients are used also allows the modeler to examine the impact 
and robustness of these analyses with respect to changes in their objectives or other conditions. 
For example, should independent information about a parameter become available, this will 
impact data worth of potential data sets. If this data worth were examined by scaled sensitivity 
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analysis alone, the choice σp = p would miss that important influence, while an appropriate 
reduction in σp will capture this often significant influence. Of course, the effects of prior 
information are properly included in a formal data-worth analysis (as the one presented below). 

In addition to the interpretations outlined above, the main purpose of the scaling of the partial 
derivatives (Eq. (1)) by the ratio σp /σz is to make the sensitivity measures dimensionless, thus 
allowing one to compare parameters and observations of different types, units, and scales. 
Moreover, it enables evaluation of integral measures, e.g., the sum of the absolute values of scale 
sensitivity coefficients for a given parameter, a given observation type, time, location, or data set. 
These composite indices provide useful information about relative parameter influence or output 
sensitivity. If the composite measure is a sum of rows of the sensitivity matrix along a column, it 
refers to a parameter’s influence on model output; if it is the sum of columns over one or 
multiple rows, it refers to the sensitivity or information content of an observation, a data set, or a 
data type.  

It should be noted, however, that these composite sensitivity measures do not account for linear 
dependencies and statistical correlations among closely spaced parameters and observations; they 
may thus be misleading. Synthetic inversions or formal data-worth analyses overcome this 
limitation. 

In addition to the local sensitivity coefficients of the system response with respect to the 
parameters (Eq. (1a)), iTOUGH2 also calculates the change in the objective function Φ as 
parameter j is perturbed by δpj: 

 Sj
OF = ΔΦ

p*
= Φ[ f (p1*,…, pj *+δpj,…, pn*)]−Φ[ f (p1*,…, pn*)]  (5) 

This local sensitivity measure can be used to select the parameters that most likely help improve 
the match to measured data. While the objective function Φ is often chosen as the sum of the 
squared weighted residuals (where the weight is the inverse of σz), iTOUGH2 provides the user 
with alternative functions (referred to as “robust estimators”). 

Note that the sensitivity analysis of the system response, Eq. (1), refers to the model output only 
and thus does not make use of any measured data; on the other hand, Eq. (5) refers to the 
objective function, which includes the residuals and thus the measured data.  

Once the sensitivity coefficients are calculated and stored in the Jacobian matrix J, a simple 
linear uncertainty analysis can be performed to obtain the covariance matrix of the estimated 
parameters, Cpp: 

 Cpp = s0
2 JTCzz

−1J( )
−1

 (6) 

Here, J is the n × m Jacobian matrix, holding the sensitivity coefficients Sij; Czz is the m × m 
observation covariance matrix, containing the variances σz

2 on its diagonal, and s0
2 is the 

estimated error variance. If no measured data are available—which is often the case in a 
sensitivity analysis—s0

2 is defined as 1.0; if measured data are available, s0
2 is given by 
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 s0
2 =
rTCzz

−1r
m− n

 (7) 

Here, r is the residual vector with elements ri = (zi
* − zi (p)) , where zi

*

 
is the measured data point 

that corresponds to the model-calculated, observable variable zi. Finally, a linear uncertainty 
propagation analysis yields the covariance matrix of the model prediction: 

 C ẑẑ = ĴCppĴ
T  (8) 

In Eq. (8), the Jacobian matrix Ĵ  holds sensitivity coefficients of the prediction of interest with 
respect to the parameters p, whose uncertainty is described by Cpp. 

Based on the sensitivity matrix, iTOUGH2 also performs an analysis in which the relative 
contribution of a parameter to the prediction uncertainty is evaluated. First, prediction 
uncertainty is evaluated as a function of parameter uncertainty based on a linearity and normality 
assumption using Eq. (8). The parameter covariance matrix Cpp is either (Application Mode A) 
user-specified (in the case of a first-order-second-moment (FOSM) error propagation analysis), 
or (Application Mode B) calculated using Eq. (6) (in the case of sensitivity analysis, data-worth 
analysis, or an inversion). The contribution of a parameter to prediction uncertainty is the 
examined in two ways. In Option (i), each parameter—one at a time—is assumed to be perfectly 
known, i.e., it is removed from the uncertainty propagation analysis. The covariance matrix 
resulting from fixing the j-th parameter is denoted by C ẑẑ, j . An m × n matrix is then constructed 
with elements 

 PCPUij = 1−
σ ẑi, j
2

σ ẑi
2

"

#
$$

%

&
''×100%  (9) 

In this way, the relative contribution in percent of each parameter to prediction uncertainty can 
be assessed. It is important to realize that in the context of FOSM analysis (Application Mode A), 
the relative contributions for a given prediction add up to 100%. However, this is not the case in 
Application Mode B, because having perfect knowledge of one parameter also reduces the 
(notional) estimation uncertainty of all other parameters that are correlated to the parameter 
being fixed, thus increasing this parameter’s influence on prediction uncertainty.  

In Option (ii), all parameters except parameter j are assumed to be perfectly known, and the 
process is repeated. 

2.2 Morris Global Sensitivity Analysis 

The Morris one-at-a-time (OAT) method is a global SA method developed by Morris (1991). It 
can be considered an extension of a local SA, since the Morris method randomly generates sets 
of reference values from the entire parameter range, and computes the difference of output 
caused by a fixed parameter change. The normalized parameter range is partitioned into (k – 1) 
equally-sized intervals so that each normalized parameter takes values from the set {0, 1/(k – 1), 
2/(k – 1), …, 1}. A fixed normalized increment is calculated as Δ = k/{2(k – 1)}. A random 
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reference point ξ  is chosen from the set {0, 1/(k – 1), 2/(k – 1), …, 1– Δ}, and the increment Δ is 
added to each parameter in random order. The increments and parameters are back-transformed, 
i.e., pi = pi,min +ξ (pi,max − pi,min )  and Δi = Δ(pi,max − pi,min ) , and two variations of the elementary 
effect (EE) for parameter pi are calculated as: 

 EEi =
1
σ z

⋅
f (p1*,…, pi *+Δi,…, pn*)− f (p1*,…, pn*)

Δi

$

%
&

'

(
)  (9) 

 EEi =
Φ[ f (p1*,…, pi *+Δi,…, pn*)]−Φ[ f (p1*,…, pn*)]

Δi

$

%
&

'

(
)  (10) 

where p* is the randomly selected parameter set, and σz is the output-scaling factor. Eq. (9) is the 
original formulation. However, as the sign of a sensitivity coefficient is often irrelevant for the 
evaluation of parameter influence, taking the mean of the absolute values of EE can be used to 
represent parameter sensitivity (see below). In iTOUGH2, the elementary effect is also evaluated 
with respect to the objective function Φ; Eq. (10) thus includes the measured data and evaluates 
a parameter’s influence on changing the goodness-of-fit criterion rather than the influence on a 
composite measure of the model output, as does Eq. (9).  

Although the original sensitivity method proposed by Morris (1991) scales to EE values only by 
the parameter range, it is possible to scale EE by an output-weighting factor, as we discussed for 
the local sensitivity method.  

By conducting simulations over multiple “paths” (i.e., multiple sets of reference parameter 
values and multiple, random orders of changing each parameter), an ensemble of EEs is obtained 
for each parameter. The number of required runs is r(n + 1), where r is the number of paths. 
Using the ensemble of EEs, we can compute three summary statistics: the mean of EE according 
to Eq. (9), the mean of absolute EEs (mean |EE|), and the standard deviation (SD) of EEs. The 
mean EE and mean |EE| can be regarded as a global sensitivity index, since they represent the 
average effect of each parameter over the parameter space. Wainwright et al. (2014) discussed 
that the sign (i.e., positive or negative) of mean EEs is useful for system understanding. In 
addition, Wainwright et al. (2014) showed that, since the mean |EE| and Sobol’ total sensitivity 
index are both computed by perturbing one parameter at a time (see Section 2.3), the mean |EE| 
provides information similar to the total sensitivity index with less computational cost, and hence 
the mean |EE| can be used to identify non-influential factors (Saltelli et al., 2008). The standard 
deviation of EE is used to identify nonlinear or interaction effects as well as to compute the 
standard error of the mean (SEM), i.e., SEM = SD/r0.5 (Morris, 1991). The SEM represents the 
uncertainty in estimating the sensitivity index. 

The results of a Morris global sensitivity analysis can be visualized by plotting the mean 
elementary effect EE against the standard deviation SD. Parameters with a relatively high 
absolute value of EE can be considered—on average, i.e., evaluated over the entire parameter 
range—more influential than parameters with |EE| closer to zero. Moreover, parameters with a 
small SD value enter the model f in an approximately linear fashion; parameters with SD values 
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significantly larger than EE exhibit effects from nonlinearity and/or parameter interaction. SEM 
can be used to judge whether SD is indeed significantly greater than |EE|. 

Results from a Morris analysis contain global sensitivity information even if only a small number 
of paths can be evaluated. This frugality makes the Morris method a very useful GSA tool also 
for computationally expensive high-fidelity models. Specifically, EE can be interpreted as an 
average parameter influence over the chosen parameter range, and the variability of the 
elementary effect provides insights into the models degree of nonlinearity and parameter 
interaction. As these are only relative and qualitative sensitivity measures, there is no stringent 
requirement to evaluate a large number of paths to achieve statistical convergence; moreover, the 
SEM value provides some indication of the accuracy of the estimated elementary effect. 

It is important to realize that the results of a Morris analysis depend relatively strongly on the 
parameter range specified. Conversely, the number of partitions, k, is relatively insignificant (4 
 ≤ k ≤ 12 is an appropriate range; note that P has to be an even number). Finally, as mentioned 
above, the number of paths, r, can be chosen pragmatically based on the available computational 
resources.      

2.3 Sobol’ Global Sensitivity Analysis 

While the local and Morris sensitivity methods are difference-based, the Saltelli method is 
variance-based. Here we define the random variable Zj and the random P = [P1, P2, P3,…, Pn] for 
the system response and the parameters, respectively. The sampled response and parameters are 
zj and p.  

The Sobol’ global sensitivity analysis evaluates two conditional variances as sensitivity indices. 
The first-order sensitivity index (referred to as the Sobol’ index) is defined by  

 Sij =
V[E[Z j | Pi ]]

V[Z j ]
 (11) 

where E[•] and V[•] represent mean and variance, respectively. Sij quantifies the first-order 
effect, i.e., the relative contribution of Pi to the uncertainty of Zj. As it measures the variability of 
the output with respect to an individual parameter, it excludes the interaction effect with other 
parameters. It Sobol’ index is used to identify influential parameters. The total sensitivity index 
is defined as 

 Stij =1−
V−i[E[Z j | P−i ]]

V[Z j ]
 (12) 

where E[Zj|P-i] represents the mean of Zj conditioned on all the parameters but Pi. Stij accounts 
for the total effect of Pi including interaction effects, and is used to identify parameters with 
negligible effects and parameters that can be fixed. The interaction effect is the effect of each 
parameter depending on other parameters.  
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We compute the sensitivity index Si using an algorithm developed by Saltelli et al. (2003) and 
modified by Glen and Issacs (2012). It starts from generating two sets of sample matrices A and 
B, each of which is an r-by-n matrix containing r sets of n-dimensional parameter vectors from 
Monte-Carlo (MC) sampling. Any underlying parameter distributions can be used. From A and 
B, we create matrices Ci (i=1,…,n) such that the i-th column of Ci is the same as the i-th column 
of A (i.e., Ci,(l, i) = A(l, i) for l=1,2,….r), and the other columns of Ci are the same as B (i.e., Ci,(l, h) 
= B(l, h) for l=1,2,….r and h≠i). The simulation results from the parameter sets A, B and Ci are r-
dimensional vectors: aj, bj and cij (for each output Zj), respectively (i.e., r realizations of 
simulations for each vector). The number of required simulations is r(n+2); the proportionality to 
the number of parameters is similar to the Morris method. Following Glen and Issacs (2012), the 
Saltelli sensitivity index is computed as a correlation coefficient between aj and cij:  

 Sij =
1
σ Zj
2
1
r −1

(aj,l −µZj )(cij,l −µZj ),
l=1

r

∑
,
 (13) 

where µZj is the overall mean of Zj and σZj
 2 is the overall variance of Zj. Although Glen and 

Issacs (2012) did not comment on this, Eq. (13) provides a more intuitive way to understand Sij. 
The parameter sets Ci and A share the same values only for the i-th parameter. If the i-th 
parameter is more influential than the other parameters, the i-th parameter determines the results 
so that the simulation results cij and aj should be similar and hence have higher correlation. 

Similar to the Saltelli sensitivity index, the total sensitivity index can be computed as: 

 Stij =1−
1
σ Zj
2
1
r −1

(cij,l −µZj )(bj,l −µZj )
l=1

r

∑ .  (14) 

Using the covariance-semivariogram relationship, we can re-write the total sensitivity index as: 

 Stij =
1
σ Zj
2

1
2(r −1)

(cij,l − bj,l )
2

l=1

r

∑ .  (15) 

Since Ci and B have the same parameter values except for the i-th parameter, (cij – bj) is 
equivalent to taking a difference in zj when perturbing the i-th parameter with the other 
parameters fixed. When we perturb the i-th parameter, the change in Zj includes all the effects 
associated with the i-th parameter. Stij, therefore, includes the interaction effects associated with 
the i-th parameter. This procedure is the same as the Morris and local sensitivity methods, except 
that the difference in the output is not divided by the parameter difference (Δ). This similarity 
would be the reason why Campolongo et al. (2007) observed the mean |EE| being a good proxy 
for Stij.  

Due to its high computational expense, it is important to account the uncertainty in Sij and Stij 
caused by a given number of simulations, and hence to compute the confidence interval of Sij and 
Stij (Wainwright et al., 2014). Interpreting the sensitivity indices as correlations coefficients 
allows us to compute the confidence interval of Sij and Sti (Fisher, 1921) and to compare the 
sensitivity indices of different parameters with a limited number of simulations. The 95% 
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confidence interval of Sij is given as tanh{arctanh(Sij) ± 1.96SE}, where SE is the standard error 
given by SE = (r – 3) – 0.5. Similarly, the 95% confidence interval of Stij is given as 1–
tanh{artanh(Stij) ± 1.96SE}. The standard error and confidence interval shrink as r increases. 
Having a confidence interval is useful to determine the sufficient number of simulation runs r 
such that the ranking of two parameters can be delineated when the confidence intervals become 
small and are no longer overlapping.   

2.4 Data-Worth Analysis 

A data-worth analysis complements a sensitivity analysis in that it specifically identifies the 
contribution each (potential or existing) data point makes to the solution of an inverse problem 
and a subsequent predictive simulation. The theory, a demonstration case, and interpretation of 
data-worth measures are discussed  in Finsterle [2015]. The basic idea behind the proposed 
approach is to examine how the addition of potential data (or removal of existing data) reduces 
(or increases) the uncertainty in select predictions made by a model that is to be calibrated 
against these data. The arguments for using prediction uncertainty as the ultimate criterion for 
evaluating data worth was presented above, even though the analysis could be pushed further to 
the level where monetary values are assigned to each data point or data set within a risk-cost-
benefit decision framework.  

Including calibration and prediction phases in a single data-worth analysis has considerable 
advantages, as it automatically identifies data that contain information about those parameters 
that are most influential on the predictions of interest. However, data-worth analysis can also be 
limited to the calibration step (i.e., by only evaluating the uncertainty in the estimated 
parameters), or on the prediction step (i.e., by only evaluating the contribution of individual 
parameter’s prior information on prediction uncertainty).    

The data-worth analysis method described here makes use of the Jacobian matrix evaluated at a 
reference parameter point or the best-estimate parameter set after an inversion. It is therefore a 
local analysis that furthermore relies on the linearity and normality assumptions that underlie Eqs. 
(6) and (8).  

1. The method consists of the following steps: Select observable variables to be calculated 
by the model. Categorize them into three groups: 

a. Actual observations: Observations that actually exist or are expected to be collected, 
and that will be used as calibration points. This will be referred to as the reference 
data set. 

b. Potential observations: Observations that could be collected for use in model 
calibration, should the data-worth analysis prove their value. 

c. Predictions: The target output of interest to be calculated by the prediction model. 
Examples include the energy produced from a geothermal well after 30 years of 
exploitation; the maximum contaminant concentration at a drinking water well over a 
regulatory compliance period; the subsidence at a critical infrastructure due to 
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groundwater pumping; and the risk of induced seismicity caused by reservoir 
stimulation.   

Prior information about the parameters of Step 1 as well as Tikhonov regularization terms 
can be included as actual or potential observations. 

2. Select parameters that potentially influence the prediction of interest. They may be 
provided as prior information or estimated by inverse modeling. 

3. Develop a calibration model that simulates actual and potential observations. 

4. Develop a prediction model that simulates target output of interest. 

5. Evaluate the sensitivity coefficients (Eq. 1) of all observations defined in Step 2 with 
respect to all parameters selected in Step 1. The resulting Jacobian matrix has three 
submatrices, each consisting of the rows that are assigned to one of the three observation 
groups. 

6. Using the set of (presumably or actually) existing calibration points (but omitting 
potential observations), evaluate the covariance matrix of the estimated parameters, Cpp , 
using Eq. (6). 

7. Propagate the uncertainty in the estimated parameters, Cpp , to uncertainties of the 
predictions, C ẑẑ , using Eq. (8). 

8. Remove (-) one actual calibration point (or one actual calibration data set), labeled k, or 
add (+) one potential observation point (or potential data set) and re-evaluate the 
covariance matrix of the estimated parameters, Cpp,±k . 

9. Evaluate the covariance matrix of the model predictions, C ẑẑ,±k . 

10. Scale matrices C ẑẑ  and C ẑẑ,±i  by the acceptable prediction uncertainty, i.e., 
cij = cij (σ zi

⋅σ z j
) ; the scaled matrices are designated by C ẑẑ  and C ẑẑ,±k , respectively. 

(Note that the diagonal elements of C ẑẑ,±i  indicate whether the attained prediction 
uncertainty is indeed acceptable.) 

11. Evaluate the data worth as a measure of the relative increase in the prediction uncertainty 
caused by the removal of existing data, or the relative decrease in the prediction 
uncertainty caused by adding a potential data using one of the following metrics: 

 Metric 1: ω±k =

1− tr(C ẑẑ,+k )
tr(C ẑẑ )

when adding potential data

1− tr(C ẑẑ )
tr(C ẑẑ,−k )

when removing existing data

"

#

$
$

%

$
$

 (16a) 
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 Metric 2: ω±k =

tr(C ẑẑ )
tr(C ẑẑ,+k )

−1 when adding potential data

tr(C ẑẑ,−k )
tr(C ẑẑ )

−1 when removing existing data

"

#

$
$

%

$
$

 (16b) 

 Metric 3: ω±k =1−
tr(C ẑẑ,±k )
tr(C ẑẑ )

 (16c) 

Metric 1 produces data-worth measures between 0 and 1, regardless of whether existing data are 
removed or potential data added. Metric 2 uses the augmented data set as reference when adding 
information, and the existing data set as reference when removing information; it yields ω values 
between 0 and ∞. Metric 3 consistently uses the existing data as reference; it produces ω values 
between -∞ and 1, where positive values indicate the worth of adding potential data, and 
negative values that of removing existing information.  In all metrics, a value of 0 indicates that 
collecting data point or data set k has no benefits. 

If the data-worth analysis is to be restricted to the calibration phase (i.e., if the goal is to evaluate 
the worth of information for solving a particular inverse problem), Step 9 is skipped, and Steps 
10 and 11 are performed on the estimation covariance matrices Cpp  and Cpp,±k , using the 
acceptable parameter uncertainty σp instead of σz. (The diagonal elements of Cpp,±k  indicate 
whether the attained estimation uncertainty is indeed acceptable.) Conversely, if the data-worth 
analysis is to be limited to the prediction phase, Step 6 is skipped and replaced by a covariance 
matrix that reflects the uncertainty of added or removed prior information. The scaling in Step 10 
is necessary as the covariance matrices are not dimensionless, but data worth is evaluated based 
on a composite measure, i.e., the trace of these matrices (or, alternatively, the determinant). 
Moreover, the scaling allows the modeler to appropriately weigh the data-worth criteria, 
reflecting the specific objectives of the study. Data-worth analyses performed with different 
relative weights assigned to predictions could be used to highlight the trade off between 
competing prediction targets (similar to a Pareto front in the context of multi-objective 
optimization). 

Unlike a sensitivity analysis, the data-worth analysis properly accounts for redundancy in the 
information content of closely spaced data points, as well as for the lack of parameter 
identifiability due to correlations. A data point that contains complementary information about 
otherwise strongly correlated parameters has higher data worth than a data point with sensitivity 
coefficients that may be higher, but are similar for concurrently estimated parameters and similar 
for neighboring data points. If such data redundancy is prevalent, the sum of individual worth 
values for data that belong to a certain data set is smaller than the worth of adding the entire data 
set. Relying on the results of a sensitivity analysis to identify observations suitable for model 
calibration or the development of a robust prediction model may thus be misleading. 

Data worth depends not only on the reference parameter set, but also on the amount and quality 
of all the other data points presumed available for model calibration, including prior information. 
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A data-worth analysis should thus be repeated for different reference parameter sets and different 
reference data sets with varying assumptions about the error structure of the residuals.  

In summary, the data-worth value ω±k  can be interpreted as the contribution of, respectively, 
adding (or removing) potential (or existing) data points (or data sets) to the reduction (or 
increase) in overall estimation uncertainty, which is measured by the trace of the scaled 
parameter or prediction covariance matrix (see Figure 1). Starting with reference data, the 
uncertainty analysis (Eqs. (6) and (8)) determines whether the estimation or prediction 
uncertainties are sufficiently low, i.e., acceptable for the decision maker. If so, the data-worth 
analysis indicates which existing data could be removed to arrive at a cheaper design with 
minimal impact on the quality of the estimated parameters and without substantially increasing 
prediction uncertainty. If uncertainties are unacceptably high, the data-worth analysis suggests 
which potential data could be added to the reference data set to effectively reduce the estimation 
and prediction uncertainty. A few iterations of this process—conducted	prior to actual data 
collection—is	likely to yield a testing or monitoring design that is robust and effective in 
reaching the calibration and modeling goals.     

 

Figure 1: Elements of data-worth analysis. Influential parameters to be determined from 
calibration data are shared with a prediction model to determine how the removal of 
existing or addition of potential data impacts the estimation or prediction uncertainty. 
Data worth may also be calculated based on parameter uncertainty (dashed line). 
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3. INPUT AND OUTPUT FORMATS 

3.1 Input Formats 

The input formats are similar to the ones for PE, UA and other iTOUGH2 analysis methods, 
which allows for a seamless transition from GSA to PE, UA or other analyses using iTOUGH2. 
The > PARAMETER block includes the parameters of interest, their transformation, reference 
value, uncertainty ranges and/or distributions, and other details (see fourth-level commands). The 
> OBSERVATION block is exactly the same as for other applications, and includes the outputs 
or performance measures of interest, transformation, standard deviation, and other details (see 
fourth-level commands). Note that SA generally does not require measured data, as it only refers 
to the simulation output; this can conveniently be indicated by the use of command 
>>>> NO DATA.  

3.1.1 Local Sensitivity Analysis 

The local sensitivity analysis requires information about the parameter’s reference value, the 
scaling coefficients σp and σz, the perturbation factor δ, and the method used to numerically 
calculate the derivatives.  

The reference parameter values, i.e., the local point p* in the parameter space for which the 
derivative-based local sensitivity analysis is performed, is given by the values in the TOUGH2 
input file, commands >>>> PRIOR, >>>> GUESS or >> GUESS, each overwriting the 
previous definition.  

The scaling factor σp is given using command >>>> VARIATION or >>>> DEVIATION 
within block > PARAMETER. Command >>>> VARIATION is specifically used for scaling 
sensitivity coefficients, while command >>>> DEVIATION scales the sensitivity coefficients 
and at the same time weighs the difference between the prior information and the parameter 
value as estimated during an inversion. The scaling factor σz is given using command 
>>>> DEVIATION (or related commands) within block > OBSERVATION.  

The perturbation factor δ applied to all parameters is given by command >>> PERTURB; it can 
be overwritten for individual parameters by command >>>> PERTURB. If a negative 
perturbation value is given, the parameter will be changed by the specified value rather than a 
percentage of the parameter value. Specifying a negative perturbation is required if the parameter 
value is zero. 

Figure 2 shows as an example an iTOUGH2 input file that invokes a local sensitivity analysis in 
which the influence of porosity and residual gas saturation on the amount of entrapped gas and 
the spreading of the gas plume is evaluated over a 30 year period of CO2 injection. 
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> PARAMETER 
  >> POROSITY 
     >>> MATERIAL      : RESER 
         >>>> VARIATION:  0.05 (= sigma_p) 
         <<<< 
     <<< 
 
  >> RELATIVE permeability 
     >>> MATERIAL      : DEFAU 
         >>>> INDEX    :     2 
         >>>> GUESS    :   0.0 
         >>>> PERTURB  : -0.01 
         >>>> VARIATION:  0.10 (= sigma_p) 
         <<<< 
     <<< 
  << 
 
> OBSERVATION 
  >> TIME: 30 EQUALLY spaced YEARS 
       1.0 30.0  
 
  >> TOTAL TRAPPED GAS VOLUME 
     >>> MATERIAL: RESER 
         >>>> NO DATA 
         >>>> DEVIATION: 1000.0 m^3 (= sigma_z) 
         <<<< 
     <<< 
 
  >> SECOND MOMENT of GAS plume in X-direction 
     >>> entire MODEL 
         >>>> NO DATA 
         >>>> DEVIATION: 2500.0 m^2 (= sigma_z) 
         <<<< 
      <<<   
  << 
      
> COMPUTATION 
  >> OPTION 
     >>> local SENSITIVITY ANALYSIS 
     <<< 
  >> JACOBIAN 
     >>> PETURB parameters by : 5 % 
     >>> use CENTERED finite differences 
     <<< 
  << 
< 

Figure 2: iTOUGH2 input file for local sensitivity analysis. 
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3.1.2 Morris Global Sensitivity Analysis 

Unlike for the local sensitivity analysis of Section 3.1.1, global sensitivity analyses require that 
the bounds of the n-dimensional parameter hypercube be defined. The global sensitivity 
measures will be suitable averages of the sensitivities within this parameter hypercube. In 
iTOUGH2, the admissible parameter range is defined for each parameter using command 
>>>> RANGE. Other than this additional requirement, parameters are defined in the usual way 
using subcommands of iTOUGH2 block > PARAMETER, as shown in Figure 2. 

Figure 3 shows the > COMPUTATION block that invokes a Morris global sensitivity analysis. 
Note that the number of partitions k has to be an even number (Morris, 1991). If a simulation 
fails, the affected path may be discarded and a new parameter set generated by resampling. 

 
> COMPUTATION 
  >> OPTION 
     >>> SENSITIVITY ANALYSIS         : MORRIS OAT 
         >>>> number of PATHS, r      : 10 
         >>>> number of PARTITIONS, k : 6 
         >>>> RESAMPLE up to          : 10 failed trajectories 
         <<<< 
     <<< 
  << 

Figure 3: iTOUGH2 block > COMPUTATION for the Morris One-At-A-Time global 
sensitivity analysis. 

 
3.1.3 Sobol’ Global Sensitivity Analysis   

For the Sobol’ method, the > PARAMETER block is the same as the one for Monte Carlo 
simulations in iTOUGH2. The user needs to specify the parameter ranges, and the parameter 
transformation, e.g., >>>> LOGARITHM. In the > COMPUTATION block (Figure 4), the user 
needs to select keyword SALTELLI or SOBOL together with command >>> SENSITIVITY 
ANALYSIS, and specify the number of realizations (r) and the seed number to initiate the 
generation of random numbers. 

 
> COMPUTATION 
  >> OPTION 
     >>> SENSITIVITY ANALYSIS      : SALTELLI 
         >>>> number of SAMPLES    : 1000 
         >>>> SEED number          : 7777 
         <<<< 
     <<< 
  << 

Figure 4: iTOUGH2 block > COMPUTATION for the Sobol’ global sensitivity analysis. 
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3.1.4 Data-Worth Analysis   

A data-worth analysis is invoked by command >>> DATA-WORTH ANALYSIS, which is in 
the >> OPTION section of the > COMPUTATION block. By default, the data worth is 
evaluated for each calibration point. If keyword SET is added to the command line, data worth is 
instead evaluated for an entire data set (a data set is defined by each third-level command in 
block > OBSERVATION, and includes all observations contained within an individual 
>>>> DATA block). Parameters are defined analogous to a local sensitivity analysis (see 
Section 3.1.1 and Figure 2). 

As discussed in Section 2.4, a data-worth analysis can be performed in two ways: 

• Option A: Evaluate the worth of calibration data with respect to their ability to reduce the 
uncertainties of estimated parameters (see Cpp  in Eq. (6))	

• Option B: Evaluate the worth of calibration data with respect to their ability to reduce 
prediction uncertainties (see C ẑẑ  , Eq. (8))	

If Option A is chosen, the > OBSERVATION block contains all observations potentially (or 
actually) used for estimating the parameters defined in block > PARAMETER. Observations are 
thus defined as those in a local sensitivity analysis (see Figure 2). 

If Option B is chosen, the user must first develop a simulation that consists of two sub-models. 
The first model (referred to as the calibration model) simulates the processes and conditions 
during data collection; the second model (referred to as the prediction model) simulates a future 
system behavior, whose prediction uncertainty shall be minimized through the collection of high-
worth calibration data. The calibration and prediction models are preferably very similar (as the 
parameters estimated by inverse modeling are always scale-, process-, and model-related, which 
means they should be used in a model with consistent structure). Conversely, they may be very 
different (e.g., if formation properties are determined through inversion of data collected in a 
laboratory experiment of a core sample, and then used in a prediction model of field-scale 
reservoir behavior).  

There are different ways these two models could be implemented: 

• A single model represents both the calibration and prediction phases. This is certainly 
the easiest and preferred scenario, as the parameters estimated during the calibration 
phase are used in a prediction model that has a similar scale and model structure. An 
example would be a geothermal reservoir model, in which injection, observation and 
production data during the first 5 years of operation are dedicated for model calibration, 
and the same model is then used to predict reservoir performance for another 25 years. 
The data-worth analysis will determine the value of individual calibration data points 
during the first 5 years with respect to their ability to reduce the uncertainty in the 
predicted geothermal productivity after 30 years. This approach will be further illustrated 
in Section 4.1.2.	

• The calibration and prediction models are two separate models that are combined into a 
single model and run concurrently. First, two separate meshes are generated (with 
unique element names). These two meshes are then combined into a single mesh, which 



 18 

is defined by a single ELEME and a single CONNE block. The two models must share the 
same materials so the parameters estimated using the calibration model are also used in 
the prediction model. Sample Problem 2, Part 2 (also used to demonstrate the Morris and 
Sobol’ global sensitivity analyses, see Section 4.1.1) uses this approach to concurrently 
analyze a single parameter set using observations that refer to more than on model.	

• The two separate calibration and prediction models are run sequentially. However, this 
approach requires that at least one of the two models be executed as an external model, 
which needs to be linked to iTOUGH2 using the PEST protocol (Finsterle, 2010). Again, 
the two models must share the same parameter values. If only one of the models is run 
externally, whereas the other model is fully integrated into iTOUGH2, each parameter 
must be defined twice (once as a regular, internal parameter, and once as an external 
PEST parameter) and linked to one another using command >>>> TIED. 	

In the > OBSERVATION block, the user must indicate which observations refer to potential (or 
actual) calibration data, and which observations refer to target model predictions. Recall that the 
data-worth analysis is performed only for calibration data based on their ability to reduce 
prediction uncertainty. Actually or presumably available calibration data are defined analogous 
to those in a regular sensitivity analysis or inversion (see, for example, Figure 2); these data 
constitute the reference data set and will be removed during the data-worth analysis. Potentially 
measured data are indicated by command >>>> POTENTIAL; these data will be added during 
the data-worth analysis. The observations that refer to output from the prediction model are 
indicated by command >>>> PREDICTION or command. These observations provide the 
criteria based on which the value of actual or potential calibration data is calculated. 

If no prediction data are provided, Option A is automatically invoked; if one or more prediction 
data points are provided, Option B is invoked, unless keyword PARAMETER is added to the 
command line (e.g., >>>> DATA-WORTH ANALYSIS based on PARAMETER 
covariance matrix Cpp). 

The command line also accepts keyword DETERMINANT, in which case data worth is evaluated 
using the determinant (rather than the trace) of the covariance matrix (see Eq. (13)). 

A data-worth analysis can be explicitly requested as described above. Moreover, a data-worth 
analysis is also performed automatically after a local sensitivity analysis and an inversion that 
uses a derivative-based minimization algorithm. (Using command 
>>> SENSITIVITY ANALYSIS or command >>> DATA-WORTH ANALYSIS thus 
yields the same output.) However, since the repeated evaluation of the estimation (and 
prediction) covariance matrices (see Step 8 in Section 2.4) may become computationally 
expensive, the data-worth analysis is performed automatically only if the number of calibration 
points is smaller than 500. If more than 500 calibration points are given, the data-worth analysis 
is performed for each data set (rather than each data point), reducing computational cost. 
Keywords with command >>> DATA-WORTH ANALYSIS, if given as a subcommand of 
>> OUTPUT, provide additional control. The data-worth analysis after a local sensitivity 
analysis or inversion can be suppressed using command >>> OMIT DATA-
WORTH ANALYSIS. Keywords PARAMETER, SET, and DETERMINANT are also available in 
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the >> OUTPUT block version of command >>> DATA-WORTH ANALYSIS; they have the 
same effect as described above. An example of a data-worth analysis is given in Section 4.1.2. 

3.2 Output Formats 

3.2.1 Local Sensitivity Analysis  

The iTOUGH2 output file contains the n × m scaled sensitivity matrix after a sensitivity analysis 
has been performed specifically, but also after any inversion that uses a derivative-based 
minimization algorithm. The unscaled sensitivity (or Jacobian) matrix can be requested using 
command >>> SENSITIVITY in the >> OUTPUT block. In addition, the following 
composite sensitivity measures are evaluated: 

• Sum	of	absolute	scaled	sensitivity	coefficients	for	each	parameter		

• Sum	of	absolute	scaled	sensitivity	coefficients	for	each	observation	

• Sum	of	absolute	scaled	sensitivity	coefficients	for	each	data	set	and	each	parameter	

• Sum	of	absolute	scaled	sensitivity	coefficients	for	each	data	set	and	all	parameters	

• Sensitivity	of	objective	function	with	respect	to	each	parameter	(Eq.	(5))	

• Relative	contribution	of	parameter	uncertainty	to	prediction	uncertainty,	assuming	
the	parameter	is	fixed	

• Relative	contribution	of	parameter	uncertainty	to	prediction	uncertainty,	assuming	
that	all	except	on	of	the	parameters	are	fixed	

In addition, a linear uncertainty analysis is performed to obtain the covariance matrix of the 
estimated parameters (see Eq. (6)) as well the uncertainty of each model prediction (see Eq. (8)). 
A data-worth analysis is also performed. If no data are provided, these analyses are based on an 
estimated error variance of 1.0, i.e., they assume that the data were matched to a level that is 
consistent with the a priori defined error variances specified for each data point.  

3.2.2 Morris Global Sensitivity Analysis  

iTOUGH2 computes the mean EE, mean |EE| and SD of EE for all the outputs of interest and for 
each parameter. In addition, it provides those three values for the mean of all the outputs 
(heading: SYSTEM STATE) and for the objective function S (heading: OBJECTIVE 
FUNCTION) specified in the same manner as other applications in iTOUGH2. Such composite 
indices are useful when the number of output values is large (e.g., time series). 

3.2.3 Sobol’ Global Sensitivity Analysis 

In the iTOUGH2 output file, the sensitivity and total sensitivity indices are provided in a matrix 
form for all the outputs and for each parameter. The indices are also calculated for the system 
state and objective function.  
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3.2.4 Data-Worth Analysis 

The results of the data-worth analysis are printed as the last column in the RESIDUAL 
ANALYSIS section of the iTOUGH2 output file. Only observations that serve as actual or 
potential calibration points show a data-worth value (labeled DWi); observations representing 
model predictions show the text “predict.” in the last column.  

DWi is the data worth of the corresponding observation as a percentage of the total worth of all 
calibration points, see Eq. (14). The absolute data-worth value (Eq. (13)) can be calculated by 
multiplying DWi with the scaling factor, which is reported in the legend entry for DWi, located at 
the top of the residual analysis section of the output file. The legend also indicates (i) whether the 
data-worth analysis was performed for individual observation points or entire data sets, (ii) 
whether Cpp

 
or C ẑẑ  was used as the target criterion, and (iii) whether the trace or determinant of 

these matrices was evaluated. Finally, the data worth of entire data sets and data types is reported 
in the DWA columns of the summary tables at the end of the residual analysis section. 

An example of a data-worth analysis is given in Section 4.1.2. 
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4. SAMPLE PROBLEMS 

4.1.1 Sensitivity Analyses 

To demonstrate the iTOUGH2-GSA module, we use the gas-pressure-pulse-decay experiment, 
which is Sample Problem # 2 documented in iTOUGH2 Sample Problems (Finsterle, 2010). The 
experiment description is repeated here for completeness. The experiments were conducted using 
a specially designed permeameter with small gas reservoirs. A schematic of the experimental 
apparatus is shown in Figure 5. To conduct a test, the upstream reservoir is rapidly pressurized to 
a value about 300 kPa above the initial pressure of the system using nitrogen gas. Gas starts to 
flow through the dry sample, and the pressures in both the upstream and downstream reservoirs 
are monitored as they equilibrate with time. 

 
Figure 5: Schematic of gas-pressure-pulse-decay apparatus. 

In porous media with very low permeability and porosity, gas mass flow F [kg⋅s-1⋅m-2] may be 
enhanced as a result of slip flow known as the Klinkenberg effect. 
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Here, k is the absolute permeability, ρg is the gas density, µg is the gas dynamic viscosity, and Pg 
is the gas pressure. The term in parentheses accounts for enhanced gas slip flow, which occurs 
when the mean free path of the molecules is large relative to the characteristic dimension of the 
pores. Slip flow is important at low pressures and in small pores, when a significant fraction of 
molecular collision is with the pore wall rather than with other gas molecules. 
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Figure 6: Pressure (symbols) in upstream and downstream reservoirs during gas-pressure-pulse-

decay experiment and scaled sensitivity coefficients with respect to log(k), log(b), and 
φ as a function of time. 

Figure 6 shows the scaled sensitivity coefficients of the upstream and downstream reservoir 
pressures with respect to the three parameters as a function of time. The sensitivity coefficients 
with respect to porosity are negative because an increase in porosity leads to a decrease in 
pressure in both the upstream and downstream reservoirs. The porosity’s influence increases 
with time and reaches a constant, non-zero value at steady state, when the pressure in the 
upstream and downstream reservoirs equilibrate slightly below half of the imposed pressure 
increase (of 300 kPa), because some of the injected gas is needed to compress the gas in the 
sample pore space. The steady-state pressures are thus sufficient to independently determine 
porosity.  

Conversely, upstream/downstream reservoir pressures have negative/positive sensitivity 
coefficients, respectively, with respect to permeability and the Klinkenberg factor, as in increase 
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in gas mobility leads to a decrease/increase in the upstream/downstream reservoir pressure. 
Moreover, log(k) and log(b) have zero (or a small) influence at early times (when the gas has not 
yet reached the downstream reservoir). The influences of these two parameters reaches their 
maxima when the reservoir pressures change most, and approach again zero as gas flow ceases 
near steady-state conditions. It is important to note that the sensitivity coefficients for log(k) and 
log(b) are very similar, i.e., they are nearly linearly dependent of each other, which can be 
expected by inspecting Eq. (19). As a result, the two parameters are highly correlated and thus 
cannot be determined independently using a single gas-pressure-pulse-decay experiment. This is 
clearly reflected in a correlation coefficient of the estimation covariance matrix that is very close 
to -1.0, i.e., an unit increase in one of the two parameters can be almost completely compensated 
by a unit decrease in the other parameter. Such correlation coefficients are not directly obtained 
from a local sensitivity analysis, but require an uncertainty analysis. The issue of strong 
parameter correlations can be resolved, and all three parameters can be estimated accurately with 
an appropriate change in the experimental design, as discussed in detail in Finsterle and Persoff 
(1997).  

The composite scaled sensitivity measures indicate that (1) the downstream pressure at 0.5 days 
is the most sensitive observation to changes in all three parameters, (2) the time series of all 
upstream pressures contains overall more information about the three parameters than the 
downstream pressures, and (3) the parameters log(k) and log(b) are almost equally influential and 
significantly more influential on pressure observations than porosity. Moreover, from the 
covariance matrix of the estimated parameters it can be deduced that (4) the estimation 
uncertainty of log(k) and log(b) would be extremely large as a result of (5) a very strong negative 
correlation between these two parameters, leading to (6) very low parameter independence as 
measured by the ratio between the conditional and marginal standard deviations, whereas (7) 
porosity could be estimated relatively independently with very low estimation uncertainty. The 
error propagation analysis indicates that (8) the uncertainty in the predicted reservoir pressures 
due to uncertainty in the estimated parameters would be less that 400 Pa, and (9) all observations 
are very well controlled by other observations, indicating some redundancy in the information 
content of neighboring data points. Finally, the data-worth analysis suggests that (10) the last 
observations in the upstream and downstream reservoirs have the highest potential to reduce the 
trace of the estimation covariance matrix, and thus possess the highest data worth. 

The local sensitivity analysis is based on reference parameter values, which are uncertain as they 
rely on prior information that does not contain the additional data obtained from the experiment. 
The results of the local sensitivity analysis may be misleading if the reference parameters are 
different from the true values, and if the model is highly nonlinear. In GSA, on the other hand, 
we can compute the sensitivity over the parameter range so that the sensitivity indices are more 
robust and more representative with respect to the defined parameter ranges or distributions.  

The iTOUGH2 input files are samMOATi and samSOBOLi included in the Sample directory for 
the Morris and Sobol’ methods, respectively. They are quite similar to the original sample 
problem (sam2pli). The difference is that (1) the parameter range is specified for the Morris 
method (>>>> RANGE in the > PARAMTER block), (2) the sensitivity methods and the 
number of paths or samples is specified in the > COMPUTATION block (see Figure 3 and Figure 
4). Among the three parts of the experiments, we use Part 1 (inversion of a single gas-pressure-
pulse-decay experiment) and Part 3 (concurrent inversion of three gas-pressure-pulse-decay 
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experiments performed on three pressure levels; see report iTOUGH2 Sample Problems and 
Finsterle and Persoff (2007)). We evaluate the sensitivity of the pressure in the downstream 
reservoir (pdo in Figure 5). 

(c) (d)  

Figure 7 shows the time evolution of the sensitivity indices from Morris and Sobol’ methods in 
the Part-1 experiment. The number of simulations is 40 (r = 10, n = 3), and 5,000 (n = 3, r = 
1,000) for the Morris and Saltelli methods, respectively. The confidence intervals are shown so 
that we can take into account the limited number of simulations when we compare the 
importance of the parameters. For the Morris method, the output scaling factor σz is 1000 Pa, 
which is the same value as used for the local sensitivity method.  

 
(a) (b) 

 
(c) (d)  

Figure 7: Time evolution of sensitivity index: (a) Mean EE, (b) Mean |EE| (c) Sobol’ index, and 
(d) Sobol’ total sensitivity index. In (a)-(d), the thin lines represent the 95% 
confidence intervals. 

At each time point, we may define the importance ranking. (c) (d)  
Figure 7 shows that the important parameters change with time. In (c) (d)  
Figure 7a, Mean EE provides the sign of the sensitivity, which helps understand the 
physics of the problem. The Mean-EE values are all negative, which means that 
increasing any of these three parameters decreases the downstream pressure. In (c)(d)  

Figure 7b, Mean |EE| suggests that the permeability and Klinkenberg factors have a large impact 
around 103-104 seconds, while the porosity becomes more important after 5×104 seconds. 

       Log-b 
       Log-K 
       Φ  

       Log-b 
       Log-K 
       Φ  
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Although the number of paths and number of simulations are not large (r = 10), the confidence 
intervals are separated well enough to confirm the relative importance (such as the importance of 
porosity in a later time). This is the same finding as obtained with the local sensitivity method, 
although, with GSA, we can account for the nonlinearity and/or interaction effects, since we 
compute the average of the effects over the prescribed parameter range. At the end of the 
experiment, the porosity has significantly higher influence than the other two parameters. The 
physical explanation for this change in influence has been given above for the discussion of the 
local sensitivity analysis results. Based on this result, we can capture the intervals in which the 
three parameters are influential, and this experiment time is large enough to estimate the porosity. 

In (c) (d)  
Figure 7c and d, the Sobol’ indices provide the relative contribution of each 
parameter to the uncertainty of the output. The Sobol’ indices have better 
quantitative interpretation. From (c) (d)  
Figure 7c, for example, we may conclude that both the permeability and Klinkenberg 
factor account for approximately 40% of the pressure variance between 103 and 104 
seconds, while the porosity accounts for only approximately 10%. Since the indices 
are normalized by the variance at each time step, the ranking of parameter 
importance is more easily recognized than Mean |EE|, although the effect of each 
parameter at different times cannot be compared. The patterns of the three 
parameters are similar in (c) (d)  
Figure 7c and d, although the total sensitivity index ((c) (d)  

Figure 7d) is higher for the permeability and Klinkenberg factor. The higher total sensitivity 
index compared to the Sobol’ index suggests that the permeability and Klinkenberg factor has an 
interaction effect. Such an interaction effect is evident from Eq. (19), but this is noted here to 
explain the use of GSA to interpret interaction effects. Such interaction effects are often not 
evident, especially for large-scale models involving complex processes.   

Figure 8 shows a cross-plot between the mean and SD of EE, following Morris (1991). Each 
curve corresponds to the time evolution for a parameter’s sensitivity index. The two black lines 
represent Mean EE = ±2SEM. These lines can be drawn by substituting SEM by SD/r0.5, 
following the definition of SEM. Since SEM decreases with increasing number of paths (r), the 
slope of the line increases with the number of paths. Although the number of paths (r = 10) is 
small, the SD is small, and all the parameters are below the black lines, indicating that their non-
zero impact is statistically significant. All the parameters have a non-zero value of SD, indicating 
that they have nonlinearity and/or interaction effects. The ratio between the mean and SD of EE 
is larger for the permeability and Klinkenberg factor, which suggests the larger nonlinearity 
and/or interaction effects of these two parameters. 
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Figure 8: Mean EE vs. SD from the Morris method. The circle, square and triangle on each 
curve represent 100, 748 and 7150 seconds, respectively. The end of each line 
corresponds to 6.705×104 seconds. 

Figure 9 shows the difference between the Sobol’ index and the total sensitivity index as a 
function of the Sobol’ index, comparing the first-order effect and the interaction effects. All the 
parameters show interaction effects, since the difference is larger than zero. The permeability 
and Klinkenberg factor have a particularly large difference relative to their Sobol’ indices, 
suggesting that they have a large interaction effect compared to the first-order effect. Comparing 
Figure 8 and Figure 9 allows us to separate interaction from nonlinearity effects, since Morris’s 
SD of EE includes both, but the difference between the Sobol’ indix and total sensitivity index 
represents only the interaction effects. Although Eq. (19) suggests this flow process includes 
both nonlinearity and interactions (between permeability and Klinkenberg factor), SD of EE of 
the permeability and Klinkenberg are caused mainly by the interaction effects. 
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       Log-K 
       Φ  
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Figure 9: The interaction effect (the difference between the Sobol’ index and the total sensitivity 
index) as a function of Sobol’ index. The circle, square and triangle on each curve 
represent 100, 748.48 and 7150.37 seconds, respectively. The end of each line 
corresponds to 6.705×104 seconds. 
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4.1.2 Data-Worth Analysis 

The following example demonstrates how a data-worth analysis is set up in iTOUGH2, and how 
some of the results of the analysis are interpreted. The test case is based on a modified version of 
the five-spot geothermal injection/production problem described as Problem No. 4 in the 
TOUGH2 User’s Guide (Pruess et al., 2012) as well as Problem No. 3 in iTOUGH2 Sample 
Problems (Finsterle, 2010). The problem considers a large well field with wells arranged in a 
five-spot configuration (Figure 10). Because of symmetry, only 1/8 of the basic pattern needs to 
be modeled, with an injection and production well located in the corners of the model, pumping 
at a constant rate of 30 kg/s for 30 years. For simplicity, the geothermal reservoir, which has a 
uniform initial temperature of 300°C and pressure of 85.93 bars, is represented by a single layer, 
discretized into 36 primary elements. Each of these elements is partitioned into five overlapping 
elements using the MINC methodology to represent the fracture network as a continuum, which 
is embedded in multiple matrix continua of increasing average distance from the fractures. As a 
modification to the original formulation, the injected water is considered to contain a 
conservative tracer. The simulations are performed using the equation-of-state (EOS) module 1 
(Pruess et al., 2012), which handles nonisothermal, two-phase flow of two water components. An 
excerpt of the TOUGH2-EOS1 input file is shown in Figure 11.    

 

 

Figure 10: Five-spot well pattern with grid for modeling a 1/8 symmetry domain. 
  

Production

Injection

1000 m  

x y 
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Five-spot geothermal reservoir model (cf. SPE-18426), for data-worth analysis 
ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
POMED          2650.       .01    6.E-15    6.E-15    6.E-15       2.1     1000. 
FRACT          2650.       .50    6.E-15    6.E-15    6.E-15       2.1     1000. 
MATRX          2650.    1.E-10    0.E-15    0.E-15    0.E-15       2.1     1000. 
 
START----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
----*----1 MOP: 123456789*123456789*1234 ---*----5----*----6----*----7----*----8 
PARAM----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
   2 999     99910000000000000 4 0  6 
 -1000.00                 1.E5 3.15576E7 KA 1 
     1.E-5                                             1.E-8 
                300.                0.01               1.E-4 
MULTI----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
    2    3    2    6 
RPCAP----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
    3     .30       .05 
    1             0.        0.        1. 
GENER----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 AA 1INJ 1                         COM2       3.75     5.0E5 
 KA 1PRO 1                         MASS      -3.75 
 
ELEME----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 AA 1          POMED0.1906E+060.1250E+04          0.        0.        0.1525E+03 
 BA 1          POMED0.7625E+060.5000E+04          0.7071E+020.        0.1525E+03 
 CA 1          POMED0.7625E+060.5000E+04          0.1414E+030.        0.1525E+03 
 DA 1          POMED0.7625E+060.5000E+04          0.2121E+030.        0.1525E+03 
 EA 1          POMED0.7625E+060.5000E+04          0.2828E+030.        0.1525E+03 
 FA 1          POMED0.7625E+060.5000E+04          0.3536E+030.        0.1525E+03 
 GA 1          POMED0.7625E+060.5000E+04          0.4243E+030.        0.1525E+03 
 HA 1          POMED0.7625E+060.5000E+04          0.4950E+030.        0.1525E+03 
 IA 1          POMED0.7625E+060.5000E+04          0.5657E+030.        0.1525E+03 
 JA 1          POMED0.7625E+060.5000E+04          0.6364E+030.        0.1525E+03 
 KA 1          POMED0.1906E+060.1250E+04          0.7071E+030.        0.1525E+03 
 BB 1          POMED0.7625E+060.5000E+04          0.7071E+020.7071E+020.1525E+03 
 CB 1          POMED0.1525E+070.1000E+05          0.1414E+030.7071E+020.1525E+03 
... 
 GE 1          POMED0.7625E+060.5000E+04          0.4243E+030.2828E+030.1525E+03 
 FF 1          POMED0.3812E+060.2500E+04          0.3536E+030.3536E+030.1525E+03 
HTX00          POMED        0. 
 
CONNE----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 AA 1 BA 1                   10.3536E+020.3536E+020.1078E+05 
 BA 1 CA 1                   10.3536E+020.3536E+020.1078E+05 
 BA 1 BB 1                   20.3536E+020.3536E+020.2157E+05 
 CA 1 DA 1                   10.3536E+020.3536E+020.1078E+05 
... 
 FE 1 GE 1                   10.3536E+020.3536E+020.2157E+05 
 FE 1 FF 1                   20.3536E+020.3536E+020.2157E+05 
 
INCON----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
 
MESHMAKER1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
MINC 
PART THRED     DFLT 
  5  4OUT       100.     100.0     100.0 
       .02       .08       .20       .35 
 
ENDCY----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 

Figure 11: Excerpt of TOUGH2-EOS1 input file for simulating five-spot geothermal reservoir 
operation. 
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For the data-worth analysis, we consider a scenario in which a model is to be developed for the 
prediction of two specific performance measures, namely (1) the enthalpy of the produced fluid 
mixture, and (2) the temperature in the center of the matrix near the edge of the reservoir; both 
measures are evaluated after 30 years of exploitation. They may be considered relevant to 
evaluate the field’s long-term productivity and sustainability. Production enthalpy and reservoir 
temperature shall be predicted as accurately as possible using a model that is calibrated against 
data to be collected during the first five years of operation. A data-worth analysis is performed to 
examine which data set among an assembly of planned and potential data sets helps most 
reaching the objective of obtaining reliable long-term predictions of enthalpy and temperature, 
and which data set could be omitted without considerable loss of model predictability.  

The data-worth analysis as formulated here is of Option B (see Section 3.1.4), i.e., the criterion 
used to compute data worth is prediction uncertainty (rather than uncertainty of estimated 
parameters). Nevertheless, the prediction uncertainty is linked to the accuracy with which the 
model parameters can be estimated using data from the first five years of production. This means 
that a set of influential parameters needs to be identified that affect the model predictions of 
interest. This identification can be done using one of the local or global sensitivity analysis 
options described in Sections 2.1–2.3. However, here we do not perform a separate sensitivity 
analysis for the purpose of selecting influential parameters. Instead, this step is integrated in the 
data-worth analysis, which highlights the importance of (1) accounting for redundancies in the 
information content of data sets, and (2) specifying the overall objectives of data collection in 
support of modeling. 
Once the set of potentially influential parameters has been selected, data sets (type, location, 
sampling frequency, measurement accuracy) that are likely to contain information about these 
parameters have to be identified. These data sets are further designated as (1) existing data sets 
(or data sets that are planned to be collected and available for model calibration), and (2) 
potential data sets (i.e., data sets that are proposed to be collected if the data-worth analysis 
confirms that their contributions to the modeling goals are substantial). It is primarily the value 
of these potential calibration data sets what will be examined in the data-worth analysis; however, 
the analysis also examines the loss of prediction accuracy should one of the planned (or actually 
existing) data sets be removed. Implementation of these three steps (i.e., (1) parameter definition, 
(2) data set definition, and (3) data-worth analysis) in iTOUGH2 are discussed in detail next; the 
corresponding iTOUGH2 input file is samDWi. 

Figure 12 shows the > PARAMETER block of the iTOUGH2 input file samDWAi. Seven 
potentially influential parameters are selected, with reference values (indicated in brackets) as 
specified in the TOUGH2 input file (Figure 11): (1) log(kX) [-14.2 log(m2)], (2) log(kY) [-14.2 
log(m2)], (3) porosity of the fracture continuum [50%], (4) residual liquid saturation of the 
fracture continuum [30%], (5) thermal conductivity [2.1 W/m/°C], (6) fracture spacing [100 m], 
and (7) initial reservoir temperature [300°C].  

Commands >>>> VARIATION and >>>> DEVIATION are used to specify the scaling 
factor of the parameters, σp; the latter command furthermore indicates that the initial 
>>>> GUESS should be treated as prior information. It is important to realize that the 
(somewhat subjective) choice of σp has no impact on an Option B data-worth analysis; however, 
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it affects the composite sensitivity measures of the local sensitivity analysis as well as an Option 
A data-worth analysis.  

Figure 13 shows the > OBSERVATION block in which planned and potential data sets for 
model calibration as well as the prediction variables are defined. First, 61 points in time are 
defined, assuming that a data point will be collected every month for the first five years of 
exploitation and used for model calibration. An additional point is defined at 30 years, at which 
time the calculated production enthalpy and reservoir temperature will be extracted from the 
model results and analyzed for prediction uncertainty. 

Next, the five calibration data sets are defined, which are (1) the injection pressure, (2) the 
temperature of water flowing in a facture at X = 354 m and Y = 0 m, i.e., midway between the 
injection well and production well, (3) the temperature of the rock matrix (volume average of 
matrix continua) at X = 141 m and Y = 141 m, (4) the production enthalpy, and (5) the tracer 
concentration in the production well.  
Of these five data sets, only the injection pressure (Set 1) and production enthalpy (Set 4) are 
planned to be measured, i.e., they are expected to be existing data sets. These two data sets thus 
constitute the reference data available for model calibration. The other data sets are potential data 
sets (indicated by command >>>> POTENTIAL), i.e., the data-worth analysis examines how 
they might help reduce prediction uncertainty if they were added to the reference data sets; they 
are potentially available for model calibration. To put the value of potential data sets in 
perspective, the analysis also evaluates the increase in prediction uncertainty should one of the 
presumably existing data sets (i.e., injection pressure and production enthalpy) be removed from 
the reference set of calibration points. Note that in a full value of information analysis, the 
benefits of having additional data sets available for model calibration will have to be compared 
to the costs incurred by collecting them. In this example, pressure and enthalpy data are expected 
to be collected routinely as part of reservoir operation (they were thus selected as “existing” data 
sets), whereas collecting temperature and concentration data is likely to be costly, as it may 
require that observation wells be drilled and a tracer test be performed (they were thus selected 
as “potential” data sets). 
A >>>> TIME WINDOW is specified for each of these data sets so that calibration would only 
occur for the first five years (omitting the point at 30 years). The expected average residual after 
calibration, σz, is specified for each data set using command  >>>> DEVIATION. This 
scaling factor affects the results of the data-worth analysis (as it does those of a composite 
sensitivity analysis) as it reflects the quality of the data collected. The command >> NO DATA 
clearly indicates that a data-worth analysis can (and should) be performed before data are 
actually collected. It also means that no inversion will be performed; instead, the analysis 
assumes that an inversion would result in the reference parameter values, and that the final 
residuals will be statistically consistent with the expected errors as specified in command 
>>>> DEVIATION. Note that a data-worth analysis can (and generally will) be performed also 
if actual data are available, and an actual inversion is being performed. 
The next two blocks (i.e., commands >> TEMPERATURE and >> ENTHALPY) define the 
predictions to be used as criteria for the data-worth analysis. The calibration data set that 
contributes most to a reduction in the overall prediction uncertainty will be assigned the highest 
data worth. The two model outputs of interest are (1) the temperature in the middle of a matrix 
block at X = 212 m and Y = 71 m, and (2) the production enthalpy. These observations should 
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only be analyzed after 30 years of exploitation, which is accomplished by setting the appropriate 
>>>> TIME WINDOW. Here, the command >>>> DEVIATION is used to set a relative 
weight between the two target predictions. While reaching a prediction uncertainty lower than 
the indicated level cannot be guaranteed (iTOUGH2 calculates the attainable prediction 
uncertainty assuming all calibration data sets are actually collected), the specified σz indicate our 
relative interest in a predicted model output. The higher the σz, the less will the data-worth 
analysis be valuing calibration sets that help reduce the uncertainty in the corresponding 
prediction. Finally, we indicate that these data sets are specified as data-worth analysis criteria by 
adding the keyword PREDICTION to command >>>> NO DATA. 

Finally, the data-worth analysis is initiated in block > COMPUTATION (Figure 14). The first 
analysis will consider the worth of colleting entire data sets, with prediction uncertainty as the 
criterion. Alternative analyses are indicated, but deactivated by the #-sign in the first column. 

The data-worth analysis requires running the calibration and prediction model (n+1)=8 times to 
calculate the Jacobian matrices J and Ĵ , respectively (see Eq. (15)). In this particular example, 
the calibration and prediction phases are simulated using the same model; the calibration phase 
consists of the injection-production operation during the first five years, whereas the prediction 
phase consists of the subsequent 25 years of exploitation. The numerically evaluated partial 
derivatives of the first five data sets (see Figure 13) with respect to the seven adjustable 
parameters (see Figure 12) define J, whereas those of the last two observation blocks 
(temperature and enthalpy at 30 years) with respect to the same seven parameters define Ĵ .  

The composite sensitivity measures of the scaled sensitivity matrix Sij = Jij ⋅ (σ pi
/σ z j

) indicate 
(1) that initial reservoir temperature and the logarithm of the absolute permeability of the fracture 
continuum in X direction are the most influential parameters, and (2) that measurements of 
injection pressure and temperature are the most sensitive observations. This is consistent with the 
intuitive understanding that pressure is very sensitive to changes in reservoir temperature and 
permeability, and consequently that accurate measurements of injection pressure and temperature 
at an observation well contain the most information about key parameters. (It should be noted 
that in a single-component system, pressure and temperature are largely redundant observations, 
as under two-phase liquid-steam conditions, the pressure is equal to the saturated vapor pressure, 
which is a function of temperature.) 

Analyzing the contribution of each parameter to prediction uncertainty suggests that, considering 
all existing and potential observations, permeability and initial reservoir temperature contribute 
most to prediction uncertainty, confirming the parameter ranking from the composite sensitivity 
measures. Looking at the PCPU value (see Eq. (9)) for the temperature and enthalpy after 30 
years shows that fracture spacing and thermal conductivity (while considered overall the least 
influential parameters) contribute significantly to the uncertainties of the two predictions that are 
of particular interest for this study.  
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> PARAMETER 
 

  >> ABSOLUTE permeability 
     >>> ROCKS: FRACT 
         >>>> ANNOTATION: Fract. perm. X 
         >>>> LOGARITHM 
         >>>> INDEX     : 1 
         >>>> VARIATION : 0.25 
         <<<< 
 

     >>> ROCKS: FRACT 
         >>>> ANNOTATION: Fract. perm. Y 
         >>>> LOGARITHM 
         >>>> INDEX     : 2 
         >>>> VARIATION : 0.25 
         <<<< 
     <<< 
 

  >> POROSITY 
     >>> MATERIAL: FRACT 
         >>>> ANNOTATION: Fract. porosity 
         >>>> VALUE 
         >>>> VARIATION : 0.20 
         <<<< 
     <<< 
 

  >> RELATIVE permeability 
     >>> MATERIAL: FRACT 
         >>>> ANNOTATION: Slr 
         >>>> VALUE 
         >>>> PARAMETER : 1 
         >>>> VARIATION : 0.05 
         <<<< 
     <<< 
 

  >> WET thermal CONDUCTIVITY 
     >>> MATERIAL: MATRX FRACT 
         >>>> ANNOTATION: Therm. cond. 
         >>>> VALUE 
         >>>> DEVIATION : 0.5 
         <<<< 
     <<< 
 

  >> MINC 
     >>> MODEL 
         >>>> ANNOTATION: Fract. spacing 
         >>>> VALUE 
         >>>> PARAMETER : 1 2 3 
         >>>> DEVIATION :  20.0 
         >>>> PERTURB   :  -5.0 
         <<<< 
     <<< 
 

  >> INITIAL 
     >>> MATERIAL: DEFAU 
         >>>> ANNOTATION: Initial temp. 
         >>>> VALUE 
         >>>> INDEX     : 1 
         >>>> DEVIATION :   2.0 
         <<<< 
     <<< 
  << 

Figure 12: Excerpt of iTOUGH2 input file, showing > PARAMETER block with potentially 
influential parameters. 
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> OBSERVATION 
  >> TIMES: 61 EQUALLY spaced in YEARS (calibration points) 
     0.0 5.0 
  >> TIME :  1                in YEARS (prediction points) 
     30.0 
 

Presumably existing and potential calibration data sets 
 

  >> PRESSURE 
     >>> ELEMENT: _AA_1 
         >>>> ANNOTATION  : Inject. pres. 
         >>>> FACTOR      : 1.E5 (bar - Pa) 
         >>>> NO DATA right now, but expected to be available 
         >>>> DEVIATION   :  2.0 bar 
         >>>> TIME WINDOW : -1.0  6.0 YEARS 
         <<<< 
     <<< 
 

  >> TEMPERATURE 
     >>> ELEMENT: _FA_1 
         >>>> ANNOTATION  : Fract. T center 
         >>>> POTENTIALLY available if confirmed valuable 
         >>>> DEVIATION   :  2.0 
         >>>> TIME WINDOW : -1.0  6.0 YEARS 
         <<<< 
 

     >>> ELEMENT: 2CC_1 +3 [1-1] 
         >>>> ANNOTATION  : Matrix T off-center 
         >>>> POTENTIALLY available if confirmed valuable 
         >>>> DEVIATION   :  2.0 
         >>>> TIME WINDOW : -1.0  6.0 YEARS 
         <<<< 
     <<< 
 

  >> ENTHALPY 
     >>> SINK: PRO_1 
         >>>> ANNOTATION  : Enthalpy 
         >>>> NO DATA right now, but expected to be available 
         >>>> conversion FACTOR: 1000.0  (kJ/kg - J/kg) 
         >>>> DEVIATION   : 100.0 kJ/kg 
         >>>> TIME WINDOW :  -1.0  6.0 YEARS 
         <<<< 
     <<< 
 

  >> MASS FRACTION 
     >>> ELEMENT: _KA_1 
         >>>> ANNOTATION  : Cl conc. 
         >>>> POTENTIALLY available if confirmed valuable 
         >>>> LIQUID PHASE 
         >>>> COMPONENT   : 2 
         >>>> DEVIATION   :  0.1 
         >>>> TIME WINDOW : -1.0  6.0 YEARS 
         <<<< 
     <<< 
 

Predictions for data-worth analysis 
 

  >> TEMPERATURE 
     >>> ELEMENT: 5DB_1 
         >>>> ANNOTATION  : Temp. in 30 yrs 
         >>>> PREDICTION for DWA 
         >>>> DEVIATION   :  2.0  C 
         >>>> TIME WINDOW :  29.0 31.0 YEARS 
         <<<< 
     <<< 
 

  >> ENTHALPY 
     >>> SINK: PRO_1 
         >>>> ANNOTATION  : Enth. in 30 yrs 
         >>>> conversion FACTOR: 1000.0  (kJ/kg - J/kg) 
         >>>> PREDICTION for DWA 
         >>>> DEVIATION   : 100.0 kJ/kg 
         >>>> TIME WINDOW :  29.0 31.0 YEARS 
         <<<< 
     <<< 

Figure 13: Excerpt of iTOUGH2 input file, showing > OBSERVATION block with potential 
calibration data sets. 
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> COMPUTATION 
 
  >> OPTION 
 OBS >>> DATA-WORTH ANALYSIS for data SETS   based on PREDICTION uncertainty 
#OBP >>> DATA-WORTH ANALYSIS for data points based on PREDICTION uncertainty 
#OAS >>> DATA-WORTH ANALYSIS for data SETS   based on PARAMETER  uncertainty 
#OAP >>> DATA-WORTH ANALYSIS for data points based on PARAMETER  uncertainty 
     <<< 
 
  >> OUTPUT 
     >>> YEARS 
     <<< 
  << 
< 
 

Figure 14: Excerpt of iTOUGH2 input file, showing > COMPUTATION block, which initiates 
the data-worth analysis. 

 

Figure 15 shows the section of the iTOUGH2 output file that is relevant to data-worth analysis. 
After the header “RESIDUAL ANALYSIS”, the explanation about variable DWi states (i) that 
Metric 1, i.e., Eq. (16a), is used to evaluate data worth,  (ii) that the data-worth value is 
calculated based on prediction uncertainty (i.e., matrix C ẑẑ , rather than estimation uncertainty, 
matrix Cpp ), (iii) that the overall uncertainty is measured by the trace (rather than the 
determinant) of the covariance matrix, and (iv) that the analysis is performed by removing entire 
data sets (rather than individual data points). 

Next, information about each observation is given, with DWi in the final column, followed by a 
+ or – sign, indicating whether the corresponding observation was added to or removed from the 
reference data set. Because the data-worth analysis was performed for entire data sets, each data 
point belonging to a data set has the same DWi value (which is the data set’s worth divided by 
the number of calibration points in that set). 

This analysis suggests that measuring enthalpy in the production well during the first five years 
of production is valuable; removing that data set would considerably increase the uncertainty 
with which reservoir temperature and future production enthalpy could be predicted. The high 
data worth of enthalpy is not surprising given that enthalpy is the same data type as the 
prediction of interest. Removing measurements of injection pressure is less detrimental. 

Of the three potential data sets to be added to the reference data sets, measuring temperature 
along the likely flow path between the injector and producer as well as chloride concentrations 
appears to be most beneficial. This is likely because the arrival time of the cooling front and in 
particular tracer breakthrough data are the only data that contain useful information about 
porosity, which in turn affects production enthalpy.  

It also appears beneficial to have some quantitative prior information about thermal conductivity, 
as this value cannot be well determined during the first year of production, but it has a relatively 
high impact on the long-term predictions; a similar argument can be made for fracture spacing. 
Conversely, an independent prior estimate of initial reservoir temperature is of little value, 
mainly because it is well constrained by the available calibration data.  
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The final two observations (No. 313 and 314) do not have a DWi value, because these are not 
calibration points, but the predictions whose uncertainty is used as the criterion for evaluating 
data worth. Note that the data-worth value would be different if the analysis were performed for 
individual data points, because the degree of redundancy and reference data set are different 
(remove #OBP (see Figure 14) to run an analysis using Option B for individual data Points). 

The final two tables shown in Figure 16 contain the relative data worth of individual data sets 
and data types, respectively. The tables show that measuring production enthalpy (as is planned) 
is essential for calibrating the model, and that obtaining reservoir temperatures would further 
increases the accuracy of the predicted state after 30 years of production. This is intuitively 
reasonable as these two calibration data sets are of the same type as the target prediction. 
Conversely, measuring the injection pressure is the least valuable observation despite its high 
information content for estimating permeability. Recall that permeability has only a limited 
impact on the target variables (production enthalpy and temperature), mainly because fluid is 
injected and produced at prescribed mass flow rates, i.e., the amount of fluid flowing through the 
reservoir and related heat mining efficiency does not strongly depend on permeability. Pressure 
measurements are thus not of primary importance for this particular operational scenario. 

In general, the absence or availability of prior information about the parameters is of limited 
significance given the information contained in entire data sets, and given the assumed standard 
deviation with which such prior information could be provided. The data-worth value for prior 
information may be high if the sensitivity coefficients of the calibration points (matrix J) with 
respect to this parameter are small, but the sensitivity coefficients of the model predictions 
(matrix Ĵ ) are high. This indicates that the calibration data sets do not contain information about 
a parameter that is important for the prediction, and that it is therefore essential to obtain an 
independent estimate of this influential parameter. 

The results of the data-worth analysis would be considerably different if the objective were to 
minimize the estimation uncertainty (i.e., the result of the calibration phase only), without 
considering the purpose for which the calibrated model will be used. Such an analysis can be 
conducted by removing #OAS or #OAP (see Figure 14), and by deleting the second 
>> TIMES block, which defines the (now obsolete) prediction time of 30 years (see Figure 13). 
In such an analysis, the relative importance of enthalpy is somewhat reduced while tracer 
measurements would be considered a more valuable calibration data set, because it is the only 
observation type that helps constrain fracture porosity.  

Finally, the uncertainty of the predicted temperature and enthalpy is estimated to be 4.5ºC and 
240 kJ/kg, respectively (see Figure 15), assuming that only data from the reference set are 
available for model calibration. If these prediction uncertainties are not acceptable, the data-
worth analysis suggests to add temperature measurements rather than to perform a tracer test. 
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 ********************************************************************************************************************************** 
                                                         RESIDUAL ANALYSIS 
 ********************************************************************************************************************************** 
 
 RESIDUAL : Measured - computed 
 C.O.F.   : Relative contribution to final objective function 
 STD. DEV.: A posteriori standard deviation of calculated system response 
 Yi       : Local reliability or influence; observations with Yi < 0.25 are poorly controlled 
 Wi       : Studentized residual; if abs(Wi) > u(0.95) = 1.96 observation is potential outlier 
 DWi      : Data-Worth Analysis: Worth of potential and/or existing calibration data [-] 
            Metric No. 1:  1-f(C+)/f(C) or 1-f(C)/f(C-), where f(C) = trace(Czz) 
            Changes in covariance matrix Czz are caused by adding (+) potential or removing (-) existing calibration data sets 
 
---------------------------------------------------------------------------------------------------------------------------------- 
   #  OBSERVATION   AT TIME  [a]      MEASURED     COMPUTED     RESIDUAL     WEIGHT C.O.F [%]    STD. DEV.    Yi      Wi    DWi +/- 
 ---------------------------------------------------------------------------------------------------------------------------------- 
   1  Fract. perm. X              -1.42218E+01 -1.42000E+01 -2.18487E-02  1.000E-50     0.000    5.634E-02                  0.014 + 
   2  Fract. perm. Y              -1.42218E+01 -1.42000E+01 -2.18487E-02  1.000E-50     0.000    3.576E-01                  0.363 + 
   3  Fract. porosity              5.00000E-01  5.00000E-01  0.00000E+00  1.000E-50     0.000    5.665E-01                  0.079 + 
   4  Slr                          3.00000E-01  3.00000E-01  0.00000E+00  1.000E-50     0.000    7.459E-02                  0.065 + 
   5  Therm. cond.                 2.10000E+00  2.10000E+00  0.00000E+00  2.000E+00     0.000    4.631E-01                  0.538 - 
   6  Fract. spacing               1.00000E+02  1.05000E+02 -5.00000E+00  4.000E-02     0.000    1.416E+01                  0.116 - 
   7  Initial temp.                3.00000E+02  3.00000E+02  0.00000E+00  5.000E-01     0.000    1.223E+00                  0.001 - 
   8  Inject. pres.   0.00000E+00  0.00000E+00  8.56477E+06 -8.56477E+06  5.000E-06     0.064  1.50690E+05  0.00    0.00    0.308 - 
  13  Inject. pres.   8.33333E-02  0.00000E+00  9.98088E+06 -9.98088E+06  5.000E-06     0.087  9.65389E+04  0.00    0.00    0.308 - 
 ... 
 308  Inject. pres.   5.00000E+00  0.00000E+00  1.02458E+07 -1.02458E+07  5.000E-06     0.091  3.22777E+04  0.00    0.00    0.308 - 
   9  Fract. T center 0.00000E+00  0.00000E+00  3.00000E+02 -3.00000E+02  5.000E-01     0.782  1.22335E+00  0.00    0.00    0.498 + 
  14  Fract. T center 8.33333E-02  0.00000E+00  3.00036E+02 -3.00036E+02  5.000E-01     0.782  1.22751E+00  0.00    0.00    0.498 + 
 ... 
 309  Fract. T center 5.00000E+00  0.00000E+00  2.97439E+02 -2.97439E+02  5.000E-01     0.769  2.25178E+00  0.00    0.00    0.498 + 
  10  Matrix T off-ce 0.00000E+00  0.00000E+00  3.00000E+02 -3.00000E+02  5.000E-01     0.782  1.22335E+00  0.00    0.00    0.325 + 
  15  Matrix T off-ce 8.33333E-02  0.00000E+00  3.00011E+02 -3.00011E+02  5.000E-01     0.782  1.22465E+00  0.00    0.00    0.325 + 
 ...  
 310  Matrix T off-ce 5.00000E+00  0.00000E+00  2.91076E+02 -2.91076E+02  5.000E-01     0.736  2.44647E+00  0.00    0.00    0.325 + 
  11  Enthalpy        0.00000E+00  0.00000E+00  1.34488E+06 -1.34488E+06  1.000E-05     0.006  6.90726E+03  0.00    0.00    0.884 - 
  16  Enthalpy        8.33333E-02  0.00000E+00  1.50075E+06 -1.50075E+06  1.000E-05     0.008  8.34776E+04  0.00    0.00    0.884 - 
 ... 
 311  Enthalpy        5.00000E+00  0.00000E+00  1.38545E+06 -1.38545E+06  1.000E-05     0.007  1.21766E+04  0.00    0.00    0.884 - 
  12  Cl conc.        0.00000E+00  0.00000E+00  7.68313E-23 -7.68313E-23  1.000E+01     0.000  4.28222E-21  0.00    0.00    0.558 + 
  17  Cl conc.        8.33333E-02  0.00000E+00  1.30151E-07 -1.30151E-07  1.000E+01     0.000  1.22405E-06  0.00    0.00    0.558 + 
 ...   
 312  Cl conc.        5.00000E+00  0.00000E+00  9.57731E-01 -9.57731E-01  1.000E+01     0.003  1.92311E-01  0.00    0.00    0.558 + 
 313  Temp. in 30 yrs 3.00000E+01  0.00000E+00  2.45271E+02 -2.45271E+02  5.000E-51     0.000  4.52151E+00  0.00    0.00  predict 
 314  Enth. in 30 yrs 3.00000E+01  0.00000E+00  1.33094E+06 -1.33094E+06  1.000E-55     0.000  2.42406E+05  0.00    0.00  predict 
 ================================================================================================================================== 

Figure 15:  Excerpt of iTOUGH2 output file, showing results of residual and data-worth analysis. 
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 MEAN      : Mean of residuals 
 MEDIAN    : Median of residuals 
 STD. DEV. : Root mean squared deviation of residuals from mean 
 AVE. DEV. : Mean absolute deviation of residuals from mean 
 SKEWNESS  : Degree of asymmetry of residuals around mean 
 KURTOSIS  : Relative peakedness of distribution 
 BCT       : Box-Cox transformed data 
 M/S       : Ratio of mean and standard deviation 
 DWA       : Relative Data Worth [%] 
 COF       : Contribution to final objective function [%] 
 
 ================================================================================================================================== 
 DATASET              DATAPOINTS          MEAN       MEDIAN    STD. DEV.    AVE. DEV.   SKEWNESS   KURTOSIS      M/S    DWA     COF 
 ---------------------------------------------------------------------------------------------------------------------------------- 
 PRIOR INFORMATION             3                                                                                       0.74    0.00 
 Inject. pres.     [Pa]       61     0.000E+00    0.000E+00    0.000E+00    0.000E+00      0.000      0.000     0.00  11.86 -  0.00 
 Fract. T center   [C]        61     0.000E+00    0.000E+00    0.000E+00    0.000E+00      0.000      0.000     0.00  19.21 +  0.00 
 Matrix T off-ce   [C]        61     0.000E+00    0.000E+00    0.000E+00    0.000E+00      0.000      0.000     0.00  12.55 +  0.00 
 Enthalpy          [W]        61     0.000E+00    0.000E+00    0.000E+00    0.000E+00      0.000      0.000     0.00  34.11 -  0.00 
 Cl conc.          [kg/kg]    61     0.000E+00    0.000E+00    0.000E+00    0.000E+00      0.000      0.000     0.00  21.52 +  0.00 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 ALL RESIDUALS     WEIGHTED  314    -7.152E+01   -5.104E+01    6.374E+01    5.560E+01     -0.288     -1.750     1.12 100.00  100.00 
 ================================================================================================================================== 
 
 
 ================================================================================================================================== 
 DATATYPE             DATAPOINTS          MEAN       MEDIAN    STD. DEV.    AVE. DEV.   SKEWNESS   KURTOSIS      M/S    DWA     COF 
 ---------------------------------------------------------------------------------------------------------------------------------- 
 PRIOR INFORMATION             3                                                                                       0.74    0.00 
 PRESSURE          [Pa]       61    -1.017E+07   -1.022E+07    2.163E+05    6.433E+04      6.752     47.214    47.04  11.86    0.00 
 MASS FRACTION     [kg/kg]    61    -5.507E-01   -6.683E-01    3.571E-01    3.108E-01      0.401     -1.476     1.54  21.52    0.00 
 TEMPERATURE       [C]       123    -2.974E+02   -2.987E+02    5.321E+00    2.173E+00      7.712     71.979    55.89  31.76    0.00 
 ENTHALPY          [W]        62    -1.396E+06   -1.394E+06    2.000E+04    1.104E+04     -1.670     11.980    69.81  34.11    0.00 
 ================================================================================================================================== 
 

Figure 16:  Excerpt of iTOUGH2 output file, showing summary statistics of data-worth analysis. 
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5. CONCLUDING REMARKS 
In addition to its inverse modeling capabilities, iTOUGH2 includes options for performing 
sensitivity and data-worth analyses, which improve system understanding and help design 
experiments and monitoring systems, so the data collected contain the information needed to 
calibrate the model. 

A conventional, local sensitivity analysis can be performed as a pre-calibration task. However, 
sensitivity coefficients and composite sensitivity measures are also evaluated at the end of an 
inversion that uses a derivative-based minimization algorithm (specifically the Levenberg-
Marquardt method). 

Two global sensitivity analysis methods are implemented. The Morris one-at-a-time method can 
be considered an approach of great practical value, as it identifies influential parameters as well 
as the impact of nonlinearity and/or interaction effects with a limited number of simulation runs. 
In addition, by having confidence intervals of the indices, it is possible to compare the 
importance of parameters with a limited number of simulation runs.  
The Sobol’ method yields a statistically more quantitative global sensitivity index in the context 
of UQ, at the expense of having to evaluate significantly more simulation runs. Similarity of the 
total sensitivity index and the Morris mean |EE| suggests that mean |EE| would be sufficient and 
could be used instead of the total sensitivity index, requiring fewer simulations. An advantage of 
the Sobol’ method is that having two indices – Sobol’ index and total sensitivity index – allows 
us to identify the presence and magnitude of interactions effects. 
Finally, iTOUGH2 can be used to perform a data-worth analysis, which is based on local 
sensitivity analyses of a calibration and prediction model. It provides insights into the relative 
value of data points or entire data sets for the purpose of model calibration and related model 
predictions. 
Sensitivity and data-worth analysis are essential tools for the development of more reliable and 
more defensible numerical models. They also help improve the design and analysis of laboratory 
experiments, field tests, and monitoring systems, making data collection more cost effective. 
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