
LBNL-6871E 
 
 
 
 
 
 

USER’S MANUAL OF THE 
TOUGH+ CORE CODE v1.5: 
A GENERAL-PURPOSE SIMULATOR OF 
NON-ISOTHERMAL FLOW AND 
TRANSPORT THROUGH POROUS AND 
FRACTURED MEDIA 
 
 
G.J. Moridis and K. Pruess 
 
Earth Sciences Division, 
Lawrence Berkeley National Laboratory, 
Berkeley, CA 94720 
 
 
August 2014 
 
 
This work was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and 
Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. 
Department of Energy, Contract No DE-AC02-05CH11231.  



 ii  

 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 

 



 iii 

User’s Manual of the TOUGH+ Core Code v1.5:  
A General-Purpose Simulator of  
Non-Isothermal Flow And Transport  
Through Porous And Fractured Media 
 
G.J. Moridis and K. Pruess 
Earth Sciences Division, Lawrence Berkeley National Laboratory 
University of California, Berkeley, California 
 
 
 
 
 
 
 

Abstract 

 
TOUGH+ v1.5 is a numerical code for the simulation of multi-phase, multi-

component flow and transport of mass and heat through porous and fractured media, and 
represents the third update of the code since its first release [Moridis et al., 2008]. 
TOUGH+ is a successor to the TOUGH2 [Pruess et al., 1991; 2012] family of codes for 
multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley 
National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any 
computational platform (workstations, PC, Macintosh). 

TOUGH+ v1.5 employs dynamic memory allocation, thus minimizing storage 
requirements.  It has a completely modular structure, follows the tenets of Object-Oriented 
Programming (OOP), and involves the advanced features of FORTRAN 95/2003, i.e., 
modules, derived data types, the use of pointers, lists and trees, data encapsulation, defined 
operators and assignments, operator extension and overloading, use of generic procedures, 
and maximum use of the powerful intrinsic vector and matrix processing operations. 

This report presents the core TOUGH+ v1.5 code, i.e., the part of the code that is 
common to all its applications.  It provides a description of the underlying physics and 
thermodynamics of non-isothermal flow, of the mathematical and numerical approaches, as 
well as a detailed explanation of the general (common to all applications) input 
requirements, options, capabilities and output specifications. The core code cannot run by 
itself: it needs to be coupled with the code for the specific TOUGH+ application option that 
describes a particular type of problem.  The additional input requirements specific to a 
particular TOUGH+ application options and related illustrative examples can be found in 
the corresponding User’s Manual.   

 



 iv  

 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 

 



 v 

TABLE OF CONTENTS 

Abstract .................................................................................................................................................... iii	
  

List of Figures ........................................................................................................................................... ix	
  

List of Tables ............................................................................................................................................. xi	
  

1.0.  INTRODUCTION ............................................................................................. 1	
  

1.1.	
   Background ..................................................................................................................................... 1	
  

1.2.	
   The TOUGH+ v1.5 Core Code ...................................................................................................... 3	
  

2.0  CONCEPTS, UNDERLYING PHYSICS, AND GOVERNING EQUATIONS .... 7	
  

2.1.	
   Modeled Processes and Underlying Assumptions ........................................................................ 7	
  

2.2.	
   The Mass and Energy Balance Equation ...................................................................................... 9	
  

2.3.	
   Mass Accumulation Terms ............................................................................................................ 9	
  

2.4.	
   Heat Accumulation Terms ........................................................................................................... 10	
  

2.5.	
   Flux Terms ..................................................................................................................................... 12	
  

2.6.	
   Source and Sink Terms ................................................................................................................ 18	
  

2.7.	
   Thermophysical Properties .......................................................................................................... 19	
  
2.7.1. 	
   Water ........................................................................................................................................... 19	
  
2.7.2. 	
   Real Gases .................................................................................................................................. 20	
  
2.7.3. 	
   Other Phases and Components ................................................................................................... 21	
  

2.8. 	
   Porosity and Intrinsic Permeability Changes ........................................................................... 22	
  
2.8.1.	
   Changes caused by P- and T-dependence ................................................................................... 22	
  
2.8.1.	
   Changes caused by the evolution of solid phases ........................................................................ 23	
  

2.9.	
   Multiphase Diffusion .................................................................................................................... 27	
  
2.9.1.	
   General Considerations ............................................................................................................... 27	
  
2.9.2.	
   Diffusion Formulation in TOUGH+ ............................................................................................ 28	
  

2.10. 	
   Wettability-Related Phenomena ............................................................................................... 30	
  
2.10.1.	
   Relative permeavility ................................................................................................................. 31	
  
2.10.2.	
   Capillary pressure ..................................................................................................................... 31	
  
2.10.3.	
   Effect of solid phase deposition on capillary pressure .............................................................. 34	
  
2.10.4.	
   Effect of solid phase deposition on relative permeability .......................................................... 34	
  
2.10.5.	
   Pore compressibility of unconsolidated media in the presence of cementing solid phases ...... 34	
  

2.11.	
   Description of Flow in Fractured Media .................................................................................. 45	
  

3.0.  DESIGN AND IMPLEMENTATION OF TOUGH+ V1.5 ................................ 49	
  



 vi  

3.1.	
   Primary Variables ......................................................................................................................... 49	
  

3.2.	
   Space and Time Discretization .................................................................................................... 51	
  

3.3.	
   The Newton-Raphson Iteration ................................................................................................... 53	
  

3.4.	
   Implications of the Space Discretization Approach ................................................................... 55	
  

3.5.	
   Space Discretization of Diffusive Fluxes ..................................................................................... 55	
  

3.6.	
   Code Units of the TOUGH+ v1.5 Code ....................................................................................... 57	
  

4.0.  INPUT DATA REQUIREMENTS ................................................................... 63	
  

4.1.	
   Input Procedure ............................................................................................................................ 64	
  
4.1.1. 	
   Data Block/Keyword TITLE ....................................................................................................... 64	
  
4.1.2. 	
   Keyword/Record ENDCY ........................................................................................................... 64	
  
4.1.3. 	
   Keyword/Record ENDFI ............................................................................................................. 65	
  
4.1.4. 	
   Structure of TOUGH+ Standard Input Files .............................................................................. 65	
  

5.0.  MEMORY SPECIFICATION AND ALLOCATION ........................................ 71	
  

5.1.	
   Data Block MEMORY ...................................................................................................................... 71	
  

5.2.	
   Internal Checks ............................................................................................................................. 78	
  

6.0.  PHYSICAL PROPERTIES OF SYSTEM ...................................................... 81	
  

6.1.	
   Data Block ROCKS or MEDIA ....................................................................................................... 81	
  

6.3.	
   Data Block RPCAP ........................................................................................................................ 87	
  
6.3.1. 	
   Two-Phase Relative Permeability Functions .............................................................................. 88	
  
6.3.2. 	
   Two-Phase Capillary Pressure Functions .................................................................................. 91	
  

6.4.	
   Data Block DIFFUSION ............................................................................................................... 94	
  
6.4.1. 	
   User Options for Multiphase Diffusion ...................................................................................... 98	
  

6.5.	
   Block-by-Block Permeability Modification ................................................................................ 99	
  

7.0.  GEOMETRICAL REPRESENTATION, DOMAIN DISCRETIZATION,       
AND GRID GENERATION .................................................................................. 101	
  

7.1.	
   TOUGH+ Convention for Geometrical Data ........................................................................... 101	
  

7.2.	
   Data Block ELEME ...................................................................................................................... 103	
  

7.3.	
   Data Block CONNE ...................................................................................................................... 106	
  

7.4.	
   The MeshMaker.f95 Facility .................................................................................................. 108	
  
7.4.1. 	
   Inputs Related to Problem Definition and Dimensioning ......................................................... 108	
  
7.4.2. 	
   Inputs Related to Domain Heterogeneity .................................................................................. 110	
  



 vii 

7.4.3. 	
   Inputs Related to Description of Boundaries ............................................................................ 113	
  
7.4.4. 	
   Inputs for Grid Construction .................................................................................................... 116	
  

8.0.  INITIAL CONDITIONS AND BOUNDARY CONDITIONS .......................... 127	
  

8.1.	
   Data Block INCON ...................................................................................................................... 127	
  

8.2.	
   Data Block INDOM ...................................................................................................................... 130	
  

8.3.	
   Data Block EXT-INCON ............................................................................................................. 131	
  
8.3.1.	
   Data Block GEOMETRY ........................................................................................................... 131	
  
8.3.2. 	
   Data Block SEQUENCE ........................................................................................................... 132	
  
8.3.3. 	
   Data Block LIST ........................................................................................................................ 133	
  
8.3.4. 	
   Remaining Data Blocks in EXT-INCON ................................................................................... 134	
  
8.3.5. 	
   Data Block COLUMN ............................................................................................................... 135	
  

8.4.	
   Implementing Initial Conditions ............................................................................................... 136	
  

8.5.	
   Implementing Boundary Conditions ......................................................................................... 138	
  
8.5.1. 	
   General ..................................................................................................................................... 138	
  
8.5.2. 	
   Data Block BOUNDARIES ....................................................................................................... 140	
  

9.0.  SOURCES AND SINKS .............................................................................. 145	
  

9.1.	
   Data Block GENER ...................................................................................................................... 145	
  

9.2.	
   Discussion on sinks and sources ................................................................................................ 149	
  

10.  COMPUTATIONAL PARAMETERS ............................................................ 151	
  

10.1.	
   Data Block PARAM .................................................................................................................... 151	
  

10.2.	
   Modification of Computational Parameters During the Course of a TOUGH+ 
Simulation ................................................................................................................................. 162	
  

10.3.	
   Data Block SOLVR .................................................................................................................... 166	
  

10.4.	
   Discussion on Linear Equation Solvers .................................................................................. 168	
  

11.  OUTPUT SPECIFICATIONS ........................................................................ 171	
  

11.1	
    Output of Primary and Secondary Variables ........................................................................ 172	
  

11.2.	
   Data Block TIMES .................................................................................................................... 172	
  

11.3.	
   Data Block SUBDOMAINS ........................................................................................................ 173	
  

11.4.	
   Data Block INTERFACES ........................................................................................................ 178	
  

11.5.	
   Data Block SS_GROUPS ........................................................................................................... 187	
  



 viii  

11.8.	
   Warning Output and Error Messages .................................................................................... 189	
  

Acknowledgements ................................................................................................................................ 191	
  

References ............................................................................................................................................... 193	
  
 
 



 ix 

LIST OF FIGURES 

 
Figure 2.1. Schematic of pore channels, showing convergent-divergent geometry with a 

succession of pore throats and pore bodies.. ........................................................... 25 

Figure 2.2. Tubes-in-series model of pore channels .................................................................. 26 

Figure 2.3. Liquid and gas relative permeabilities based on the van Genuchten model 
[Finsterle, 1999] ........................................................................................................ 31 

Figure 2.4. Schematic of probability density function p(r) for pore size distribution ................... 33 

Figure 2.5. Compressibility of an unconsolidated porous medium impregnated with 
cementing solid phases (ice and/or hydrates).  In this example, SSmin = 0.15, 
SSmax = 0.4, αPU = 10-8 Pa-1, αPL = 10-9 Pa-1 and δ = 0.015.. ..................................... 43 

Figure 2.6. Effect of the varying compressibility described in Figure 2.5 on the porosity of 
an unconsolidated porous medium undergoing depressurization for various 
levels of saturation SS of cementing solid phases. ................................................... 44 

Figure 2.7. Idealized double porosity model of a fractured porous medium. .............................. 45 

Figure 2.8. Subgridding in the method of "multiple interacting continua" (MINC).. ..................... 47 

Figure 2.9. Flow connections in the “dual permeability” model. Global flow occurs 
between both fracture (F) and matrix (M) grid blocks. In addition there is F-M 
interporosity flow. ..................................................................................................... 48 

Figure 3.1. Space discretization and geometry data in the integral finite difference method 
(from Pruess et al. [1999]).. ...................................................................................... 53 

Figure 4.1. The DIFFUSION data block, with examples of the 
Diffusion_Key_Parameters and 
Component_Diffusivities_in_Phases namelists. ......................................... 98 

Figure 7.1. An example of a MeshMaker.f95 input file for the creation of a Cartesian 3D 
grid.  Note that no heterogeneous regions or boundaries are defined in this 
grid. ........................................................................................................................ 121 

Figure 7.2. An example of a MeshMaker.f95 input file for the creation of a single-layer 
(1D) cylindrical grid.  Note that no heterogeneous regions or boundaries are 
defined in this grid. ................................................................................................. 121 

Figure 7.3. An example of a MeshMaker.f95 input file for the creation of a large 
Cartesian 3D grid with heterogeneous regions and defined boundaries. ............... 122 

Figure 7.4. An example of a MeshMaker.f95 input file for the creation of a large 
cylindrical 2D grid with multiple layers, heterogeneous regions and defined 
boundaries. ............................................................................................................. 123 

Figure 8.1. An example of the NAMELIST-described termination data printed at the end of 
the SAVE file from a TOUGH+ v1.5 simulation. ...................................................... 129 



 x  

Figure 8.2. An example of the namelist structure of the BOUNDARIES data block.  The 
time-variable data are provided and read in tabular form. ...................................... 129 

Figure 10.1. An example of a Parameter_Update_File for parameter updating in the 
course of a TOUGH+ simulation. ........................................................................... 164 

Figure 10.2. An example of a Parameter_Update_File indicating three completed 
parameter updates, in addition to another one (at the top of the file) that has 
not yet been executed. ........................................................................................... 165 

Figure 11.1. Examples of the SUBDOMAINS data block for tracking the evolution of volume-
averaged properties and conditions in specified subdomains.  This data block 
uses namelist-based formats for data inputs. ......................................................... 178 

Figure 11.2. Examples of the INTERFACES data block for tracking flows at specified 
interfaces.  This data block uses namelist-based formats for data inputs. ............. 186 

Figure 11.3. Example of the SS_GROUPS data block for tracking flows through specified 
groups of sources/sinks.  This data block uses namelist-based formats for 
data inputs. ............................................................................................................. 189 

 



 xi 

LIST OF TABLES 

 

Table 4.1.  TOUGH+ input data blocks. ........................................................................................ 68 

 

 

 
 
 
 
 
 
 

 
  

 

 

 

 

 
 



 xii  

 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 

 

 



 

  1 

 

 

 

1.0.  Introduction 
 
 

1.1. Background 

TOUGH+ v1.5 is a numerical code for the simulation of multi-phase, multi-component 

flow and transport of mass and heat through porous and fractured media, and represents 

the third update of the code since its first release in a version focusing on the analysis of 

system behavior of hydrate-bearing sediments [Moridis et al., 2008]. TOUGH+ is a 

successor to the TOUGH2 [Pruess et al., 1999; 2012] family of codes for multi-

component, multiphase fluid and heat flow developed at the Lawrence Berkeley National 

Laboratory (LBNL). It is written in standard FORTRAN 95/2003, and can be run on any 

computational platform (workstations, PC, Macintosh). 

 TOUGH+ v1.5 has a completely modular architecture.  Any member of the 

TOUGH+ family of codes comprises three components: (a) the core TOUGH+ code that 

is common to all applications related to the study of non-isothermal processes of flow and 

transport through geologic media, (b) the code that is unique to a particular type of 



 

 2  

application/problem (e.g., the properties and flow of a crude oil, the flow of water and air 

through geologic media, etc.), and (c) supplemental TOUGH+ code units that describe 

special physics and processes that are encountered in particular types of problems (e.g., 

code units that describe real gas properties, non-Darcian flow processes, salinity effects on 

the properties of water, etc.) and are used by more than one application options.   

Thus, the core TOUGH+ code – which is distributed as a separate entity by 

LBNL– cannot conduct any simulations by itself, but needs additional units of 

supplemental and problem-specific code before it can become operational.  The additional 

code solves the equation of state (EOS) corresponding to the specific problem; it is called 

an application option or simply an option in the TOUGH+ nomenclature and is 

distributed as a separate entity/product by LBNL.  The term option – rather the older term 

module or EOS that were used in the TOUGH2 [Pruess et al., 1999; 2012] nomenclature 

– is used to avoid confusion, as the word module has a particular meaning in the 

FORTRAN 95/2003 language of TOUGH+.   

For example, to solve the problem of flow of water/brine and real gas flow through 

a tight fractured porous medium (e.g., in a fractured shale reservoir), the TOUGH+ v1.5 

code must be coupled with the REALGASBRINE v1.0 option [Moridis and Freeman, 

2014].  A discussion of the processes that are particular to this problem, as well as a 

detailed explanation of the additional (over those needed by the core code) input data 

requirements, a description of the output options, and appropriate illustrative examples 

with sample input and output files are included in the User’s Manual of the corresponding 

application option. 



 

  3 

1.2. The TOUGH+ v1.5 Core Code 

While the underlying principles, physics and thermodynamics are similar to those used in 

the TOUGH2 family of codes [Pruess et al., 1999; 2012], the code in TOUGH+ v1.5 is a 

radical departure from the earlier language and architecture of TOUGH2.  The FORTRAN 

95/2003 language of TOUGH+ has enabled a drastically different architecture.  It employs 

dynamic memory allocation, thus minimizing storage requirements.  It follows the tenets 

of Object-Oriented Programming (OOP), and involves entirely new data structures that 

describe the objects upon which the code is based.  The basic objects are defined through 

derived data types, and their properties and processes are described in modules and sub-

modules, i.e., entities that incorporate the object attributes and parameters in addition to 

the procedures (corresponding to the older concepts of “functions” and “subroutines” in 

FORTRAN 77) that describe its behavior and processes.  As discussed earlier, the 

TOUGH+ v1.5 code has a completely modular structure that is designed for maximum 

traceability and ease of expansion.   

By using the capabilities of the FORTRAN95/2003 language, the new OOP 

architecture involves the use of pointers, lists and trees, data encapsulation, defined 

operators and assignments, operator extension and overloading, use of generic procedures, 

and maximum use of the powerful intrinsic vector and matrix processing operations 

(available in the extended mathematical library of FORTRAN 95/2003).  This leads to 

increased computational efficiency, while allowing seamless applicability of the code to 

multi-processor parallel computing platforms. The result is a code that is transparent and 

compact, and frees the developer from the tedium of tracking the disparate attributes that 

define the objects, thus enabling a quantum jump in the complexity of problem that can be 



 

 4  

tackled. An additional feature of the FORTRAN 95/2003 language of TOUGH+ is the 

near complete interoperability with C/C++, which allows the interchangeable use of 

procedures written in either FORTRAN 95/2003 or C/C++, makes possible the seamless 

coupling with external packages (such as the geomechanical commercial code FLAC3D 

[Itasca, 2002] or ROCMECH [Kim and Morids, 2013]) and interaction with pre- and post-

processing graphical environments.  

Note that TOUGH+ v1.5 still uses a large number of the inputs (and the input 

formats) used by the conventional TOUGH2 code to fulfill the functional requirement 

(part of the code design) of backward compatibility of the TOUGH+ family codes with 

older input data files used in TOUGH2 [Pruess et al., 1999; 2012] simulations.  However, 

more advanced input data structures and formats are introduced in this version to support 

and describe capabilities unavailable in earlier code versions.  More powerful input data 

file structures will be available in planned future releases of TOUGH+. 

By solving the coupled equations of mass and heat balance, TOUGH+ v1.5 – coupled 

with the appropriate application option – can model the non-isothermal phase behavior 

and flow of fluids and heat in complex geologic media.  The code can simulate problems 

covering the range from laboratory- to field-scale.  The only limitations on the size of the 

domain to be simulated are imposed by the underlying physics and by the limitations of 

the computing platform.  Thus, if the volume of the domain and its subdivisions are such 

that (a) a representative volume can be defined and (b) the fluid flow through the 

porous/fractured media can be adequately described mathematically, then TOUGH+ can 

be used for the solution of the problem if the appropriate option is available. 



 

  5 

This report on the core code of TOUGH+ v1.5 provides a detailed description of 

the underlying equations of mass and energy balance in general multi-phase, multi-

component systems involving porous and fractured porous media.  Flow through such 

media is described by using multi-phase versions of Darcy’s law, with appropriate 

extensions to describe non-linear behavior in gas flow through low-permeability media 

[Klinkenberg, 1901].  The report also discusses the source on information for the 

description of the thermophysical properties of commonly used fluids, such as water, real 

gases, etc., and includes additional subjects that are common to a wide range flow and 

transport processes such as multi-phase, multi-component diffusion, the pressure and 

temperature dependence of porosity (and the corresponding effect on permeability), gas 

solubility in water, flow through fractured media, and wettability-related issues (relative 

permeability and capillary pressure) in deformable media, including the effect of solid 

phases such as precipitating salts or the formation of phases such as ice and gas hydrates. 

The spatial and temporal discretization of the integrodifferential equations of mass 

and energy balance equations results in a set of strongly nonlinear (in general) algebraic 

equations that need to be satisfied in every subdivision (element) of the discretized 

domain.  These fully implicit equations are linearized using the Newton-Raphson iteration, 

and the resulting Jacobian matrix equation is solved – using one of the several solutions 

options, including a family of preconditioned conjugate gradient solvers and a direct 

solver – until an acceptable convergence of the solution at each timestep is attained.  The 

accurate solution of the mass and energy balance equations being the basic method 

employed in TOUGH+ v1.5 (and in all members of the TOUGH2 family of codes [Pruess 

et al., 1999; 2012]), the timestep control is always subjugated to the requirement for an 



 

 6  

accurate solution and is a process driven mainly by the progress of the simulation rather 

than by the user specifications.  

In addition to the detailed presentation of the underlying physics, thermodynamics, 

mathematics and numerical approaches, this report provides a thorough discussion of the 

various inputs that are common to all TOUGH+ numerical simulation of flow and 

transport processes through porous media.  These include the data needed for the 

appropriate sizing of the dynamically dimensioning arrays of TOUGH+ v1.5, 

identification of processes that may be included or omitted (e.g., diffusion, porosity-

permeability dependence, etc.), and descriptions of the discretized simulation domain in 

terms of elements and connections, of the properties of the various porous media in the 

domain, of the computational parameters that control the mathematical approaches and the 

execution specifics, of the definition of the initial and boundary conditions, and of the 

output options and specifications.  As discussed earlier, data specific to the TOUGH+ v1.5 

application options are not discussed here, as they are included in the corresponding 

User’s Manuals along with sample problems.  

 

 



 

  7 

 

 

 

2.0  Concepts, Underlying Physics, and 
Governing Equations 

 
 

2.1. Modeled Processes and Underlying Assumptions 

The TOUGH+ v1.5 general-purpose simulator can be used as the basis to model all the 

known processes and phenomena associated with the flow and transport of fluids and heat 

through porous and/or fractured media, such as:  

(1) The flow of gases and liquids in the geologic system  

(2) The corresponding heat flow and transport  

(3) The partitioning of the mass components among the possible phases 

 (4) Heat exchanges due to  

a. Conduction 

b. Advection/convection 

c. Radiation 

d. Chemical reactions 



 

 8  

e. Latent heat related to phase changes (ice melting or water fusion, water 

evaporation or vapor condensation)  

f. Gas dissolution  

 (5) Equilibrium or kinetic chemical reactions,  

(6) The multi-phase transport of solutes and colloids, accounting for advection, 

molecular diffusion, and sorption 

(7) The effects of solutes on the system behavior  

Note that this list is not comprehensive, but only indicative of some of the most 

obvious applications of the TOUGH+ family of codes.  A significant effort has been 

invested in the incorporation into the code of the most recent advances in physics 

thermodynamics, mathematics and numerical analysis, and in keeping the simplifying 

assumptions involved in the development of the underlying models of the code to a 

minimum. Thus, the main assumption involved in TOUGH+ is that the laws governing the 

flow of fluids (Darcian and non-Darcian) and heat are known and valid in the simulated 

domain under the conditions of the study.   

In the present section we present some fundamental principles and governing 

equations that are universally applicable to (and present in) all problems of flow and 

transport investigated by the TOUGH+ family of codes.  More specific equations that are 

applicable to the particular problems investigated by the individual members of the 

TOUGH+ family (each describing a particular equation of state – EOS) will be presented 

in detail and discussed in the User’s Manual accompanying each of these application 

options. 



 

  9 

2.2. The Mass and Energy Balance Equation 

Following Pruess et al. [1999; 2012], mass and heat balance considerations in every 

subdomain (gridblock) into which the simulation domain is been subdivided by the 

integral finite difference method dictates that  

 ∫∫∫ +⋅=
Γ nnn VV

dVqdÃdVM
dt
d κκκ  nF , (2.1) 

where:  

V, Vn volume, volume of subdomain n [L3]; 

Mκ mass accumulation term of component κ [kg m-3]; 

A, Γn surface area, surface area of subdomain n [L2]; 

Fκ Darcy flux vector of component κ [kg m-2s-1]; 

n inward unit normal vector; 

qκ source/sink term of component κ [kg m-3s-1]; 

t time [T]. 

 

2.3. Mass Accumulation Terms 

Under equilibrium conditions, the mass accumulation terms Mκ for the mass components 

in equation (2.3) are given by 

 M κ = φS
β

β≡1,...,Nβ
∑ ρ

β
X

β

κ
,   κ ≡1,...,Nκ  (2.2) 

where 

φ porosity [dimensionless];  



 

 10  

ρβ density of phase β [kg m−
3]; 

Sβ saturation of phase β [dimensionless]; 

κ

β
X  

 mass fraction of component κ in phase β [kg/kg] 

Nκ  
 number of components κ in phase β [kg/kg] 

N
β  

 number of phases β [kg/kg] 

By convention, in this document phases are denoted by capital letters in TOUGH+ 

v1.5, while components are denoted by lower case letters.  The phases that are involved in 

the most common of the TOUGH+ applications will be Aqueous (A), Gaseous (G) and 

liquid Organic (O). Other possible phases may be Ice (I), Liquid CO2, Hydrates (H), etc. 

Common components include water (w), gaseous species (g) such as air, CH4, CO2, etc., 

oil (o) and/or solutes (s). 

 

2.4. Heat Accumulation Terms 

The heat accumulation term includes contributions from the rock matrix and all the 

phases is given by the equation 

 M θ =(1−φ)ρRCRT  + φS
β
ρ
β
U

β
β=1,...,Nβ
∑  , (2.3) 

where 

ρR rock density [kg m-3]; 

CR heat capacity of the dry rock [J kg-1 K-1]; 

Uβ specific internal energy of phase β [J kg-1]; 



 

  11 

The specific internal energy of the gaseous phase is a very strong function of 

composition, is related to the specific enthalpy of the gas phase HG, and is given by 

 UG = XG
κuG

κ +Udep
κ=1,...,Nκ
∑   =HG −

P
ρG

#

$
%%

&

'
(( , (2.4) 

where 

€ 

uG
κ  [J/kg] is the specific internal energy of component κ under the conditions of the 

gaseous phase, and Udep is the specific internal energy departure of the gas mixture [J/kg].  

The internal energy of the aqueous phase accounts for the effects of gas and solute 

solution, and is estimated from 

 UA = XA
wuA

w  +  XA
κ uA

κ  +  Usol
κ( )

κ=1,...,Nκ
κ≠w

∑ , (2.5) 

where 

€ 

uA
w  and uA

κ  [J kg-1] are the specific internal energies of H2O and of all other 

components κ at the conditions prevailing in the aqueous phase, respectively, and Usol
κ  

[J/kg] are the specific internal energies corresponding to the dissolution of components κ 

(other than H2O).  The term 

€ 

uA
κ  is determined from 

 

€ 

uA
κ  =  hA

κ −
P
ρκ

 =  Cκ
T0

T

∫ dT − P
ρκ

 (2.6) 

where T0 is a reference temperature, 

€ 

hA
κ  is the specific enthalpy of component κ, and Cκ is 

the temperature-dependent heat capacities of component κ [J kg-1 K-1]. 

The development of the equations of mass and energy balance of any other phase 

(e.g., liquid organic, liquid CO2, solid ice, etc.) is entirely analogous. 

 



 

 12  

2.5. Flux Terms 

The mass flux Fκ  [kg/m2/s] of a component κ  includes contributions from all mobile 

phases present in the system, i.e.,  

 Fκ = F
β
κ

β=1,...,Nmβ
∑ , where Fβ

κ = X
β
κ  F

β , κ ≡1,...,N
κ

, (2.7) 

and Nmβ  is the number of mobile phases. Fβ  is the flux of phase  [kg/m2/s], and can be 

described by several equations, the most common of which is Darcy’s law: 

 F
β
=−k

krβρβ
µ
β

∇P
β
−ρ

β
g( ) , (2.8) 

where 

k rock intrinsic permeability [m2]; 

krβ  relative permeability of the aqueous phase [dimensionless]; 

µ
β   viscosity of the aqueous phase [Pa s]; 

P
β  pressure of the aqueous phase [Pa]; 

g  gravitational acceleration vector [m s-2]. 

Note that Darcy’s law is applicable to flows in which the Reynolds number NR < 1, 

i.e., when the fluid flow is laminar, and when there are negligible flow slippage effects.  

This covers the overwhelming majority of problems of flow and transport through 

geologic porous media.  Turbulent flows and slippage effects (occurring in low-

permeability media) require other equations, which are discussed in detail in the User’s 

Manuals of the specific TOUGH+ options describing such problems.  



 

  13 

The Darcy’s law in Equation (2.8) indicates a linear relationship between flux and 

pressure differential between two points in space. An important point is that Equation 

(2.8) involves the phase pressures, which (and their interrelationships) need to be properly 

defined.  In general, the relationship between the phases of any two phases is described by 

the general equation 

 Pwβ =Pnβ +Pcnw , (2.9) 

where Pwβ  is the pressure of the wetting phase, Pnβ  is the pressure of the non-wetting 

phase, and Pcnw  is the capillary pressure between the two phases (by convention a negative 

number in TOUGH+ v1.5).  The gas phase is always a non-wetting phase, but the wetting 

behavior of all other phases depends on the surface chemistry of the porous medium, i.e., 

its affinity for a given phase.  Usually, unconsolidated media and reservoir rocks are 

water-wet, i.e., the aqueous phase preferentially coats the grains surfaces, to which it is 

attached very strongly as indicated by a very large contact angle.  Some petroleum 

reservoir rocks (especially older ones, with long contact of the rock grains with an organic 

phase) are oil-wet, and there are also rocks of mixed wettability. 

For example, in a two-phase (aqueous and gas) system, the aqueous pressure PA is 

given by  

 PA =PG +PcGW ,  where PG = PG
κ

κ=1,...,Nκ
∑ . (2.10) 

Here, PG is the gas pressure [Pa], cGWP  is the capillary pressure [Pa] between the two 

phases, and PG
κ  are the partial pressures [Pa] of the various gaseous component κ in the 

gas phase, respectively.  



 

 14  

The solubility of a gaseous component κ  in the aqueous phase is related to PG
κ  

through Henry’s law, 

 PG
κ =H κ X A

κ , (2.11) 

where H κ =H κ(T ,mAs )  [Pa] is the temperature- and salt concentration-dependent Henry’s 

factor, and mA
s  is the molality of the dissolved salts in the aqueous phase.  TOUGH+ 

incudes a library of such H κ  functions that describe the water solubility of the 11 gases in 

its internal gas property database.   

The performance of these Henry’s factors has been determined to be very 

satisfactory over a wide spectrum of applications that cover an extended temperature and 

salinity range.  However, more demanding problems involving high pressures, gas 

mixtures and the presence of more complex electrolytes cannot be adequately represented 

by the simple H κ  factors described above.  In these cases, TOUGH+ provides an option 

of a more accurate (but more computationally demanding) estimation of the gas solubility 

in water from the equality of fugacities in the aqueous and the gas phase.  Such an option 

is available only in specific TOUGH+ options. 

In TOUGH+, the solubility of various components (ionic and non-ionic, such as 

electrolytes and organic substances, respectively) in the aqueous phase is determined by 

appropriate species-specific equations of solubility as functions of temperature and 

pressure.  Similarly, the solubility of various components into non-aqueous phases (e.g., 

an organic liquid phase in petroleum reservoirs, or a liquid CO2 phase) is described by 

species- and phase-specific equations.  With the exception of the H κ -based solubility of 

gases in the aqueous phase (from Equation (2.11), which is available as a standard in the 



 

  15 

TOUGH+ options that require it), the solubilities of substances in phases are discussed in 

detail in the User’s Manuals of the corresponding application options.  

The mass flux of the gaseous phase ( G≡β ) incorporates advection and diffusion 

contributions, and is given by 

 FG
κ =−kG

krGρG
µG

XG
κ ∇PG −ρGg( )+JGκ ,    κ ≡1,...,N

κ
 (2.12) 

where 

 kG = k0 1+
b
P

!

"
#

$

%
& ; (2.13) 

kG medium permeability to gas [m2]; 

k0 absolute permeability at large gas pressures or in liquid flow [m2]; 

b Klinkenberg [1941] b-factor accounting for gas slippage effects [Pa]; 

krG relative permeability of the gaseous phase [dimensionless]; 

µG viscosity of the gaseous phase [Pa.s]. 

Equations (2.12) and (2.13) introduce a non-linearity in the flow equation, which is 

no longer Darcian and can now account for gas slippage effects.  However, this non-

linearity is easy to implement, is only important in low-permeability media, and is 

available as an option in its standard implementation (which involves a constant 

Klinkenberg parameter b) in the TOUGH+ core code.  Estimates of b can be obtained 

from the tables listed in Wu et al. [1998] and various equation options listed in Moridis 

and Freeman [20014], e.g., the equation proposed by Jones [1972]: 

 
b
bref

=
k
kref

!

"
#
#

$

%
&
&

−0.36

, (2.14) 



 

 16  

in which the subscript ref denotes the known properties of a reference medium. More 

complex gas slippage scenarios involving other methods for computing a variable b are 

available in specific TOUGH+ options, and they are discussed in detail in the 

corresponding User’s Manuals (e.g., see Moridis and Freeman (2014]).  

The term κ
GJ  is the diffusive mass flux of component κ in the gas phase [kg/m2/s], 

and is described by  

 JG
κ =−φτ 0τG

τTG

!  DG
κρG∇XG

κ
,   κ ≡1,...,Nκ  (2.15) 

where κ
GD  is the multicomponent molecular diffusion coefficient of component κ in the 

gas phase in the absence of a porous medium [m2/s], τTG is the total gas tortuosity, τ0 is the 

medium-related component of tortuosity and τG is the gas-saturation related component of 

tortuosity (both dimensionless).  TOUGH+ includes several methods to compute the τ0 

and τ β  of a mobile phase β.  If a constant value τ0 is not provided as input, then the 

default is the model of Millington and Quirk [1961], according to which τ 0 =φ
1
3Sβ

7
3 . The 

various methods to compute τ β  are discussed in Section 5.1. 

The diffusive mass fluxes of the various components κ in the gas phase are related 

through the relationship of Bird et al. [1960] 

 JG
κ

k=1,...,Nκ
∑ =0 , (2.16) 

which ensures that the total diffusive mass flux of the gas phase is zero with respect to the 

mass average velocity when summed over the gaseous components. Then the total gas 

phase mass flux is the product of the Darcy velocity and density of the gas phase.  



 

  17 

Similarly, the flux of a dissolved species (e.g., salt – denoted by the s superscript in 

the following equation – dissolved in the aqueous phase) is described by 

 

€ 

FA
s = XA

sFA + JA
s , where JA

s =−φSAτ 0τ A
τTA

!  DA
sρA∇XA

s
, (2.17) 

DA
s  is the molecular diffusion coefficient of the dissolved species s in water, and τA is the 

tortuosity of the aqueous phase. Note that mechanical dispersion is not accounted for in 

Equations (2.12) and (2.17), and is not discussed in this description of the core TOUGH+ 

v1.5 code, but the subject is fully addressed in the User’s Manuals of TOUGH+ options in 

which dispersion is important. 

The heat flux accounts for conduction, advection and radiative heat transfer, and is 

given by  

 Fθ =−k
θ
∇T + f

σ
σ 0∇T

4 + h
β
F
β

β≡1,...,Nmβ
∑ , (2.18) 

where 

k
θ

 composite thermal conductivity of the rock-fluids ensemble [W m-1 K-1]; 

h
β  specific enthalpy of phase β ≡1,...,Nmβ [J kg-1]; 

f
σ

 radiance emittance factor [dimensionless]; 

σ0 Stefan-Boltzmann constant [5.6687×10-8 J m-2 K-4].  

Similar to Equation (2.4), the specific enthalpy of the gas phase is computed as  

 HG = XG
κhG

κ  +  Hdep
κ=1,...,Nκ
∑   , (2.19) 



 

 18  

where κ
Gh  is the specific enthalpy of component κ in the gaseous phase, and Hdep is the 

specific enthalpy departure of the gas mixture [J kg-1]. The specific enthalpy of the 

aqueous phase is estimated from  

 HA = X A
whA

w  +  X A
κ hA

κ  +  Hsol
κ( )

κ=1,...,Nκ
κ≠w

∑ , (2.20) 

where hA
w  and hA

κ  [J kg-1] are the specific enthalpies of H2O and of all other components κ 

at the conditions prevailing in the aqueous phase, respectively, and Hsol
κ  [J kg-1] are the 

specific internal energies corresponding to the dissolution of components κ (other than 

H2O). The development of the equation of the specific enthalpy of any other phase (e.g., 

liquid organic, liquid CO2, solid ice, etc.) is entirely analogous. 

 

2.6. Source and Sink Terms 

In sinks with specified mass production rate, the withdrawal of mass component κ is 

described by  

 q̂κ = X
β
κq

β
β≡1,...,Nmβ
∑ ,   κ ≡1,...,N

κ
 (2.21) 

where βq  is the mass production rate of the mobile phase β [kg/m3]. For a prescribed 

production rate, the phase flow rates βq  are determined internally according to different 

methods (e.g., the relative mobility at the element where the sink is located) available in 

TOUGH+.  For source terms (well injection), the addition of a mass component κ occurs 

at desired (and known) rates κq̂ (κ ≡1,...,N
κ

).   



 

  19 

The corresponding heat exchange Qθ  associated with the addition or withdrawal 

of mass at any given source or sink is described by  

 Qθ = X
β
κq

β
h
β
κ

β≡1,...,Nmβ
∑

#

$

%
%

&

'

(
(

κ≡1,...,Nκ
∑  (2.22) 

where hβ
κ  is the specific enthalpy of the mass component κ that is partitioned in mobile 

phase β [J/kg] – see Equations (2.19) and (2.20).  

 
 

2.7. Thermophysical Properties 

2.7.1.  Water 

The properties and parameters of liquid water and steam in TOUGH+ are provided by (a) 

fast regression equations based on data from NIST [2000] and (b) steam table equations 

from the most recent IAPWS97 formulations [Wagner et al., 2000; IAPWS, 2007].  These 

equations are accurate up to 2000 oC and 100 MPa, and computationally more efficient 

that those in the earlier versions of TOUGH+ (i.e., those in Moridis et al. [2008]).  The 

viscosity and the thermal conductivity of the water substance in its various phases were 

computed using the recent correlations of thermal conductivity of IAPWS [2008] and 

IAPWS [2011a], respectively. 

The enthalpy, sublimation pressure and fusion/melting pressure of ice (on the ice-

vapor and ice-liquid water equilibrium lines of the water phase diagram), as well as the 

densities of the ice and of the liquid water in these regions, are computed from the 

correlations of IAPWS [2009; 2011b; 2012]. The thermal conductivity of ice was 



 

 20  

computed using the heat capacity polynomial equation with the coefficients reported in 

Yaws [1999]. 

 

2.7.2.  Real Gases 

The properties of the gas phase are provided by one of the three cubic equations of state 

that are available in the supplemental code unit T_RealGas_Properties.f95 (see 

Section 3.6) of TOUGH+ v1.5: (a) the Peng-Robinson equation [Peng and Robinson, 

1976], (b) the Soave-Redlich-Kwong equation [Soave, 1972], and the standard Redlich-

Kwong equation [Redlich and Kwong, 1949].  This package includes a database of the 

fundamental properties of 12 gases, and it computes their compressibility, density, 

fugacity, specific enthalpy and internal energy (ideal and departure) over a very wide 

range of pressure and temperature.  Additionally, the package computes the gas viscosity 

and thermal conductivity using the method of Chung et al. [1988], and binary diffusivities 

from the method of Fuller et al. [1969] and Riazi and Whitson [1993].  TOUGH+ allows 

computation of all these properties not only in pure gases (i.e., involving a single gaseous 

component), but also in gas mixtures of either constant composition (in which the gas 

phase can be treated as a single pseudo-component of fixed composition) or of variable 

composition (in which case the various gaseous components are tracked individually). 

This real-gas package in TOUGH+ also allows determination of gas solubility in 

water either by using a set of temperature-dependent Henry’s coefficients, or by equating 

fugacities in the gas and aqueous phases through a process that involves the computation 

of the activity coefficients (in the aqueous phase) and of the fugacities.  For most 

applications involving low-solubility gases (especially single-component ones) or 



 

  21 

relatively low P and T, extensive experience with scoping calculations has indicated that 

the temperature-dependent Henry’s coefficient Hm  can provide reliable estimates of gas 

solubility.  Henry’s method is less reliable in the case of dissolution of multi-component 

gases in the presence of electrolytes (such as salts) of high ionic strength.  In these cases, 

determination of gas solubility through the fugacities and activity coefficients provides the 

necessary accuracy of the dissolution estimates, albeit at the cost of a significant larger 

computational load.  Only the solubility option that is appropriate for the problem at hand 

is activated in the various TOUGH+ application options that involve coexistence of gas 

and aqueous phases. 

 

2.7.3.  Other Phases and Components 

The physical and thermal properties of all other phases and components that may be 

involved in the various TOUGH+ applications cannot be generalized.  Thus, they are 

described by (a) appropriate computation methods that are coded in the corresponding 

TOUGH+ application option, and (b) by the corresponding parameter values that are 

provided in the TOUGH+ input file.  These are described fully in the User’s Manuals of 

the individual members of the TOUGH+ family involving such phases and components. 

 

 



 

 22  

2.8.  Porosity and Intrinsic Permeability 
Changes 

 
2.8.1. Changes caused by P- and T-dependence 

The effect of pressure change on the porosity of the matrix is described by three options. 

The first involves the standard equation  

φ = φ0FPT ,   FPT = exp αPΔP +αTΔT[ ] ≈1+αPΔP +αTΔT ,  (2.23) 

where ΔP=P-P0, ΔT=T-T0, the subscript ‘0’ denotes a reference state, αT is the thermal 

expansivity of the porous medium (1/K) and αp is the pore compressibility (1/Pa), which 

can be either a fixed number or a function of pressure [Moridis et al., 2008; 2009; 2012].  

The second option describes the P-dependence of φ as a polynomial function of P.  The 

third option (discussed in detail in Section 2.10) describes the φ-dependence on P in 

unconsolidated media that gain significant mechanical strength from the presence of solid 

phases such as ice or hydrates (see Moridis [2014]).  The pore compressibility αP of such 

media is a function of the saturation SS of the solid phase(s).  The thermal dependence of 

φ is still described by the exponential factor exp αT T −T0( )"# $% . 

The φ - k relationship in the matrix is described by the general expression of 

Rutqvist and Tsang [2003] as: 

k
k0
= exp γ φ

φ0
−1

"

#
$

%

&
'

(

)
*

+

,
- ,  (2.24) 

where γ is an empirical permeability reduction factor that ranges between 5 (for soft 

unconsolidated media) and 29 (for lithified, highly consolidated media).  Note that the 

equations described here are rather simple and apply to matrix φ and k changes when the 



 

  23 

changes in p and T are relatively small.  These equations are not applicable when large 

pressure and temperature changes occur in the matrix, cannot describe the creation of new 

(secondary) fractures and cannot describe the initiation, propagation and the 

characteristics of fractures as the fluid pressures, the temperatures, the fluid saturations 

and the stresses change.  For such problems, it is advisable to use the T+M model [Kim 

and Moridis, 2013] that couples the flow and thermal processes in the various TOUGH+ 

options with the ROCMECH geomechanical code.  This coupled model accounts for the 

effect of changing fluid pressures, saturations, stresses, and temperatures on the 

geomechanical regime and provides an accurate description of the evolution of φ and k 

over the entire spectrum of P and T covered during the simulation. 

 

2.8.1. Changes caused by the evolution of solid phases 

When solid phases are deposited in a porous medium, through chemical precipitation or 

freezing of pore fluids, the ability of the porous medium to transmit fluids can change 

profoundly.  The deposition of solids in a porous medium reduces the void space available 

for fluids.  Such reduction in porosity will give rise to a reduction in permeability as well. 

There is an extensive literature, going back to the 1920s, about the manner in 

which permeability declines as portions of the pore space are filled by solids, and a 

bewildering variety of porosity-permeability correlations have been obtained from 

experimental and theoretical studies [Scheidegger, 1974, and references therein; Morrow 

et al., 1981; Vaughan, 1987; Verma and Pruess, 1988; Phillips, 1991; Pape et al., 1999; 

Xu et al., 2004].  Within the scope of the work undertaken here it is not possible to 

perform a thorough review of different permeability reduction models, and to evaluate 



 

 24  

their suitability for representing permeability reduction due to formation of hydrate and/or 

ice.  Dearth of relevant information prevents considering whether any of the models 

developed for solid precipitation in porous media are valid to systems involving solid 

phases such as ice or hydrates.  Instead, this brief discussion addresses salient features of 

pore channels to highlight the most important effects, and then explain the rationale 

behind the preliminary choices made in this study. 

It is obvious that permeability effects depend not just on the magnitude of porosity 

change, but on geometric properties of the pore channels, and on where and how solid 

deposition in those channels occurs. The lack of unanimity among different investigators 

about the correlation between porosity and permeability change reflects the great diversity 

of pore channel geometries and precipitation processes in porous media.  The simplest 

models conceptualize porous media as bundles of capillary tubes, which gives rise to a 

simple power law dependence of permeability k on porosity φ, 

 k
k0

 = FφS  = φ
φ0

!

"
#

$

%
&

n

 (2.25) 

where the term FφS is a permeability adjustment factor that describes the effects of (a) the 

presence of solid phases other than the medium grains (such as ice, hydrate or 

precipitating salts), and (b) changes in porosity on permeability, and the subscript “00” 

denotes properties at a reference state. 

The exponent n typically will be in the range from 2 to 3 [Phillips, 1991], giving a 

rather mild dependence of permeability on porosity. However, in media with inter-

granular porosity, pore channels generally have a convergent-divergent geometry, 



 

  25 

consisting of a succession of ‘pore throats’ with small radius and ‘pore bodies’ with large 

radius (Figure 2.1).   

If solids are deposited uniformly along the pore walls, or are preferentially 

deposited in the throats, then even relatively minor amounts of deposition can give rise to 

a dramatic decrease in permeability. Such behavior has been observed in field and 

laboratory-scale systems, including the diagenesis of sandstones [Pape et al., 1999], 

precipitation around geothermal injection wells [Xu et al., 2004], and hydrothermal flows 

in laboratory specimen [Morrow et al., 1981; Vaughan, 1987]. 

In these systems, a rather modest amount of precipitate, that leaves most of the 

original pore space available for fluids, nonetheless caused order-of-magnitude changes in 

absolute permeability.  Such behavior can be understood from ‘tubes-in-series’ models of 

pore space, as shown in Figure 2.2 [Verma and Pruess, 1988].   

 

 
 

Figure 2.1.  Schematic of pore channels, showing convergent-divergent geometry with a 
succession of pore throats and pore bodies. 

 



 

 26  

 
Figure 2.2.  Tubes-in-series model of pore channels. 

 

If one assumes that solids are deposited as a layer of uniform thickness on the pore 

walls, then permeability will be reduced to zero when the throats become clogged, while 

plenty of (disconnected) porosity remains in the pore bodies.  This leads to the concept of 

a non-zero ‘critical porosity’ φc at which k is reduced to zero, with a permeability 

reduction as given in Equation (2.25) [Verma and Pruess, 1988; Xu et al., 2004]. 

 k
k0

 = FφS  = φ −φc
φ0 −φc

"

#
$

%

&
'

n

  (2.26) 

Fractal models also give a very strong dependence of permeability on porosity, 

with exponents in relationships such as Equation (2.25) as large as n = 10 or more [Pape 

et al., 1999].  The above discussion clearly indicates the need fundamental research for the 

determination of the sites within the porous media at which solid phases (such as ice and 

hydrates) form preferentially.  



 

  27 

2.9. Multiphase Diffusion 

2.9.1. General Considerations 

Here we expand on the subject of diffusion, which has already been referred to (and 

included in a mathematical from) in Equations (2.12) to (2.17).  The discussion here, as 

well as the diffusion formulation and its treatment in TOUGH+ v1.5, hews closely to 

those in TOUGH2 [Pruess et al., 1999; 2012].   

Molecular diffusion plays a minor role in many subsurface flow processes, but 

may become a significant and even dominant mechanism for mass transport when 

adjective velocities are small and/or the time frame of the simulated process is long.  

Diffusive flux is usually written as being proportional to the gradient in the concentration 

of the diffusing component (Fick’s law) 

 J = −d∇C  (2.27) 

where d is an effective diffusivity, which in general will depend on properties of the 

diffusing component, the pore fluid, and the porous medium. The concentration variable C 

may be chosen in a number of different ways, e.g., mass per unit volume, moles per unit 

volume, mass or mole fraction, etc. [Bird et al., 1960; de Marsily, 1986], with an 

appropriate selection of units for the corresponding diffusivity d. 

The basic Fick’s law in Equation (2.27) works well for diffusion of tracer solutes 

that are present at low concentrations in a single-phase aqueous solution at rest with 

respect to the porous medium. However, many subtleties and complications arise when 

multiple components diffuse in a multiphase flow system. Effective diffusivities in general 

may depend on all concentration variables, leading to non-linear behavior especially when 



 

 28  

some components are present in significant (non-tracer) concentrations. Additional 

nonlinear effects arise from the dependence of tortuosity on phase saturations, and from 

coupling between advective and diffusive transport. For gases, the Fickian model has 

serious limitations even at low concentrations, which prompted the development of the 

“dusty gas” model that entails a strong coupling between advective and diffusive transport 

[Mason and Malinauskas, 1983; Webb, 1998], and accounts for molecular streaming 

effects (Knudsen diffusion) that become very important when the mean free path of gas 

molecules is comparable to pore sizes. Further complications arise for components that are 

both soluble and volatile, in which case diffusion in aqueous and gaseous phases may be 

strongly coupled via phase partitioning effects. An extreme case is the well-known 

enhancement of vapor diffusion in partially saturated media, which is attributed to pore-

level phase change effects [Cass et al., 1984; Webb and Ho, 1998a, b]. 

 

2.9.2. Diffusion Formulation in TOUGH+ 

Because of the difficulties mentioned above, it is not possible to formulate a model for 

multiphase diffusion that would be accurate under all circumstances. The pragmatic 

approach used in Equations (2.15) and (2.17) describes the diffusive flux of component κ 

in mobile phase β (= liquid, gas) by the general equation 

 Jβ
κ = −φτ 0τ β ρβ Dβ

κ∇Xβ
κ , (2.28) 

where all terms are as previously defined.  For ease and simplicity, it is convenient to 

introduce a single diffusion strength factor that combines all material constants and 

tortuosity factors into a single effective multiphase diffusion coefficient, as follows:  



 

  29 

 D β
κ = φτ 0τ β ρβ Dβ

κ  (2.29) 

For general two-phase conditions involving an aqueous and a gas phase, the total diffusive 

flux is then given by 

 Jκ = −D A
κ∇X A

κ −D G
κ∇XG

κ  (2.30) 

The saturation dependence of tortuosity is not well known at present. For soils the 

Millington and Quirk [1961] model has frequently been used [Jury et al., 1983; Falta et 

al., 1989], which yields non-zero tortuosity coefficients as long as the phase saturation is 

non-zero. It stands to reason that diffusive flux should vanish when a phase becomes 

discontinuous at low saturations, suggesting that saturation-dependent tortuosity should be 

related to relative permeability; e.g. τβ(Sβ) ≈ krβ(Sβ).  

For components that partition between liquid and gas phases, more complex 

behavior may be expected.  For example, consider the case of a volatile and water-soluble 

compound diffusing under conditions of low gas saturation where the gas phase is 

discontinuous. In this case we have krG(SG) = 0 (because SG < Srg), and krA(SA = 1- SG) < 

1, so that a model equating saturation-dependent tortuosity to relative permeability would 

predict weaker diffusion than in single-phase liquid conditions. For compounds with 

significant volatility this would be unrealistic, as diffusion through isolated gas pockets 

would tend to enhance overall diffusion relative to single-phase liquid conditions.  

 



 

 30  

2.10.  Wettability-Related Phenomena 

2.10.1. Relative permeability 

In multiphase flow, each fluid phase occupies only part of the pore space, and its effective 

permeability is reduced due to interference with the other phase(s). This effect is 

represented by means of permeability reduction factors or relative permeabilities, 

customarily denoted by krA and krG for liquid (aqueous) and gas, respectively, such that 

effective permeability kβ to phase β (= A, G) is given by  

 kβ = k  krβ ,   where    k  =  k0  FφS  =  k00  krr  FφS , (2.31) 

and krr is the k relative magnitude that relates the permeability k0 of a given medium to k00 

of the reference medium at the same P and T.  The factor FφS  – see Equation (2.25) – 

denotes the effect of the evolution of solid phases (e.g., through salt precipitation or ice 

formation) and is equal to one if no solid phases are present.  The term krr is introduced to 

account for situations in which the reference medium is different from the one under 

consideration, as is often the case when insufficient data are available and parameter 

estimation is based on scaling – such as the one described by Equation (2.33) – using 

known media as references. For a reference medium different from the one under 

consideration, krr = k0/k00.  It is obvious that krr = 1 when the same medium is used as 

reference.   

The relative permeabilities are functions of the phase saturations Sβ (fraction of pore 

space occupied by phase β), krβ = krβ (Sβ ) , and are usually obtained by measurement on 

laboratory specimen of porous media. Figure 2.3 gives examples of commonly used 

liquid and gas relative permeabilities.  In Section 6, the reader can find a detailed 



 

  31 

description of the various relative permeability options that are available in TOUGH+ 

v1.5 for the description of multi-phase flow. 

 

 

Figure 2.3.  Liquid and gas relative permeabilities based on the van Genuchten model [Finsterle, 
1999]. 

 

 

2.10.2. Capillary pressure 

Surface tension effects between different phases give rise to ‘capillary pressures’, denoted 

by Pcap. Most mineral surfaces are preferentially wetted by water and, under partially-

krG = 1 - krA 

krG krA 

Swr 1-Sgr 



 

 32  

saturated conditions, the pressure of the wetting (aqueous) phase inside a porous medium 

will be less than that of the non-wetting (gas) phase (see Equation 2.9). The pressure 

difference between the two phases is termed capillary pressure Pcap, because it relates to 

the phenomenon of water level rise in a capillary tube.  As indicated earlier, by convention 

Pcap has a negative value in TOUGH+ v1.5.  

Issues relating to capillary pressure can be conveniently discussed with reference 

to the pore size distribution of the porous medium. Figure 2.4 shows a schematic 

probability density function (pdf) for pore sizes, which expresses the probability p(r) of 

having pores with radius r.  At a given capillary pressure Pcap, pores with radius r' ≤ r 

may be water-filled, where the cutoff radius r is related to the capillary pressure by the 

Young-Laplace equation (reference) 

 Pcap =
2σ
r
cos(ω) , (2.32) 

where σ is the surface tension (energy per unit surface area) at the water-gas interface, and 

ω is the contact angle, which usually is close to zero for preferentially water-wet minerals.  

In introducing Equation (2.30) we stated that pores with r' ≤ r may be water filled, 

but whether indeed all pores with r' ≤ r will be water-filled at a prevailing capillary 

pressure Pcap given Equation (2.30) – and those with r' > r will all be gas-filled – depends 

upon issues of pore accessibility that are not captured by the pore size distribution.  The 

issue of accessibility arises because pores of certain radius may be entirely surrounded by 

larger pores, or by smaller pores, so that either water may not enter them during a wetting 

process, or may not be removed from them during a draining process. Accessibility gives 

rise to the well-known phenomenon of capillary hysteresis, where at a given magnitude of 



 

  33 

capillary pressure, water saturation will generally be larger during a drainage process than 

during a wetting process [de Marsily, 1986]. Although capillary hysteresis is a well-

established effect, it is seldom taken into account in modeling applications; this is partially 

due to numerical difficulties associated with it, partially because on the dependence of the 

corresponding relative permeability and capillary pressure on the pathway to the current 

state (as opposed to just the phase saturations), and partially because information on 

applicable parameters is rarely available. 

 

 
Figure 2.4.  Schematic of probability density function p(r) for pore size distribution. 

 



 

 34  

2.10.3. Effect of solid phase deposition on capillary pressure 

The discussion in this section follows closely that in Moridis et al. [2008; 2009; 2012].  

 The effects of solids deposition become considerably more complicated, and 

involve more than just permeability change, when multiple fluid phase are present, such as 

water and gas. The capillary pressure Pcap may be profoundly altered when solids are 

deposited.  

Formation of solid phases will alter the pore size distribution, generally reducing 

pore sizes, and thereby giving rise to stronger capillary pressures (see Equation 2.25). In 

order to estimate these changes, we require information on the original pore size 

distribution of the medium, and on the manner in which the pore size distributions will be 

altered during solids deposition. As no such information is presently available for the 

medium studied here, we proceed in a more phenomenological manner, and relate changes 

in capillary pressures to overall changes in porosity and permeability of the medium. 

Examining a variety of unconsolidated media, Leverett [1941] determined a dependence 

of capillary pressure on permeability and porosity, as follows. 

 Pcap(SA ) =
k00
k
⋅
φ
φ00

Pcap,00  (2.33) 

where Pcap,00 is the capillary pressure corresponding to a reference medium at the 

reference conditions, at which the permeability and porosity of the porous medium are 

k00 and φ00, respectively.  Equation (2.33) is used in the present analysis, in the following 

manner. We represent active solids (e.g., ice that may melt or hydrate that may dissociate, 

as opposed to solid minerals which are inert) by means of a solid saturation, denoted by 



 

  35 

SS = SH +SI, which measures the fraction of active pore space occupied by solids. The 

fraction of pore space available to fluid phases is SA + SG, and we have the constraint 

 SA + SG = 1− SS  (2.34) 

Let Pcap,00 denote the capillary pressure function applicable to a porous medium free of 

solid saturation (SS = 0) with a reference porosity φ00.  The total current porosity φ and the 

active (or available) porosity φa available to fluids are then defined by the equation 

 φa = FPT  φrr  φ00( )
φ

  
 (SA + SG ) ⇒ φa

φ00

= FPT  φrr  (SA + SG ) = FPT  φrr  1-SS( )  ,  (2.35) 

where the term FPT is a porosity adjustment factor that accounts for the effects of pressure 

and temperature on porosity, and φrr is the φ relative magnitude, which relates the porosity 

φ0 of a given medium to the porosity φ00 of the reference medium at the same reference P 

and T.  This term is introduced to account for situations in which the reference medium is 

different from the one under consideration, as is often the case when insufficient data are 

available and parameter estimation is based on scaling using known media as references. 

For a reference medium different from the one under consideration, φrr = φ0/φ00.  It is 

obvious that φrr = 1 when the same medium is used as reference.   

When changes in P and T are not large in geomechanically stable media, then FPT 

can be estimated from the following equation: 

 FPT =  φ
φrr  φ00

 =  φ
φ0

 =  exp αP  ΔP + αT  ΔT[ ]  ≈  1 + αP  ΔP + αT  ΔT , (2.36) 

where ΔP = P - P0, ΔT = T - T0, αP and αT are the pore compressibility and thermal 

expansivity, respectively (see discussion in Section 6.2).  For large ΔP and/or ΔT in 

compressible or geomechanically unstable media, FPT can be estimated from a full 



 

 36  

geomechanical model that relates the resulting changes in geomechanical stresses and 

strains to changes in porosity. 

The argument in the capillary pressure function Pcap,0 on the r.h.s of Equation 

(2.33) is the aqueous saturation SA, referred to total fluid porosity. We measure liquid 

saturation on a scale that refers to total active (fluid plus hydrate- and ice-filled) pore 

space in the ice- and hydrate-free porous medium.  In the medium with solid saturation SS, 

SA corresponds to a scaled saturation  

 SA
* =

SA
SA + SG

 (2.37) 

relative to fluid-filled pore space, and this is the value to be used in the estimation of 

Pcap,0 in the r.h.s of Equation (2.44).  In the next session we will discuss the estimation of 

krφ in the presence of solid phases (i.e., ice and/or hydrate) for use in Equation (2.44). 

 

2.10.4. Effect of solid phase deposition on relative permeability 

From Equation (2.31), the partitioning of effective permeability to a fluid phase β into a 

porous medium- and solid-saturation dependent part (k0 FφS) and a fluid saturation-

dependent part  krβ is a matter of convention and convenience. It leads to a conceptual 

ambiguity in the representation of permeability reduction from solid deposition in 

multiphase flow. Indeed, such permeability reduction may be attributed either to a change 

in absolute or intrinsic permeability (as described by the product k0 FφS), as is done for 

single-phase flow, or it may be attributed to a change in the fluid relative permeability krβ. 

When hydrate and/or ice forms inside a partially water-saturated porous medium, 

such formation clearly must start in the water-filled portion of the pore space, but may not 



 

  37 

remain limited to the water-filled portion, as the solid crystals may grow and extrude into 

primarily gas-filled pores. In the absence of specific pore-scale information about where 

hydrate and/or ice will likely form, it is not possible to ascertain the applicability of 

relationships such as Equation (2.25) to the permeability reduction associated with hydrate 

formation and/or freezing. Even if applicable, appropriate parameters for the problem 

under study here are lacking. 

We proposed two alternative models to describe the wettability processes (relative 

permeability and capillary pressure) in hydrate- and/or ice-bearing media [Moridis et al., 

2008; 2011; 2012; Moridis, 2014].  The first model, hereafter referred to as the “Original 

Porous Medium” (OPM) model, is based on the treatment of (a) porosity as unaffected by 

the emergence of hydrates and/or ice (although subject to change due to changes in P and 

T), (b) of the intrinsic permeability of the porous media as unchanging during the 

evolution of the solid phases, and (c) of the fluid flow as a relative permeability issue 

controlled by the saturations of the various phases in the pores. The second family of 

models, hereafter referred to as the “Evolving Porous Medium” (EPM) models, considers 

the evolution of the solid phases (hydrate and ice) as tantamount to the creation of a new 

porous medium with continuously changing porosity and intrinsic permeability, the pore 

space of which is occupied only by the two fluid phases (aqueous and gas). 

 

2.10.4.1. The OPM model.  This simpler model represents permeability reduction as 

relative permeability effects, and does not require any new parameters to be introduced. 

More specifically, this model assumes that in the presence of solid phase(s), relative 

permeability to each fluid phase is given by the same function krβ(Sβ) as in the absence of 



 

 38  

solids.  This means that aqueous phase relative permeability krA = krA(SA) depends only 

on the aqueous saturation SA, and is the same, regardless of how the remaining fraction (1-

SA) of the pore space is divided between gas and solid phases. A similar comment applies 

to gas relative permeability krG = krG(SG).  

Setting aside for a moment the issue of (krφ  krS), permeability reduction for the fluid 

phases then occurs simply because, when SS increases, fluid phase saturations SA and SG 

generally must decrease also, as dictated by the constraint in Equation (2.32).  This 

prescription is tantamount to asserting that liquid phase flow behaves as though solids 

deposition occurs entirely in what would otherwise be gas-filled pore space, while gas 

phase flow behaves as though solids deposition occurs entirely in what otherwise would 

be liquid-filled pore spaces. It is obvious that solids deposition cannot simultaneously 

occur only in liquid and only in gas-filled pore spaces, which points to a limitation of the 

proposed permeability reduction model. We nonetheless feel that a model that introduces 

no new and uncertain parameters is preferable to a model that does.   

The permeability adjustment factor is computed from the following expression: 

 FφS =  krφ  krS , (2.38) 

where krφ is the permeability φ-factor that describes the effect of changes in φ on 

permeability, and krS is the permeability S-factor that relates reduction in the intrinsic 

permeability to the presence of solid phases (such as ice, hydrates or precipitating salts).  

In the OPM model, krS = 1 by definition, and the permeability φ-factor in Equation 

(2.31) can be computed as  



 

  39 

krφ =
1        when the effect of φ  changes on k  is neglected

exp γ FPT −1( )"# $%   when the effect of φ  changes on k  is accounted for,

&

'
(

)
(

 (2.39) 

where γ is an empirical parameter [Rutqvist and Tsang, 2002], and FPT is computed from 

Equation (2.36).   

In the OPM model, Pcap are estimated from Equation (2.33), in which: 

• φ/φ00 = φrr FPT is computed from Equation (2.36) 

• k00/k = 1/krr krφ is computed from Equations (2.31) and (2.38), and 

• Pcap,00 is computed based on the scaled saturations S* of Equation (2.37) 

Thus, the final expression for estimating the capillary pressure in the OPM model is: 

  Pcap  =  φrr
krr

⋅
FPT
krφ

⋅ Pcap,00 (S*)  (2.40) 

Additional scaling can be introduced by using the active porosity φa and φa/φ00 from 

Equation (2.35) – as opposed to φ/φ00 from Equation (2.36) – in the computation of 

Equation (2.33).  

 

2.10.4.2. The EPM models.  In recognition of, and attempting to overcome, the 

limitations of the OPM permeability reduction model, we have proposed two EPM models 

and performed sensitivity studies using the absolute (intrinsic) permeability modifications 

that will be discussed in this section.  While the EPM models provide valuable insights, a 

more consistent and defensible model – based on both theoretical analyses and laboratory 

and field studies – for the effects of emerging solid phases on fluid permeabilities should 

be developed in the future.  



 

 40  

EPM Model #1. With intrinsic permeability modification based on relative 

permeabilities, what absolute permeability should be used in the Leverett scaling Equation 

(2.33).  An attractive possibility would be to set k = k0 (krA + krG).  This, however, is not 

acceptable because the sum of liquid and gas relative permeabilities depends not just on 

the solid saturation (SS), but on SA and SG individually.  

As a plausible alternative, we consider the permeability reduction when the fluid-

available pore space is either entirely liquid-filled or entirely gas-filled, which leads to  

krS =  krA SA =1− SS( )      or     krS = krG SG =1− SS( ) . 

Note that either expression depends only on solid saturation SS. As an estimate of the krS, 

we then take the average of the two, 

 krS =  1
2
krA SA =1− SS( )  +  krG SG =1− SS( )"# $%  (2.41) 

Equation (2.38) provides a simple estimate of the permeability φ-factor.  Then the phase 

effective permeabilities are computed using Equation (2.31), in which: 

• krβ is computed based on the scaled saturations from Equation (2.37),   

• FφS is computed from Equation (2.38), 

• krφ is computed from Equation (2.39), and 

• krS is computed from Equation (2.41). 

The capillary pressure in the EPM #1 model is estimated using Equation (2.44), in 

which the various terms are computed as follows: 

• φa/φ00, computed from Equation (2.35), is used instead of φ/φ00, 

• k00/k = 1/krr FφS is computed from Equations (2.38) and (2.38),  

• krφ is computed from Equation (2.39), and 



 

  41 

• krS is computed from Equation (2.41). 

Thus, the final expression for estimating the capillary pressure in the EPM #1 model is: 

  Pcap  =  φrr
krr

⋅
FPT 1− SS( )
krφkrS

⋅ Pcap,00 (S*)  (2.42) 

EPM Model #2. The only difference between this model and the EPM #1 model is 

in the equation used to estimate the krS term, with all other equations applying unchanged.  

In the EPM#2 model, the quantity FφS = krφ krS in Equation (2.38) is provided by Equation 

(2.26), leading to 

  krS =  
φ0  1-SS( )−φc

φ0 −φc

"

#
$

%

&
'

n

 (2.43) 

The term krφ is obtained from Equation (2.39).  Thus, the effective permeabilities in 

the EPM #2 model are computed from Equation (2.31).  Similarly, the capillary pressure 

in the EPM #2 model is estimated using Equation (2.42) and krS from Equation (2.43). 

 

2.10.5. Pore compressibility of unconsolidated media in the presence of 
cementing solid phases 

 
While the pore compressibility αP in Equation (2.23) can be considered as a constant or 

even as a function of pressure during fluid flow through consolidated (lithified) porous 

media and/or in unconsolidated media, this approach is inadequate when cementing solid 

phases (such as ice and/or hydrates) are present in the pores.  This is because the presence 

of these solid phases imparts stiffness and increases the geomechanical strength of the 

solid phase-impregnated porous medium, the porosity φ of which reacts much slower to 



 

 42  

variations in pressure P.  Thus, to accurately represent the evolution of φ as a function of 

P in these cases needs to account for the effect of the saturation SS of such solid phases. 

The most appropriate method for accounting for the effect of SS on the porosity of 

unconsolidated media is by solving the coupled flow-geomechanical problem, estimating 

variations in P, T and phase saturation, and computing the corresponding changes in 

stresses and strains.  These are then used to compute changes in φ and k.  Such coupling is 

a possibility in the TOUGH+ v1.5 code, which allows the use of the commercial 

geomechanical model FLAC3D [ITASCA, 2002] to evaluate the interaction between flow 

and geomechanical properties.  This model is automatically invoked if the corresponding 

executable file FLAC3D.exe is present in the TOUGH+ v1.5 directory and appropriate 

inputs are provided to the TOUGH+ code (see detailed discussion in Section 5).   

If the FLAC3D model is not available or is not invoked (a frequent choice, given 

the large execution times required for such fully coupled flow-geomechanical problems), 

it is possibly to describe the effect of cementing solid phases SS on the porosity φ and the 

intrinsic permeability k of unconsolidated media by employing an empirical model that 

describes the media compressibility as: 

αP = exp lnαPL +  (lnαPU − lnαPL ) 1−Bx (2.25, 2.25,SS
*)"# $%{ } , (2.44) 

where  

SS
* =

SS − SSmin +δ
SSmax − SSmin + 2δ

, (2.45) 

αPL is the lower limit of the medium compressibility (corresponding to the full 

stiffening/strengthening effect of the presence of cementing solid phases such as ice 

and/or hydrates), αPU is the upper limit of the medium compressibility (corresponding to 



 

  43 

the absence of cementing solid phases), Bx is the incomplete beta function, SSmin is the 

largest SS saturation at which αP = αPU, SSmax is the lowest SS saturation at which αP = αPL, 

and δ is a smoothing factor.  Equation (2.44) is based on geomechanical and geophysical 

data derived from laboratory and field observations, and results in the curve of Figure 2.5 

that scans between the αPU and the αPL compressibility limits. 

The relative porosity φ/φ0 is estimated from Equation (2.36), which applies 

unchanged, but with the composite compressibility αP computed from Equation (2.44). 

Figure 2.6 shows the relationship between the relative porosity φ/φ0 and the pressure drop 

ΔP in an unconsolidated medium, and describes the cementing effect of solid phases on 

the medium behavior.  

 

Figure 2.5.  Compressibility of an unconsolidated porous medium impregnated with cementing 
solid phases (ice and/or hydrates).  In this example, SSmin = 0.15, SSmax = 0.4, αPU = 10-8 Pa-1, αPL = 
10-9 Pa-1 and δ = 0.015 [Moridis et al., 2008; 2009; 2011]. 



 

 44  

  

 

 

 

Figure 2.6.  Effect of the varying compressibility described in Figure 2.5 on the porosity of an 
unconsolidated porous medium undergoing depressurization for various levels of saturation SS of 
cementing solid phases [Moridis et al., 2008; 2009; 2011].   



 

  45 

2.11. Description of Flow in Fractured Media 

The discussion in this section hews very closely to that of Pruess et al. [1999; 2012]. 

Figure 2.7 illustrates the classical double-porosity concept for modeling flow in fractured-

porous media as developed by Warren and Root [1963]. Matrix blocks of low 

permeability are embedded in a network of interconnected fractures. Global flow in the 

reservoir occurs only through the fracture system, which is described as an effective 

porous continuum. Rock matrix and fractures may exchange fluid (or heat) locally by 

means of ‘interporosity flow’, which is driven by the difference in pressures (or 

temperatures) between matrix and fractures. Warren and Root approximated the 

interporosity flow as being quasi-steady, with rate of matrix-fracture interflow 

proportional to the difference in (local) average pressures.  

 

 

 

Figure 2.7.  Idealized double porosity model of a fractured porous medium [Pruess, 1983]. 



 

 46  

The quasi-steady approximation is applicable to isothermal single-phase flow of 

fluids with small compressibility, where pressure diffusivities are large, so that pressure 

changes in the fractures penetrate quickly all the way into the matrix blocks. However, for 

multiphase flows, or coupled fluid and heat flows, the transient periods for interporosity 

flow can be very long (tens of years). In order to accurately describe such flows it is 

necessary to resolve the driving pressure, temperature, and mass fraction gradients at the 

matrix/fracture interface. In the method of “multiple interacting continua” (MINC) 

[Pruess and Narasimhan, 1982; 1985; Pruess, 1983), resolution of these gradients is 

achieved by appropriate subgridding of the matrix blocks, as shown in Figure 2.8. The 

MINC concept is based on the notion that changes in fluid pressures, temperatures, phase 

compositions, etc., due to the presence of sinks and sources (production and injection 

wells) will propagate rapidly through the fracture system, while invading the tight matrix 

blocks only slowly. Therefore, changes in matrix conditions will (locally) be controlled by 

the distance from the fractures. Fluid and heat flow from the fractures into the matrix 

blocks, or from the matrix blocks into the fractures, can then be modeled by means of one-

dimensional strings of nested grid blocks, as shown in Figure 2.8.  

In general it is not necessary to explicitly consider subgrids in all of the matrix 

blocks separately.  Within a certain reservoir subdomain (corresponding to a finite 

difference grid block), all fractures will be lumped into continuum # 1, all matrix material 

within a certain distance from the fractures will be lumped into continuum # 2, matrix 

material at larger distance becomes continuum # 3, and so on.  Quantitatively, the 

subgridding is specified by means of a set of volume fractions VOL(j), j = 1, ..., J, 

into which the primary porous medium grid blocks are partitioned.  



 

  47 

Fractures

Matrix  Blocks

 

 

Figure 2.8.  Subgridding in the method of "multiple interacting continua" (MINC) [Pruess, 1983]. 
 

The MINC-process in the MeshMaker.f95 (a companion code distributed 

with TOUGH+, see Section 7) operates on the element and connection data of a porous 

medium mesh to calculate, for given data on volume fractions, the volumes, interface 

areas, and nodal distances for a secondary fractured medium mesh. The information on 

fracturing (spacing, number of sets, shape of matrix blocks) required for this is provided 

by a proximity function PROX(x) which expresses, for a given reservoir domain Vo, the 

total fraction of matrix material within a distance x from the fractures. If only two 

continua are specified (one for fractures, one for matrix), the MINC approach reduces to 

the conventional double-porosity method. Full details are given in a separate report 

[Pruess, 1983]. 

The MINC-method as implemented in the MeshMaker.f95 code can also 

describe global matrix-matrix flow. Figure 2.9 shows the most general approach, often 



 

 48  

referred to as dual permeability, in which global flow occurs in both fracture and matrix 

continua.  It is also possible to permit matrix-matrix flow only in the vertical direction.  

For any given fractured reservoir flow problem, selection of the most appropriate gridding 

scheme must be based on a careful consideration of the physical and geometric conditions 

of flow. The MINC approach is not applicable to systems in which fracturing is so sparse 

that the fractures cannot be approximated as a continuum.  A thorough discussion on the 

various approached for the treatment of fractured media in TOUGH2 [Pruess et al., 1999; 

2012] and in TOUGH+ v1.5 (which closely follows the TOUGH2 approach) can be found 

in Doughty et al. [1999]. 

 

 

 

 

 

Figure 2.9. Flow connections in the “dual permeability” model. Global flow occurs between 
both fracture (F) and matrix (M) grid blocks. In addition there is F-M interporosity flow [Pruess et 
al., 1999]. 



 

  49 

 
 

 

 

 

3.0.  Design and Implementation of 
TOUGH+ v1.5 

 

 

3.1. Primary Variables 

The thermodynamic state and the distribution of the mass components among the possible 

phases in a TOUGH+ v1.5 simulation are determined from the equation of state (EOS) 

solved in the specific TOUGH+ application option. Following the standard approach 

employed in the TOUGH2 [Pruess et al., 1999] family of codes, in TOUGH+ the system 

is defined uniquely by a set of Nκ primary variables (where κ denotes the number of mass 

and heat components under consideration) that completely specifies the thermodynamic 

state of the system [Pruess et al., 1999; 2012].  Nκ is the sum of the number of the mass 

components (TOUGH+ being a compositional simulator) augmented by one – the heat 

balance equation (see Section 2.2), with the T being (usually) the corresponding primary 



 

 50  

variable that is included in the computations even in isothermal problems because it would 

not be possible to estimate the fluid thermophysical properties of fluids without it.  

The primary variables are the minimum number of independent variables, 

knowledge of which permits the simultaneous solution for all the state (=dependent, 

secondary) variables associated with the problem, thus uniquely defining the system.  For 

example, knowledge of pressure and temperature allows the complete definition of the 

thermophysical properties of water in its liquid and vapor phases, thus P and T are 

appropriate primary variables to define the aqueous and the vapor phase.  However, these 

are inappropriate primary variables during the liquid-vapor phase coexistence because 

they are no longer independent, as there is a well-defined and unique relationship between 

P and T along the saturation line.  

The importance of selecting appropriate primary variables in the simulations of 

fluid and heat flow processes cannot be overemphasized, especially when phase changes 

are involved.  Inappropriate selection of primary variables can lead not only to slow and 

inefficient computations, but also to complete failure of the simulation for lack of 

convergence.  Although the number Nκ of the primary variables is initially set at the 

maximum expected in the course of the simulation and does not change during the 

simulation, the thermodynamic quantities used as primary variables can change in the 

process of simulation to allow for the seamless consideration of emerging or disappearing 

phases and components. This is because the change of phases and the evolution and 

disappearance of components almost involves sensitivity to different parameters, which 

inevitably necessitates change of the primary variables.  Switching primary variables as 

the state of the fluids changes has been standard practice in TOUGH2 [Pruess et al., 1999; 

2012], and continues to be so in TOUGH+ v1.5.  Experience thus far has indicated that the 



 

  51 

change in primary variables, coupled with the selection of the appropriate ones, is a very 

robust method that is capable of solving even the most demanding problems of multi-

phase, multi-component flow and transport in porous/fractured media.  

The primary variables used in the various TOUGH+ v1.5 application options vary 

with the type of problem EOS being solved and cannot be generalized.  Tables of the 

specific primary variables used for each state (phase co-existence) of fluids are listed in 

the User’s Manuals of the application options that solve the corresponding problem. 

 

3.2. Space and Time Discretization 

The continuum equations (2.3) are discretized in space using the integral finite difference 

method (IFD) [Edwards, 1972; Narasimhan and Witherspoon, 1976]. Introducing 

appropriate volume averages, we have 

 M dV =
Vn

∫ Vn Mn , (3.1) 

where M is a volume-normalized extensive quantity, and Mn is the average value of M 

over Vn. Surface integrals are approximated as a discrete sum of averages over surface 

segments Anm: 

 Fκ •n dΓ
Γn

∫ = AnmFnm
m
∑ , (3.2) 

Here Fnm is the average value of the (inward) normal component of F over the surface 

segment Anm between volume elements Vn and Vm. The discretization approach used in the 

integral finite difference method and the definition of the geometric parameters are 

illustrated in Figure 3.1.  



 

 52  

The discretized flux is expressed in terms of averages over parameters for elements Vn 

and Vm.  For the basic Darcy flux term in Equation (2.15), we have  

 Fβ ,nm = − knm
krβ ρβ
µβ

"

#
$
$

%

&
'
'
nm

Pβ ,n −Pβ ,m
Dnm

− ρβ ,nm gnm
"

#
$

%

&
' , (3.33) 

where the subscripts (nm) denote a suitable averaging at the interface between grid blocks 

n and m (interpolation, harmonic weighting, upstream weighting). Dnm = Dn + Dm is the 

distance between the nodal points n and m, and gnm is the component of gravitational 

acceleration in the direction from m to n.  Discretization of diffusive fluxes raises some 

subtle issues, and is discussed separately in Section 3.5. 

Substituting Equations. (3.l) and (3.2) into the governing Equation (2.3), a set of first-

order ordinary differential equations in time is obtained. 

 

dMn
κ

d t
=

1
Vn

Anm Fnm
κ

m
∑ + qn

κ

 (3.4) 

Time is discretized as a first-order finite difference, and the flux and sink and source 

terms on the right-hand side of Equation (3.4) are evaluated at the new time level, tk+1 = tk 

+ Δt, to obtain the numerical stability needed for an efficient calculation of strongly 

nonlinear problems (such as the ones involving multiphase flow and phase changes). This 

treatment of flux terms is known as fully implicit, because the fluxes are expressed in 

terms of the unknown thermodynamic parameters at time level tk+l, so that these 

unknowns are only implicitly defined in the resulting equations [Peaceman, 1977].  

The time discretization results in the following set of coupled non-linear, algebraic 

equations 



 

  53 

 Rn
κ ,k+1 =Mn

κ ,k+1  −  Mn
κ ,k −

Δt
Vn

 AnmFnm
κ ,k+1  +  Vnqn

κ ,k+1

m
∑
$

%
&

'

(
)  =  0  (3.5) 

where we have introduced residuals Rn
κ ,k+1 . For each volume element (grid block) Vn, there 

are Nκ equations, so that for a system discretized into NE grid blocks, Equation (3.5) 

represents a total of Nκ ×NE coupled non-linear equations.  

 
 
3.3. The Newton-Raphson Iteration 

The unknowns of Equation (3.5) are the Nκ ×NE  independent primary variables {xi; i = 1, 

..., Nκ ×NE } which completely define the state of the flow system at time level tk+l. These 

equations are solved by Newton/Raphson iteration, which is implemented as follows. We 

introduce an iteration index p and expand the residuals Rn
κ ,k+1  in Equation (3.5) at iteration 

step (p + 1) in a Taylor series in terms of those at index p, i.e.,  

 

 
Figure 3.1.  Space discretization and geometry data in the integral finite difference method. 
 



 

 54  

 Rn
κ ,k+1 xi ,p+1( )=Rnκ ,k+1 xi ,p( ) +  ∂Rn

κ ,k+1

∂xii
∑

p

xi ,p+1−xi ,p( ) +  ... =  0  (3.6) 

Retaining only terms up to first order, we obtain a set of Nκ x NE linear equations for the 

increments xi,p+1 − xi,p( ) : 

 − ∂Rn
κ ,k+1

∂xii
∑

p

xi,p+1 − xi,p( )  +  ... =  Rn
κ ,k+1 xi,p( )  (3.7) 

All terms ∂Rn/∂xi in the Jacobian matrix are evaluated by numerical differentiation.  

Equation (3.7) is solved by sparse direct matrix methods or iteratively by means of 

preconditioned conjugate gradients [Moridis and Pruess, 1995; 1998; Pruess et al., 1999; 

2012]. Iteration is continued until the residuals Rn
κ ,k+1  are reduced below a preset 

convergence tolerance according to: 

Rn,p+1
κ ,k+1

Mn,p+1
κ ,k+1  ≤  ε1  (3.8) 

The default (relative) convergence criterion is ε1 = 10-5 (TOUGH+ input 

parameter rel_convergence_crit, see Section 10). When the accumulation terms 

are smaller than ε2 (TOUGH+ input parameter abs_convergence_crit, default ε2 = 

1, see Section 10), an absolute convergence criterion is imposed,  

 Rn,p+1
κ ,k+1 ≤  ε1ε2  (3.9) 

The number of iterations to convergence varies with the nonlinearity of the 

problem.  For well-behaved problems, convergence is usually attained in 3-4 iterations. If 

convergence cannot be achieved within a certain number of iterations (default = 8, see 

Section 10), the time step size Δt is reduced and a new iteration process is started. 



 

  55 

3.4. Implications of the Space Discretization Approach 

It is appropriate to add some comments about the space discretization technique in 

TOUGH+. The entire geometric information of the space discretization in Equation (3.5) 

is provided in the form of a list of grid block volumes Vn, interface areas Anm, nodal 

distances Dnm and components gnm of gravitational acceleration along nodal lines. There 

is no reference whatsoever to a global system of coordinates, or to the dimensionality of a 

particular flow problem.  

The discretized equations are in fact valid for arbitrary irregular discretizations in 

one, two or three dimensions, and for porous as well as for fractured media. This 

flexibility should be used with caution, however, because the accuracy of solutions 

depends upon the accuracy with which the various interface parameters in equations such 

as (3.3) can be expressed in terms of average conditions in grid blocks. A general 

requirement is that there exists approximate thermodynamic equilibrium in (almost) all 

grid blocks at (almost) all times [Pruess and Narasimhan, 1985].  For systems of regular 

grid blocks referenced to global coordinates in cylindrical (r,z) and/or Cartesian (x,y,z) 

systems, Equation (3.5) is identical to a conventional finite difference formulation 

[Peaceman, 1977; Moridis and Pruess, 1992]. 

 
 

3.5. Space Discretization of Diffusive Fluxes 

Space discretization of diffusive flux in multiphase conditions raises some subtle issues. A 

finite difference formulation for total diffusive flux, Equation (3.10), may be written as 



 

 56  

 Jκ( )nm = D A
κ( )nm

XA
κ( )m − XA

κ( )n
Dnm

− D G
κ( )nm

XG
κ( )m − XG

κ( )n
Dnm

 (3.10) 

This expression involves the as yet unknown diffusive strength coefficients (ΣA
κ )nm and 

(ΣG
κ )nm at the interface, which must be expressed in terms of the strength coefficients in 

the participating grid blocks.  Invoking conservation of diffusive flux across the interface 

between two grid blocks leads in the usual way to the requirement of harmonic weighting 

of the diffusive strength coefficients.  

 However, such weighting may in general not be applied separately to the diffusive 

fluxes in gas and liquid phases, because these may be strongly coupled by phase 

partitioning effects. This can be seen by considering the extreme case of diffusion of a 

water-soluble and volatile compound from a grid block in single-phase gas conditions to 

an adjacent grid block that is in single-phase liquid conditions. Harmonic weighting 

applied separately to liquid and gas diffusive fluxes would result in either of them being 

zero, because for each phase effective diffusivity is zero on one side of the interface. Thus 

total diffusive flux would vanish in this case, which is unphysical. In reality, tracer would 

diffuse through the gas phase to the gas-liquid interface, would establish a certain mass 

fraction in the aqueous phase by dissolution, and would then proceed to diffuse away from 

the interface through the aqueous phase. Similar arguments can be made in the less 

extreme situation where liquid saturation changes from a large to a small value rather than 

from 1 to 0, as may be the case in the capillary fringe, during infiltration events, or at 

fracture-matrix interfaces in variably saturated media.  

TOUGH+ features the fully coupled approach employed in TOUGH2 [Pruess et 

al., 1999; 2012], in which the space-discretized version of Equation (3.10) of the total 



 

  57 

multiphase diffusive flux Equation (2.49) is re-written in terms of an effective multiphase 

diffusive strength coefficient and a single mass fraction gradient. Choosing the liquid mass 

fraction for this we have  

 Jκ( )nm = −
A

κ

∑( )
nm
+

G

κ

∑( )
nm

XG
κ( )m − XG

κ( )n
XA
κ( )m − XA

κ( )n

#

$

%
%

&

'

(
(
 
XA
κ( )m − XA

κ( )n
Dnm

, (3.11) 

where the gas phase mass fraction gradient has been absorbed into the effective diffusive 

strength term (in braces). Flux conservation at the interface then leads to the requirement 

of harmonic weighting for the full effective strength coefficient. In order to be able to 

apply this scheme to the general case where not both phases may be present on both sides 

of the interface, we always define both liquid and gas phase mass fractions in all grid 

blocks, regardless of whether both phases are present. Mass fractions are assigned in such 

a way as to be consistent with what would be present in an evolving second phase.  

This procedure is applicable to all possible phase combinations, including the 

extreme case where conditions at the interface change from single-phase gas to single-

phase liquid. Note that, if the diffusing tracer exists in just one of the two phases, 

harmonic weighting of the strength coefficient in Equation (3.11) will reduce to harmonic 

weighting of either ΣA
κ  or ΣG

κ . The simpler scheme of separate harmonic weighting for 

individual phase diffusive fluxes is retained as an option. 

 
 

3.6. Code Units of the TOUGH+ v1.5 Code 

TOUGH+ v1.5 is written in standard FORTRAN 95/2003. It has been designed for 

maximum portability, and runs on any computational form (Unix and Linux workstations, 



 

 58  

PC, Macintosh) for which such compilers are available. Running TOUGH+ involves 

compilation and linking the code created by combining  

(a) the units of the core code with  

(b) the supplemental code units, corresponding to the specific application 

option that the simulator aims to address, and with  

(c) code the units that are part of the TOUGH+ code ensemble but are invoked 

only to carry out computations needed by the application option.   

The units of the core TOUGH+ are the following:  

(1) T_Allocate_Memory.f95  

Code unit that is responsible for the dynamic memory allocation (following input 

describing the size of the problem) and dimensioning of most arrays needed by the 

code, in addition to memory deallocation of unnecessary arrays. 
 

(2) T_Utility_Functions.f95  

Code unit that includes utility functions (including a variety of mathematical 

functions, table interpolation routines, sorting algorithms, etc.). 

 

(3) T_Media_Properties.f95  

Code unit that describes the hydraulic and thermal behavior of the geologic 

medium (porous or fractured), i.e., multiphase capillary pressure and relative 

permeability, and interface permeability, mobility and thermal conductivity.  

 

(4) T_H2O_Properties.f95  

Code unit that includes (a) all the water-related constants (parameters), and (b) 

procedures describing the water behavior and thermophysical properties/processes 

in its entire thermodynamic phase diagram. Because water is almost universally 

present in geologic media, this is the most commonly used supplemental TOUGH+ 

v1.5 code unit. 



 

  59 

(5) T_Geomechanics.f95 

Code unit that describes the geomechanically-induced changes on the flow 

properties of the porous media.  These include porosity φ changes caused by 

pressure and/or temperature variations, intrinsic permeability k changes caused by 

porosity changes, and scaling of capillary pressures Pcap to reflect changes in φ and 

k.  The φ and k changes are computed using either simplified of full geomechanical 

models.  When the simplified model is invoked, φ is a function of (a) P and the 

pore compressibility αP and (b) of T and the pore thermal expansivity αT, while (c) 

k changes are estimated using empirical relationships (see Section 8).  Changes in 

φ and k can also be computed by using a full geomechanical model, which can be 

optionally coupled with TOUGH+. 

 

(6) T_Main.f95  

Main program that organizes the calling sequence of the high-level events in the 

simulation process, and includes the writing of important general comments in the 

standard output files, timing procedures, and handling of files needed by the code 

and/or created during the code execution. 

 
(7) T_Matrix_Solvers.f95  

A linear algebra package that includes all the direct and iterative solvers available 

in TOUGH+ (see Section 10). 

 

(8) T_Executive.f95  

The executive unit of TOUGH+.  It includes the procedures that advance the time 

in the simulation process, estimate the time-step size for optimum performance, 

populate the matrix arrays and invoke the solvers of the Jacobian, invoke special 

linear algebra for matrix pre-processing in cases of very demanding linear algebra 

problems, compute mass and energy balances, compute rates in sources and sinks, 

compute binary diffusion coefficients, write special output files, and conduct other 

miscellaneous operations.  
 



 

 60  

(9) T_Inputs.f95  

This code unit includes the procedures involved in the reading of the general input 

files needed for TOUGH+ simulations.  It does not include any procedure reading 

the data needed by the application option (see later discussion).  

 

All the code units listed above are common to all TOUGH+ simulations.  

TOUGH+ also includes supplemental code units that are part of the wider TOUGH+ code 

ensemble and are available for specialized computations needed by the various application 

options.  These are the following: 

 

(1) T_RealGas_Properties.f95  

Code unit that includes (a) a complete database of the parameter values of 12 gases 

that are needed to estimate all their properties (see below) needed for TOUGH+ 

simulations, and (b) procedures describing the equation of state (EOS) of real 

gases (pure or mixtures) using any of the Peng-Robinson, Redlich-Kwong, or 

Soave-Redlich-Kwong cubic EOS model.  The procedures in this code unit 

compute the following parameters and processes: compressibility, density, 

fugacity, enthalpy (ideal and departure), internal energy (ideal and departure), 

entropy (ideal and departure), thermal conductivity, viscosity, binary diffusion 

coefficients, solubility in water, and heat of dissolution in water.  
 

(2) T_Salinity_Effects.f95  

Code unit that computes all necessary properties and parameters in application 

options that involve salinity (e.g., brines).  It estimates the salt solubility in H2O, 

the halite density and enthalpy, the effect of salinity on the density, viscosity and 

enthalpy of the aqueous phase, as well as on the vapor pressure of H2O.  
 

(3) T_NonDarcian_Flow.f95  

Code unit that computes all parameters and variables needed for the application of 

non-Darcian flow through porous and fractured media by accounting for inertial 

(turbulent) or viscous (slippage) effects.  Thus, this unit reads all the non-Darcian 



 

  61 

flow inputs, and then uses them to compute all the parameters of the turbulent flow 

options (Forcheimer [1901] or Barre and Conway [2007]), of slippage flow 

(Klinkenberg flow [Klinkenberg, 1941], Knudsen diffusion [Freeman et al., 2011] 

or the Dusty Gas Model [Mason and Malinauskas, 1983; Webb, 1998]). 

 

Finally, to develop a fully functional code, the core and supplemental code units of 

TOUGH+ are combined with the application option-specific code units.  These have a 

standard function, structure and nomenclature (which uses the application option name 

OptionName as part of the unit name), and are described below:  

(1) T_OptionName_Definitions.f95  

Code unit providing default parameter values describing the basic attributes of the 

application option/equation of state (i.e., option name, number of components, 

number of phases, etc.).  At the initiation of the simulation, the default parameter 

values supplied by this unit are compared to those provided by the user in the 

standard input file to ensure correct dimensioning in the dynamic memory 

allocation process (see Section 5.1). 

 

(2) T_OptionName_Properties.f95  

Code unit that describes the thermophysical properties and processes of phases and 

components other than those available in the core and supplemental TOUGH+ 

codes (i.e., the water and the real gas properties).  For example, such a code unit 

would describe the oil properties or CO2 properties in application options that 

would require such computations. 

 
(3) T_OptionName_Specifics.f95 

Code unit that includes procedures specific to the application option, such as the 

reading of EOS-specific inputs, the preparation of EOS-specific output files, the 

computation of mass and volume balances and the estimation of EOS-specific 

parameters.  Generic procedures and operator extension – which override 

(overload) the standard procedures used by TOUGH+ for the simulation of non-



 

 62  

hydrate problems – are defined in this code unit, which does not include any 

procedures describing the equation of state involved in this application option. 

 

(4) T_OptionName_EOS.f95 

Code unit that describes the equation of state of the application option, assigns 

initial conditions, computes the thermophysical properties of the medium and of 

the phases (i.e., all the secondary variables), and determines phase changes and the 

state of the system.  This code unit also includes the procedure that computes the 

elements of the Jacobian matrix for the Newton-Raphson iteration.  

 

For example, the code units of the HYDRATE v1.5 application option [Moridis, 

2014] are: T_Hydrate_Definitions.f95, T_Hydrate_Properties.f95, 

T_Hydrate_Specifics.f95 and T_Hydrate_EOS.f95. 

Additionally, TOUGH+ v1.5 is distributed with the MESHMAKER V1.5 code 

(also written in FORTRAN 95/2003), which used to be part of the main code in the 

TOUGH2 simulators [Pruess et al., 1999; 2012], but is a separate entity in the TOUGH+ 

family of codes.  MESHMAKER is used for the space discretization (gridding) of the 

domain of the problem under study (see Section 7). 

 

NOTE: In compiling TOUGH+ v1.5, it is important that the free-format source code 

option be invoked for proper compilation of the FORTRAN 95/2003 code.   

 

 



 

  63 

 

 

 

 

4.0.  Input Data Requirements 
and Structure 

 
 

In this section, we discuss in detail the general input requirements for the TOUGH+ v1.5 

simulations.  These are the inputs that are common to any simulation, regardless of the 

application option that is being used. The input data for TOUGH+ v1.5 are a superset of 

the input data used in conventional TOUGH2 and older TOUGH+ simulations in order to 

ensure backward compatibility (a functional requirement for TOUGH+ v1.5).  While most 

of the general inputs are similar in type, input format, and parameter representation to 

earlier versions of the code, new input data structures and advanced formats are used for 

the inputs for new capabilities that are unique to TOUGH+ v1.5, as well as for the inputs 

of the TOUGH+ application options.  The introduction of advanced constructs and 

formats for the entire input data set is in progress, and these will be made available in 

future TOUGH+ releases.   



 

 64  

4.1. Input Procedure 

The input procedure in the current version of TOUGH+ remains similar in many aspects 

to that of TOUGH2 [Pruess et al., 1999; 2012] and earlier versions of TOUGH+ [Moridis 

et al., 2008; 2009; 2012].  Input data can be provided in a flexible manner by means of 

one or several ASCII data files.  Unless otherwise indicated, all TOUGH+ inputs are in 

standard metric (SI) units, such as meters, seconds, kilograms, ˚C and in the corresponding 

derived units, such as Newtons, Joules, Pascal (= N/m2 for pressure), etc. 

In the TOUGH+ standard input file, data are organized in data blocks that are 

defined by keywords.  Quite often, only the first five characters of the keywords typed in 

columns 1-5 (see Table 4.1) are read, because these are sufficient to recognize the data 

block.  While the contents of the various blocks are described in detail in Sections 5-12, 

here we describe some important records/keywords, and provide some general comments 

about their occurrence and arrangement in the input file.  

The user is directed to the Appendix, where a sample input file is listed for his/her 

reference in the study of the input process.  

 

4.1.1.  Data Block/Keyword TITLE 

The first record of the input file in any TOUGH+ simulation is TITLE, which includes a 

header of up to 132 characters. This record is necessary for any simulation to begin. 

 

4.1.2.  Keyword/Record ENDCY 

A record with the ENDCY keyword typed in columns 1-5 closes the TOUGH+ input file 

and instructs the code to initiate the simulation. 



 

  65 

4.1.3.  Keyword/Record ENDFI 

The presence of the ENDFI keyword in columns 1-5 is an alternative (to ENDCY) ending 

keyword in a TOUGH+ standard input file.  Presence of ENDFI keyword causes the 

simulation to be skipped after printing basic input information. This is a useful option 

when the simulation is limited to an attempt to obtain some basic information of the 

properties and conditions of the system in its initial state.  

 

4.1.4.  Structure of TOUGH+ Standard Input Files  

Every TOUGH+ v1.5 input file must (a) begin with the record/keyword TITLE and (b) 

end either with the record ENDCY, or, alternatively, with the record ENDFI (if no flow 

simulation is to be carried out).  Data records beyond ENDCY (or ENDFI) are ignored.  

Some data blocks, such as those specifying reservoir domains (ROCKS or 

MEDIA), volume elements (ELEME), connections (CONNE), and sinks/sources (GENER), 

have a variable number of records, while others have a fixed number of records. Unless 

otherwise indicated, a blank record indicates the end of the variable-length data blocks.  

The data block MEMORY must follow the data block TITLE because it provides all 

the necessary information for the dynamic memory allocation and array dimensioning in 

TOUGH+ v1.5. The data blocks between the MEMORY and the ENDCY/ ENDFI keywords 

can be provided in arbitrary order, except for the data block ELEME, which must precede 

(if either is present) the blocks CONNE and EXT-INCON.  The blocks ELEME and CONNE 

must either be both provided through the standard input file, or must both be absent, in 

which case alternative means for specifying geometry data are employed (see Section 7). 



 

 66  

The data block GENER can be omitted if there are no sinks and sources in the problem. If 

the keyword START or RANDOMN is present (see Section 4.1.2), the data block INCON 

can be incomplete, with elements (grid blocks) in arbitrary order, or can be absent 

altogether.  

Elements for which no initial conditions are specified in INCON are then assigned 

domain-specific initial conditions from (a) block INDOM (if present), or (b) from the data 

block EXT-INCON (if present), or (c) from the ‘generic’ initial conditions given in block 

PARAM, along with default porosities given in block ROCKS.  If START or RANDOMN is 

not present, INCON must contain information for all elements, in exactly the same order 

as they are listed in block ELEME.  

Between data blocks, the standard TOUGH+ input file may include an arbitrary 

number of records that do not begin with any of the TOUGH+ keywords.  This is useful 

for inserting comments about problem specifications directly into the input file. TOUGH+ 

v1.5 gathers all these comments and prints the first 50 such records in the standard output 

file. 

Much of the data handling in TOUGH+ is accomplished by means of disk files, 

which can be edited and modified using any text editor.  The initialization of the arrays for 

geometry, generation, and initial condition data is always made from the disk files MESH 

(or MINC), GENER, and INCON.  A user can either provide these files at execution time, 

or they can be written from TOUGH+ v1.5 input data during the initialization phase of the 

program, or they can be obtained from the standard TOUGH+ v1.5 simulation outputs at 

the end of a simulation for use in a continuation run. .  



 

  67 

If the data blocks GENER and/or INCON are not provided in the standard input file, 

and if no disk files GENER and/or INCON are present, defaults take effect (no generation; 

initial conditions from block INDOM, or from block EXT-INDOM, or defaults from block 

PARAM).  To ensure that these defaults are used and that erroneous inputs are not 

introduced, the disk files GENER and/or INCON from a previous run must be removed 

from the execution environment/directory.  A safe way to use default generation and 

initial conditions is to specify dummy data blocks in the input file, consisting of one record 

with GENER or INCON, followed by a blank record. 

The format of data blocks ELEME, CONNE, GENER, and INCON is basically the 

same (see Section 7) when these data are provided as disk files and when they are given as 

part of the input file.  However, specification of these data through the input file rather 

than as disk files offers some added conveniences, which are useful when a new 

simulation problem is initiated.  For example, a sequence of identical items (volume 

elements, connections, sinks or sources) can be specified through a single data record.  

Additionally, indices that are used internally for cross-referencing elements, connections, 

and sources are generated internally by TOUGH+ rather than having them provided by the 

user.  The INCON, GENER, and INCON disk files written by TOUGH+ can be merged into 

an input file without changes, keeping the cross-referencing information. 

  



 

 68  

Table 4.1.  TOUGH+ v1.5 input data blocks 
 

Keyword (+) Sec. Function 

TITLE (1st record) 4.1.1 Data record (single line) with simulation title 

MEMORY (2nd record) 5.1 Dynamic memory allocation 

OptionName (#) Parameters describing properties and behavior of the specific 
application option 

ROCKS or MEDIA 6.2 Hydrogeologic parameters for various reservoir domains 
RPCAP or 
WETTABILITY 

6.3 Optional; parameters for relative permeability and capillary 
pressure functions 

DIFFUSION 6.4 Optional; diffusivities of mass components 

*ELEME 7.1 List of grid blocks (volume elements) 

*CONNE 7.2 List of flow connections between grid blocks 
INDOM 8.1 Optional; initial conditions for specific reservoir domains 
*INCON 8.2 Optional; list of initial conditions for specific grid blocks 

EXT-INCON 8.3 Optional; list of initial conditions for specific grid blocks 
BOUNDARIES 8.6 Optional; provides time-variable conditions at specific 

boundaries 

*GENER 9.1 Optional; list of mass or heat sinks and sources 
PARAM 10.1 Computational parameters; time stepping and convergence 

parameters; program options 
SOLVR 10.2 Optional; specifies parameters used by linear equation solvers. 
TIMES 11.2 Optional; specification of times for generating printout 
SUBDOMAINS 11.3 Optional; specifies grid subdomains for desired time series 

data  
INTERFACES 11.4 Optional; specifies grid interfaces for desired time series data  
SS_GROUPS 11.5 Optional; specifies sink/source groups for desired time series 

data  
ENDCY (last record) 4.1.3 Record closes TOUGH+ input file and initiates simulation 

ENDFI (last record) 4.1.4 Alternative for closing TOUGH+ input file which causes flow 
simulation to be skipped. 

#: This described in the individual User’s Manual of the TOUGH+ v1.5 application option 
*: Data can be provided as separate disk files and omitted from input file. 
+: The bold face part of the keyword (left column) suffices for data block recognition 
 



 

  69 

Data describing time-variable boundary conditions can be entered in a tabular form 

in the data block BOUNDARIES.  In addition to the output files that are produced by any 

TOUGH+ v1.5 simulation, TOUGH+ v1.5 provides the option of output files with time-

series data on variables that describe (a) the status of selected subdomains of the simulated 

domain and (b) flows through user-defined interfaces within the domain and/or through 

groups of sources and sinks (wells).  The input data needed for the definition of these 

subdomains, interfaces and well groups are provided through the data blocks 

SUBDOMAINS, INTERFACES and SS_GROUPS, respectively (see Table 4.1).  For 

continuation runs, the presence of the output files corresponding to the SUBDOMAINS, 

INTERFACES and SS_GROUPS data blocks – created during the last simulation that is to 

be continued – is of critical importance because they contain information needed by the 

TOUGH+ code for the seamless extension of the simulation period. 

 

 

 

 



 

 70  

 
 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 



 

  71 

 

 

 

 

5.0.  Memory Specification 
and Allocation 

 
 

5.1. Data Block MEMORY 

This is the data block that reads the data for the dynamic memory allocation in the 

TOUGH+ simulation. This block must always follow the TITLE record.  

Record MEMORY.1 
 

This record must always include the following header: 
  
MEMORY 

 
Record MEMORY.2 

 
Reads the character variable EOS_Name according to FORMAT(A15). This 
variable describes the Equation Of State (EOS) that describes the application 
option simulated by TOUGH+ in the problem at hand.  This parameter is used 
strictly to allocate memory to the pertinent storage arrays and to compare the user-
specified values of the parameters provided in the next record (Record 
MEMORY.3) against defaults specified in the code. 

 



 

 72  

Record MEMORY.3 
 

The following information is provided in MEMORY.3 using a free format:  
 

NumCom, NumEq, NumPhases, binary_diffusion 
 

These parameters are defined as follows:  
 
NumCom Integer denoting the number of mass components 

(see Section 2) 
 
NumEq Integer denoting the number of equations 
 
NumPhases Integer denoting the number of phases. 
 
binary_diffusion Logical variable indicating whether binary diffusion 

is active (binary_diffusion=.TRUE.) or 
ignored (binary_diffusion=.FALSE.). 

 
The permissible combinations of the values of these parameters are discussed in 
details in the User Manuals of each of the TOUGH+ application options.  

 
 

Record MEMORY.4 
 

In MEMORY.4, the following parameters are read using a free format:  
 

coordinate_system, Max_NumElem,  
Max_NumConx, ElemNameLength, 
active_conx_only, boundaries_in_matrix 

 
These parameters are defined as follows:  

 
coordinate_system  

Character variable describing the coordinate system used in the study.  It 
can assume the values 'Cartesian' or 'Cylindrical'. 

 
Max_NumElem  

Integer variable defining the maximum number of elements (cells, 
gridblocks) in the discretized simulation domain 

 
Max_NumConx  

Integer variable defining the maximum number of connections in the 
discretized simulation domain. 
 



 

  73 

Information on the concepts of elements and connections can be found in 
Section 8, and in Pruess et al. [1999]. As a general rule, MaxNum_Conx 
> ND*MaxNum_Elem, where ND is the dimensionality of the problem.  

 
ElemNameLength  

Integer variable defining the number of characters in the element names.  It 
may be either 5 or 8.  The default in TOUGH+ v1.5. 

 
active_conx_only  

Logical variable indicating whether the simulation will be halted after 
determining the active connections in the grid.  This feature is useful when 
running a simulation that uses a subset of the elements of a large grid 
without correspondingly adjusting the connections, and is designed to 
reduce the very large memory requirements for the connection-related 
dynamic arrays.  
 
When active_conx_only =.TRUE., the simulation stops once the 
active connections (involving only the elements defined in the element list) 
are determined.  The active connections are stored in a new file called 
Active_Connection_File. Then the simulation can be run using the 
new connection list, thus having much lower memory requirements. For a 
thorough discussion of elements and connections in TOUGH+, see Section 
7. 

 
boundaries_in_matrix  

Logical variable indicating how inactive elements (describing constant-
conditions boundaries, see Section 8.5, and denoted either by a negative or 
very large volume, or by setting the variable elem_activity='I ', see 
Section 7.2) are to be treated when solving the equations of mass and 
energy balance.  
 
When boundaries_in_matrix =.TRUE., then all inactive elements 
are assigned very large volumes (1050 m3) to maintain constant conditions 
during the simulation, and are included in the Jacobian matrix.  Otherwise, 
only the active elements are included in the Jacobian. 
 
This feature is useful when using older TOUGH2 input files, and when a 
parallel version of the code is employed.  With newly developed input files, 
the boundaries_in_matrix =.FALSE. value is highly 
recommended. 

 
 

Record MEMORY.5 
 

The integer variable Max_NumSS (declaring the maximum number of expected 
sources and sinks) is read using a free format.  



 

 74  

Record MEMORY.6 
 

In this record, the integer variable Max_NumMedia is read using a free format. 
This variable represents the maximum number of geologic media with different 
properties to be considered in the simulations. 

 
 

Record MEMORY.7 
 

In MEMORY.7, the following logical variables are read using a free format:  
 

element_by_element_properties, 
porosity_perm_dependence, 
scaled_capillary_pressure, 
Option_tortuosity_CompuMethod 

 
These parameters are defined as follows:  

 
element_by_element_properties 

Logical variable (flag) indicating whether each gridblock has its own 
hydraulic properties (φ and k), in which case they are read on an element-
by-element basis (see Sections 7 and 8).  This feature is necessary (a) in the 
simulation of very heterogeneous systems, and/or (b) when k changes in 
response to pressure and/or temperature variations, or in response to 
changes in the geomechanical regime of the system.   
 
When element_by_element_properties =.FALSE., then the φ 
and k of a particular element are determined from the general properties of 
the corresponding porous medium (see Section 6). When 
element_by_element_properties =.TRUE., then element-
specific φ and k are read as part of the initial conditions in the INCON data 
block (see Section 8).  

 
porosity_perm_dependence  

Logical variable (flag) indicating whether the intrinsic permeability k in a 
given element is to change as a function of changing porosity φ.  As 
discussed earlier, φ can change in response to P and/or T changes according 
to relationships that are determined from simple or complex geomechanical 
models (see Section 2).   
 
When porosity_perm_dependence =.FALSE., then k is 
unaffected by changes in φ. When  porosity_perm_dependence 
=.TRUE., then k is readjusted internally to reflect the effect of changes in 
φ that are estimated using either an empirical model (see Equation 2.51, 
Section 2) or a full geomechanical model.   
 



 

  75 

Note that when porosity_perm_dependence =.TRUE., the 
variable element_by_element_properties is set internally to 
.TRUE. because activation of the porosity_perm_dependence 
feature results in element-specific hydraulic properties. 

 
scaled_capillary_pressure  

Logical variable (flag) indicating whether the capillary pressure Pcap will be 
scaled to reflect variations in φ and k.   
 
Activation of this feature by setting scaled_capillary_pressure 
=.TRUE. may be needed (a) in highly heterogeneous systems in which 
the element-specific properties vary significantly from those described by 
the average (expected) values of the porous medium (as specified in 
Section 6), and/or (b) when the significant variations in φ and k are 
experienced in the course of the simulation (e.g., when 
porosity_perm_dependence =.TRUE.). 

 
Option_tortuosity_CompuMethod  

A character variable describing the method of estimation of the binary gas 
diffusivities. This input variable is important if one or more of the 
following processes are considered in the simulation: turbulent flow, 
diffusion, solute or colloid transport, a Dusty Gas Model [Mason and 
Malinauskas, 1983; Webb, 1998]; otherwise it is ignored.  The following 
options are available: 
 
='Relative_Perm': For domains for which a tortuosity parameter τ0 = 
mediaTortu ≠ 0 is specified in data block MEDIA or ROCKS (see 
Section 6.1), τ β =τ β Sβ( )=krβ  – see Equations (2.15) and (2.17). 

 
='Saturation':  For domains for which a tortuosity parameter τ0 = 
mediaTortu ≠ 0 is specified in data block MEDIA or ROCKS (see 
Section 6.1), τ β =τ β Sβ( )=Sβ  – see Equations (2.15) and (2.17). 

 
='Constant':  When this option is invoked, the constant τ0 = 
mediaTortu values provided in the data block MEDIA or ROCKS 
(Section 6.1) is used with no phase-saturation adjustment, i.e., τ β =1 .  
 
NOTE: If mediaTortu=0 in data block MEDIA or ROCKS, then the 
tortuosity τ0 is computed from the Millington-Quirk model in Equation 
(2.21) as τ Tβ =τ 0τ β =φ

1/ 3Sβ
10/ 3 .  This value is then used in the computation 

of the effective diffusion coefficients. 
 
 



 

 76  

Record MEMORY.8 
 

In MEMORY.8, the following logical variables are read using a free format:  
 

coupled_geochemistry, property_update 
 

These parameters are defined as follows:  
 

coupled_geochemistry  
Logical variable (flag) indicating whether the simulation involves coupled 
flow, thermal and geochemical processes.  This feature is activated by 
setting coupled_geochemistry =.TRUE. when geochemical 
processes are considered in a TOUGH+ simulation involving coupled flow, 
thermal and geochemical processes. The default value is 
coupled_geochemistry =.FALSE..  

 
property_update  

Character variable (flag) indicating the type of property update when 
coupled geochemical processes are involved in TOUGH+ simulations.  
This variable is the same as in the next record (MEMORY.9), where it is 
discussed in detail.   

 
 
Record MEMORY.9 

 
In MEMORY.9, the following logical variables are read using a free format:  

 
coupled_geomechanics, 
geomechanical_code_name, 
property_update, num_geomech_param 

 
These parameters are defined as follows:  

 
coupled_geomechanics  

Logical variable (flag) indicating whether the simulation involves coupled 
flow, thermal and geomechanical processes.  Activation of this feature by 
setting coupled_geomechanics =.TRUE. indicates the use of a 
complex geomechanical model to describe the relationship between 
hydraulic media properties (φ and k) and geomechanical parameters (such 
as stresses and strains).  This complex geomechanical model overrides the 
simplified models (based on pore compressibility and expansivity) that are 
standard in TOUGH+ (see Section 2).   
 
When this flag is invoked, the geomechanical model invoked by the 
TOUGH+ code is that defined by the variable 
geomechanical_code_name (see discussion of the next parameter).  



 

  77 

When coupled_geomechanics =.FALSE. (the default value), the 
simplified geomechanical models are invoked, even if the executable of a 
geomechanical code (named geomechanical_code_name) is present 
in the TOUGH+ directory. 
 
When coupled_geomechanics =.TRUE., and the executable of a 
geomechanical code named geomechanical_code_name is present in 
the TOUGH+ directory, the following files are created: (a) To_GMech, 
containing the data (pressure, temperatures and phase saturations) that are 
provided to the FLAC3D geomechanical code [Itasca, 2002] from the 
TOUGH+ simulator for use in the computation of the geomechanical 
properties of the system, and (b) the Fr_Gmech file, containing the data 
(mainly stresses and strains) supplied by the FLAC3D code for use by the 
TOUGH+ simulator for the computation of the variable (geomechanically-
dependent) hydraulic properties φ and k.  These two files are necessary for 
communication between the two codes, because the lack of shared memory 
(disallowed because of intellectual property concerns) makes data 
exchange by means of these two external files as the only viable option.  
Additionally, the new file Init_Stress that stores the initial stresses 
and strains is created if this is a new run; in a continuation run, the initial 
(i.e., at t = 0, not at the time of the initiation of the continuation run) 
stresses and strains are read from the old file In_Stresses. 

 
geomechanical_code_name  

A character variable of maximum length 6 that provides the name of the 
executable of the geomechanical code that is coupled with the TOUGH+ 
code when coupled_geomechanics =.TRUE..  In the current 
implementation of the code, the geomechanical model used in conjunction 
with the common TOUGH+ application options is the FLAC3D 
commercial simulator (ITASCA, 2002), i.e., 
geomechanical_code_name = FLAC3D.  However, the TOUGH+ 
can easily accommodate any other geomechanical simulator that conforms 
to its data exchange formats and requirements.  
 
When coupled_geomechanics =.TRUE. and the executable of a 
geomechanical code named geomechanical_code_name is present in 
the TOUGH+ directory, it is treated as a C subroutine that is called by the 
TOUGH+ simulator.  If (a) coupled_geomechanics =.TRUE. and 
(b) the geomechanical_code_name is different from FLAC3D , or 
does not correspond to any executable available in the TOUGH+ directory, 
or is blank, the TOUGH+ code resets coupled_geomechanics to 
=.FALSE..  

 
property_update  

Character variable (flag) denoting the manner of property update as a result 
of interdependent changes in the hydraulic (flow) and geomechanical 



 

 78  

properties.  The variable property_update can assume the following 
values: 'Continuous', indicating continuous property update (i.e., in 
every Newtonian iteration of every timestep) and participation in the 
Jacobian matrix; 'Iteration', indicating property updates in every 
Newtonian iteration of every timestep, but without any contribution to the 
Jacobian; and 'Timestep', indicating a single property update at the end 
of each timestep and no contribution to the Jacobian.  The option 
property_update = 'Continuous' yields the most accurate 
solutions that are accurate over any pressure range and media 
geomechanical property range but results in longer execution times, while 
the option property_update = 'Timestep' leads to faster solutions, 
but which are acceptably accurate in less compressible media and for a 
mild ΔP.   
 
If a property_update value other than the three described above is 
read, then an error message is printed and the simulation is aborted. 

 
NumGeomechParam  

Integer variable defining the number of geomechanical parameters that are 
to be provided by the geomechanical code (to be read by the TOUGH+ 
simulator from the Fr_Gmech file), and which will be used to estimate 
the updated φ and k.  Geomechanical codes such as FLAC3D can provide a 
very large number of geomechanical properties and parameters of interest, 
but in the current version of the TOUGH+ only two (stress and strain) are 
needed, and these are stored separetely.  Thus, NumGeomechParam is not 
needed and can be set to zero (indicating no additional memory utilization) 
when the FLAC3D geomechanical model is invoked for hydrate 
simulations that involve coupled geomechanical effects.  However, the 
parameter is available for generality and maximum flexibility in future 
code developments that may include the use of additional geomechanical 
simulators and constitutive equations. 

 

5.2. Internal Checks 

The data provided in Record MEMORY.3 (NumCom, NumElem and NumPhases) 

define the dynamic array dimensioning of the arrays that describe all the primary and 

secondary variables in TOUGH+ v1.5 simulations.  These are compared to the default 

value ranges of the same parameters for the specific TOUGH+ application option (EOS) 

that are provided in the code unit T_OptionName_Definitions.f95 (see Section 



 

  79 

3.6).  If any of these parameter values fall outside the acceptable range, this is a grave 

(unrecoverable) error; a detailed error message is printed into the standard output file and 

the simulation ceases.   

 Similarly, an error message is printed and the simulation is aborted if the default 

application option (EOS) name name(s) in T_OptionName_Definitions.f95 

heading of the OptionName data block (see Table 4.1) that provides the application 

option (EOS) name is in conflict with the.  

 

 

 



 

 80  

 
 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 



 

  81 

 

 

 

 

6.0.  Physical Properties of System 
 
 

This section lists and describes the physical properties of the system that are common to 

any TOUGH+ simulation, including the rock properties (block ROCKS or MEDIA), the 

relative permeability and capillary pressure properties (block RPCAP), and the properties 

specifying multi-component diffusion (block DIFFU).  Additionally, it describes the 

procedure for introducing block-by-block permeability modification. 

 

6.1. Data Block ROCKS or MEDIA 

This block introduces material parameters (flow and thermal) for all the different geologic 

media (porous or fractured) involved in the domain simulated by the appropriate TOUGH 

v1.5 application.  

Record ROCKS.1 
 

Format (A5, I5, 8E10.4) 
 



 

 82  

mediaName, NAD, mediaDensG,  
mediaPoros, (mediaPerm(i), i = 1,3),  
mediaKThrW, mediaSpcHt, PoMedRGrain 
 

mediaName   
Material name (rock type). 

 
NAD  

Integer variable; if zero or negative, defaults will take effect for a number 
of parameters (see below); 
 
≥ 1: will read another data record to override defaults. 
 
≥ 2 and < 5: will read two more records with domain-specific parameters 
for relative permeability and capillary pressure functions. 
 
= 5: In addition to the four records read for NAD > 2, an additional record 
will be read with the coefficients of the porosity polynomial φ/φ0 = F0 + 
F1ΔP + F2ΔP2 +…+ FnΔPn, where φ0 is the reference (initial) default 
porosity and ΔP = P-P0 is the deviation from the initial pressure P0.  This 
equation will be used instead of Equation (2.47) to estimate the effect of 
pressure on the medium porosity. 
 
= 6: In addition to the four records read for NAD > 2, an additional record 
will be read with the coefficients of Equations (2.56) and (2.57) that 
describe the compressibility of an unconsolidated porous medium in the 
presence of cementing solid phases (such as ice and/or hydrates). 
 
= 8: In addition to the four records read for NAD > 2, an additional record 
will be read with information on the specifics of inertial or slippage effects 
on fluid flow through this medium. 

 
mediaDensG  

Rock grain density [kg/m3] 
 
mediaPoros  

Default porosity φ0 (void fraction) for all elements belonging to domain 
MediumName for which no other porosity has been specified in block 
INCON. Option "START" is necessary for using the default porosity. 
 

mediaPerm(i),i=1,…,3   
Absolute permeabilities along the three principal axes, as specified by 
ConxKi in block CONNE. 

 
 
 



 

  83 

mediaKThrW  
Formation heat conductivity under fully liquid-saturated conditions 
[W/m/˚C]. 

 
mediaSpcHt  
Rock grain specific heat [J/kg/˚C].  
 
PoMedRGrain  

Rock grain radius [m].  This is needed for the estimation of the surface 
reaction area in some TOUGH+ v1.5 application options involving kinetic 
chemical reactions.  If PoMedRGrain = 0.0e0 (e.g., when no value is 
provided), the TOUGH+ v1.5 code provides a grain radius estimate using 
the Kozeny-Carman approximation.  This variable is needed in very 
specific TOUGH+ v1.5 applications options, and is discussed in the 
corresponding User’s Manuals. 

 
 
Record ROCKS.1.1 (optional, when NAD ≥ 1 only) 
 

Format (11E10.4) 
 
mediaCompr, mediaExpan, mediaKThrD, 
mediaTortu, mediaKlink, mediaOrgCF, 
mediaCritSat, mediaPermExpon, mediaBeta, 
mediaGama, PhiZeroStress 

 
mediaCompr  

Pore compressibility αP= 1 φ( ) ∂φ ∂P( )T  [Pa-1], see Equation (2.47) – 
default αP = 0.0. 

 
mediaExpan  

Pore expansivity αT = 1 φ( ) ∂φ ∂T( )P  [1/ ˚C], see Equation (2.47) – default 
αT = 0.0.  

 
mediaKThrD Formation heat conductivity under desaturated 
conditions [W m-1K-1] – default is mediaKThrD = mediaKThrW. 

 
mediaTortu   

Tortuosity factor for binary diffusion. If mediaTortu = 0, a porosity and 
saturation-dependent tortuosity will be calculated internally from the 
Millington and Quirk [1961] model, Equation (2.53). 

 
mediaKlink  

Klinkenberg parameter b [Pa-1] for enhancing gas phase permeability 
according to the relationship of Eaution (2.13) – default is 0. 

 



 

 84  

mediaOrgCF  
Not used. 

 
mediaCritSat  

Critical total mobile phase saturation at which the permeability of the 
medium that experience precipitation of solids becomes equal to zero; it is 
equal to the critical “open” porosity φc of a porous medium at which its 
permeability becomes zero – needed only when the EPM model is invoked 
(see Sections 2.8 and 2.10). 

 
mediaPermExpon  

Permeability reduction exponent for solid phase-bearing systems – needed 
only when the EPM model is invoked, see see Sections 2.8 and 2.10, 
Equation (2.43). 

 
mediaBeta  

The parameter β used for the computation of porosity as a function of 
geomechanical stresses σ according to the equation: 
 

φ = φ0 - φσ=0 {exp[β(σ - P)] - exp[β(σ0 - P0)]} 
 

where φσ=0 is the medium porosity at zero stress, and the subscript 0 
indicates initial conditions.  
 
NOTE: This φ computational option can be invoked only when all of the 
following conditions are met: (a) the option coupled_geomechanics 
=.TRUE. is activated, i.e., when the TOUGH+ simulations are coupled 
with a full geomechanical model such as the FLAC3D code, (b) at least one 
medium β ≠ 0, and (c) all media pore compressibilities αP = 0.   
 
If coupled_geomechanics =.FALSE., this parameter is ignored and 
the variations in φ are computed from one of the other computational 
options available in TOUGH+.  The same occurs when 
coupled_geomechanics =.TRUE., all media β = 0, and at the pore 
compressibility of at least one medium αP ≠ 0. 

 
mediaGama  

The parameter γ used for the computation of intrinsic permeability k as an 
empirical function of variations in the porosity φ  – See Equation (2.24). 

 
PhiZeroStress  

The porosity at zero stress φσ=0. This variable is used only when the option 
coupled_geomechanics =.TRUE. is activated, i.e., when the 
TOUGH+ simulations are coupled with a full geomechanical model such as 
the FLAC3D code.  If coupled_geomechanics =.FALSE., this 
variable is ignored. 



 

  85 

Record ROCKS.1.2 (optional, NAD ≥ 2 only) 
 

Format (I5, 5X, 7E10.4)  
 
RelPermEquationNum, (RelPermParam(i),i= 
1,…,7) 
 

RelPermEquationNum  
Integer parameter indicating the type of the relative permeability function 
of the medium under consideration (see detailed discussion in Section 
6.3.1). 

 
RelPermParam(i),i=1,…,7  

Real parameters corresponding to the relative permeability function 
described by the RelPermEquationNum option (see Section 6.3.1). 

 
 
Record ROCKS.1.3 (optional, NAD ≥ 2 only) 

 
Format (I5, 5X, 7E10.4)  
 
PcapEquationNum, (PcapParam(i),i=1,…7) 
 

PcapEquationNum  
Integer parameter indicating the type of the capillary pressure function of 
the medium under consideration (see detailed discussion in Section 6.3.2). 

 
PcapParam(i),i=1,…7   

Real parameters corresponding to the capillary pressure function described 
by the PcapEquationNum option (see Section 6.3.2). 

 
 
Record ROCKS.1.4 (optional, NAD = 5 only, to be used when the media 

porosity is described as a polynomial function of the pressure 
change ΔP) 
 
Format (I5, 5X, 7E20.13)  
 
PhiPolyOrder, (PhiCoeff (i),i=0,…,6) 
 

PhiPolyOrder  
Order n of the polynomial φ/φ0 = F0 + F1ΔP + F2ΔP2 +…+ FnΔPn.  For a 
constant φ, PhiPolyOrder = 0. 

 
PhiCoeff(i),i=0,…,6   

Coefficients Fn (n = 0,…,PhiPolyOrder) of the φ = φ(ΔP) polynomial.   



 

 86  

Record ROCKS.1.4 (optional, NAD = 6 only, to be used when cementing solid 
phases such as ice and/or hydrates are present in the pores of 
unconsolidated media – see Section 2.11.3) 
 
Format (10E10.4)  
 
LoComp, SatAtLoComp,  
HiComp, SatAtHiComp, DeltaSat 
 

LoComp  
The lower limit of the medium compressibility αPL [Pa-1], 
corresponding to the full stiffening/strengthening effect of the 
presence of cementing solid phases such as ice and/or hydrates – 
see Equation (2.56). 

 
SatAtLoComp  

= SSmax, i.e., the lowest SS saturation at which αP = αPL – see Equations 
(2.44) and (2.45). 

 
HiComp  

The upper limit of the medium compressibility αPU [Pa-1], corresponding to 
the absence of cementing solid phases– see Equation (2.44). 

 
SatAtHiComp  

= SSmin, i.e., the largest SS saturation at which αP = αPU – see Equations 
(2.44) and (2.5). 

 
DeltaSat  

The smoothing factor δ – see Equation (2.45).  A value of δ = 0.015 is 
suggested – see Figure 2.5. 

 
Repeat records ROCKS.1, ROCKS.1.1, ROCKS.1.2, ROCKS.1.3 and 
ROCKS.1.4 for all the porous/fractured media in the domain under investigation. 

 
 Record ROCKS.2   

A blank record closes the ROCKS data block.   
 
Note: The number of media described in the data block ROCKS/MEDIA cannot 
exceed the number Max_NumMedia specified in the MEMORY data block (See 
Section 5.1). If this happens, an error message is printed and the simulation is 
aborted. 

 



 

  87 

6.3. Data Block RPCAP 

This block introduces information on relative permeability and capillary pressure 

functions, which will be applied for all flow domains for which no data were specified in 

records ROCKS.1.2 and ROCKS.1.3. A catalog of relative permeability and capillary 

pressure functions is presented in Sections 6.3.1 and 6.3.2, respectively.  
Record RPCAP.1 

 
Format (I5, 5X, 7E10.4) 
 
DefaultRelPermType, (RPD(i),i=1,7) 
 

DefaultRelPermType  
Integer parameter describing the type of the default relative permeability 
function (see Section 6.3.1).  

 
DefaultRelPermType, (RPD(i),i=1,7) 

Real parameters corresponding to the relative permeability function 
selected by the DefaultRelPermType parameter (see Section 6.3.1). 

 
 
Record RPCAP.2 

 
Format (I5, 5X, 7E10.4) 
 
DefaultCapPresType, (CPD(I),i=1,7) 
 

DefaultCapPresType  
Integer parameter describing the type of the default capillary pressure 
function (see Section 6.3.2).  

 
(CPD(i), i=1,…,7)   

Real parameters corresponding to the capillary pressure function selected 
by the DefaultCapPresType parameter (see Section 6.3.2). 

 

All the relative permeability and capillary pressure functions that are available in 

TOUGH+ for use in the various application options are listed in the following sections.  



 

 88  

6.3.1.  Two-Phase Relative Permeability Functions  

6.3.1.1. RelPermEquationNum = 1:  Linear functions 
krA increases linearly from 0 to 1 in the range RP(1) ≤ SA ≤ RP(3); 
krG increases linearly from 0 to 1 in the range RP(2) ≤ SG ≤ RP(4) 
Restrictions: RP(3) > RP(1); RP(4) > RP(2). 

 
6.3.1.2. RelPermEquationNum = 2:  Power functions 
 krA = SA( )n , krG =1 , where n = RP(1) 

 
6.3.1.3. RelPermEquationNum = 3:  Corey's curves [Corey,1954] 

 
krA = Ŝ

4 , krG = 1− Ŝ( )
2
1− Ŝ2( )  

 

where  Ŝ =
SA − SirA( )

1− SirA − SirG( )
 

with SirA = RP(1); SirG = RP(2) 
Restrictions: RP(1) + RP(2) < 1 

 
6.3.1.4. RelPermEquationNum = 4:  Grant's curves [Grant, 1977] 
 

krA = Ŝ
4 , krG =1− krA  

 

where  Ŝ =
SA − SirA( )

1− SirA − SirG( )
 

with SirA = RP(1); SirG = RP(2) 
Restrictions: RP(1) + RP(2) < 1 

 
6.3.1.5. RelPermEquationNum = 5:  All phases perfectly mobile 

krG = krA = 1 for all saturations; no parameters 
 
6.3.1.6. RelPermEquationNum = 6:  Functions of Fatt and Klikoff (1959) 
 

krA = S*( )
3
, krG = 1− S

*( )
3
 



 

  89 

 

where:  S* =
SA − SirA( )
1− SirA( )

 

with SirA = RP(1). 
Restriction: RP(1) < 1. 

 
6.3.1.7. RelPermEquationNum = 7, -7:  van Genuchten-Mualem model 

[Mualem, 1976; van Genuchten, 1980] 
 

krA =
S* 1− 1− [S*]1 λ( )

λ{ }
2

if SA < SmxA

1 if SA ≥ SmxA

#

$
%

&%
 

 
Gas relative permeability can be chosen from among several options.  For 
RelPermEquationNum = 7, it is computed from one of the following 
three forms, of which the second is the Corey [1954] equation and the third 
is the modified Stone equation [Stone, 1970] – see Section 6.1.3.9: 

 
krG =

1− krG                if SirG =0

1− Ŝ( )
2

1− Ŝ2( )   if SirG >0 and nG ≤ 0

S( )
nG if SirG >0 and nG > 0

#

$

%
%

&

%
%

 

 
For RelPermEquationNum =-7, the gas relative permeability is 
computed from the model of Parker et al. [1987]: 
 

krG =
1− S* 1− S*( )

1/λ"
#$

%
&'
λ(

)
*

+
,
-

2

       if 1−S* >0

0       if 1−S* ≤ 0

(

)
/

*
/

 

 
The krA and krG estimates are subject to the following restrictions: 
 

0  ≤   krA,krG   ≤   1  

 

Here, S* = SA −SirA
SmxA −SirA

  and !S= SG −SirG
1−SirA

 

 



 

 90  

 
Parameters: RP(1) = λ 

RP(2) = SirA 
RP(3) = SmxA 
RP(4) = SirG 
RP(5) = nG 

 
Notation: Parameter λ is m in van Genuchten’s notation, with m = 1 - 1/n. 
 

6.3.1.8. RelPermEquationNum = 8:  Function of Verma et al. [1985] 
 

krA = Ŝ
3 , krG = A + BŜ +C Ŝ

2  

 

where  Ŝ =
SA − SirA( )
SmxA − SirA( )

 

Parameters as measured by Verma et al. [1985] for steam-water flow in an 
unconsolidated sand: 
  SirA = RP(1) = 0.2 
  SmxA = RP(2) = 0.895 
  A = RP(3) = 1.259 
  B = RP(4) = -1.7615 
  C = RP(5) = 0.5089 

 
6.3.1.9. RelPermEquationNum = 9:  Modified version of Stone’s first three-

phase relative permeability method [Stone, 1970]. 
 

krA =max 0,min SA − SirA
1− SirA

"

#
$

%

&
'

n

,1
(
)
*

+*

,
-
*

.*

(
)
*

+*

,
-
*

.*
, 

krG =max 0,min SG − SirG
1− SirA

"

#
$

%

&
'

nG

,1
(
)
*

+*

,
-
*

.*

(
)
*

+*

,
-
*

.*
,  

krH = 0  

 
Parameters are SirA = RP(1), SirG = RP(2), n = RP(3), nG = RP(4). 
Note: When RP(4)=0.0e0, it is reset internally to RP(4)=RP(3) . 



 

  91 

If the user has access to the source code, he/she may modify the source code of 

TOUGH+ (segment T_Media_Properties.f95) to include other relative 

permeability relationships. However, for this task the user needs to be familiar with the 

concepts of generic processes (and overloading) in object oriented programming 

languages.  

 
6.3.2.  Two-Phase Capillary Pressure Functions  

6.3.2.1. PcapEquationNum = 1:  Linear function 
 

Pcap =

−CP(1) for SA ≤CP(2)

0 for SA ≤CP(2)

−CP(1) CP(3)− SA
CP(3)−CP(2)

for CP(2)<SA <CP(3)

#

$

%
%
%%

&

%
%
%
%

 

 
Restriction: CP(3) > CP(2) 

 
 
6.3.2.2. PcapEquationNum = 2:  Function of Pickens et al. [1979] 
 

Pcap = −P0 ln A
B
1+ 1−B2 A2( )"

#$
%

&'
(
)
*

+
,
-

1 x

  

 
with 

A = 1+ SA
SA0

!

"
#

$

%
&
SA0 − SirA( )
SA0 + SirA( )

, B =1− SA
SA0

 

 
where P0 = CP(1), SirA = CP(2), SA0 = CP(3), x = CP(4) 

 
Restrictions: 0 < CP(2) < 1 ≤ CP(3); CP(4) ≠ 0 

 
6.3.2.3. PcapEquationNum = 3:  TRUST capillary pressure [Narasimhan et 

al., 1978] 
 



 

 92  

Pcap =

−Pe −P0
1−SA
SA −SirA

"

#
$

%

&
'

1 η

for SA <1

0 for SA <1

(

)

*
**

+

*
*
*

 

 
where P0 = CP(1), SirA = CP(2), η = CP(3), Pe = CP(4) 
 
Restrictions: CP(2) ≥ 0;  CP(3) ≠ 0 

 
 
6.3.2.4. PcapEquationNum = 4: Milly’s function [Milly, 1982] 
 

Pcap =−97.783×10
A , A =  2.26 0.371

SA −SirA
−1

"

#
$$

%

&
''

1/ 4

 

  
where SirA = CP(1) 
 
Restriction: CP(1) ≥ 0 

 
 
6.3.2.5. PcapEquationNum = 6:  Leverett’s function [Leverett, 1941; Udell 

and Fitch, 1985] 
 

Pcap  =  −P0 ⋅σ (T ) ⋅ f (SA )  
 
where 
 
σ(T): surface tension of water (supplied internally in TOUGH+) 
 
f (SA ) =  1.417 1− S*( )− 2.120 1− S*( )

2
+1.263 1− S*( )

3
 

 

S* =
SA − SirA( )
1− SirA( )

 

 
Parameters: P0 = CP(1), SirA = CP(2) 

 
Restriction: 0 ≤ CP(2) < 1 

 
 



 

  93 

6.3.2.6. PcapEquationNum = 7: van Genuchten function [van Genuchten, 
1980] 

 

Pcap  =  −P0 S*( )
−1/λ

−1"
#$

%
&'

1−λ

, S* =
SA − SirA( )
SmxA − SirA( )

 

 
subject to the restriction: −Pmax  ≤  Pcap  ≤  0  

 
Parameters: CP(1) = λ = 1 - 1/n 

CP(2) = SirA  (should be chosen smaller than the 
corresponding parameter in the relative 
permeability function; see note below.) 

CP(3) = 1/P0 = α/ρwg 

CP(4) = Pmax 
CP(5) = SmxA 

 

Notation: Parameter λ is m in van Genuchten’s notation, with m = 1 - 1/n. 
 

Note on parameter choices: In the van Genuchten’s derivation [1980] of the 
capillary pressure equation, the parameter SirA for irreducible water 
saturation is the same in the relative permeability and capillary pressure 
functions. As a consequence, for SA→SirA we have krA→0  and Pcap→−∞ , 

which is unphysical because it implies that the radii of capillary menisci go 
to zero as liquid phase is becoming immobile (discontinuous). In reality, no 
special capillary pressure effects are expected when liquid phase becomes 
discontinuous. Accordingly, we recommend to always define a smaller SirA 
for the capillary pressure as compared to that for the relative permeability 
function. 

 
 
6.3.2.7. PcapEquationNum = 8: Brooks-Corey [1964] equation modified to 

account for effect of solid phases on capillary pressure 
 

Pcap  =  −F ⋅G ⋅PGE (S*)v , S* =
SA − SirA( )
1− SirA( )

, F =1+ A ⋅Bx(a,b,SH )  

 
where 
 
v = exponent with the following restrictions: v< 0 and |v| ≤  1; 
PGE = gas entry pressure; 



 

 94  

G = error function equation that smoothes curve near S=0; 
F = factor that describes effect of hydrate on capillary pressure; 
A  = parameter > 0; 
Bx  = incomplete beta function; 
a,b = input arguments for Bx; 
SS = sum of solid saturations. 
 

Parameters:  CP(1) = PGE, CP(2) = v, CP(3) = SirA,  
CP(4) = Pcap,max, CP(5) = A, CP(6) = a, CP(7) = b 

 
 

6.3.2.8. PcapEquationNum = 9:  No capillary pressure 
 

Pcap ≡ 0  for all saturations; no parameters. 

 

6.4. Data Block DIFFUSION 

This block reads multicomponent diffusion coefficients using a NAMELIST format.  This 

is a very powerful format that allows maximum clarity and flexibility, accepting free 

formats, arbitrary ordering of variables, insertions of comments anywhere in the input 

fields, and providing the option of ignoring any of the NAMELIST parameters by not 

assigning a value to it.  For more information, the reader is directed to a textbook on 

FORTRAN 95/2003. 
Record DIFFUSION.1 

 
This record includes general data describing key diffusion parameters. The 
namelist in this record is named Diffusion_Key_Parameters, and has the 
following general form. 

 
&Diffusion_Key_Parameters   

gas_diffusivity_equation_exponent  = x.xEx,  
P_at_RefDiffusivity                = x.xEx, 
Tk_at_RefDiffusivity               = x.xEx 
full_multiphase_diffusion          = .x. 
/ 

 
The parameters in the namelist Diffusion_Key_Parameters are defined as 
follows: 



 

  95 

gas_diffusivity_equation_exponent 
A double precision variable describing the dependence of gas diffusivity on 
temperature (see Equation 6.4). The default value is 1.80.   

 
P_at_RefDiffusivity  

Pressure at the reference diffusivity (in Pa).  If P_at_RefDiffusivity 
<= 0, the default value is 105 Pa. 

 
Tk_at_RefDiffusivity 

Temperature at the reference diffusivity (in K). If 
T_at_RefDiffusivity <= 0, the default value is 273.15 K. 

 
Option_gas_diffusivity_CompuMethod  

A character variable describing the method of estimation of the binary gas 
diffusivities. The following options are available: 
 
='Standard': This option involves the application of Equation (6.4), 
and requires non-zero multicomponent gas diffusivity values read from the 
standard input file.  
 
='Real_Gas_EOS':  In this case, the binary gas diffusivities are 
computed from the cubic equation of state used to determine all the real gas 
properties.  The diffusivities in the aqueous phase still need to be provided. 
 
='Constant':  When this option is invoked, the constant 
multicomponent diffusivity values provided in the input file are used.  

 
full_multiphase_diffusion  

A logical variable describing the method of estimation of the method of 
estimation of multiphase diffusive fluxes. The following options are 
available: 
 
=.TRUE.: With this option, harmonic weighting to the full multiphase 
effective diffusion strength is applied. This includes contributions from gas 
and aqueous phases, accounts for coupling of diffusion with phase 
partitioning effects, and can describe the most general cases of diffusion 
across phase boundaries. 
 
=.FALSE.:  In this case, harmonic weighting is performed separately for 
the diffusive fluxes in the mobile phases. 

 
 

Records DIFFUSION.2.1, DIFFUSION.2.2, etc. 
 

Record DIFFUSION.2.1 is followed by DIFFUSION.2.x records, with x = 
1,…,NubMobPhases (i.e., the number of mobile phases in the system under 
study).  These records describe component diffusivities in the various phases. The 
same namelist is used in each one of these records. It is named 



 

 96  

Component_Diffusivities_in_Phases, and has the following general 
form: 

 
&Component_Diffusivities_in_Phases 

phase        = x,  
phase_number = x, 
component(1) = x, 

component_number(1)      = x,  
component_diffusivity(1) = x.xEx, 

component(2) = x, 
component_number(2)      = x,  
component_diffusivity(2) = x.xEx, 

  … 
  … 
  … 

/ 
 
The parameters in the namelist Diffusion_Key_Parameters are defined as 
follows: 
 
phase  

A character variable identifying the mobile phase for which the 
diffusivities of the various components are reported.  The possible options 
in the T+H code are 'Aqueous' and 'Gas'. 

 
phase_number  

An integer variable providing the number of the phase in the phase 
numbering sequence used in the code. For example, the possible values in a 
TOUGH+ v1.5 option involving aqueous and gas phases are:  
= 2 for phase  = 'Aqueous', and  
= 1 for phase  = 'Gas'. 

 
component  

A character array of dimension NumCom (see Section 5.1) identifying the 
various mass components partioned in the phase in question (denoted by 
phase). The possible options the example above could be 'CH4', 'H2O' and 
'NaCl' (if salinity is considered). 

 
component_number  

An integer array providing the number of the component in the numbering 
sequence used in the code. The possible options in the T+H code are:  
= 1 for component = 'CH4'  
= 2 for component = 'H2O'  
= 3 for component = 'NaCl' (if present) 

 



 

  97 

component_diffusivity 
A double precision array of dimension NumCom (see Section 5.1) 
describing the value of the multicomponent diffusivities 

€ 

Dβ
κ  (see Equations 

(2.59) and (6.4)) of the various components κ in the phase β under 
consideration (indentified by phase and phase_number, respectively). 
 
NOTE: The records DIFFUSION.2.x must provide data for all mobile 
phases and all components, even if the gas diffusivities may be overridden 
internally when Option_gas_diffusivity_CompuMethod = 
'Real_Gas_EOS'. 
 

The structure of the namelists Diffusion_Key_Parameters and 
Component_Diffusivities_in_Phases (and their use as input formats in 
the data block DIFFUSION) are best illustrated in the example of Figure 4.1. 

 
 
 
 
 
 
DIFFUSION-----*----2----*----3----*----4----*----5----*----6----*----7----*----8 
&Diffusion_Key_Parameters  gas_diffusivity_equation_exponent  = 1.8d0 
                           P_at_RefDiffusivity                = 1.0d5,    ! in Pa  
                           Tk_at_RefDiffusivity               = 273.15d0, ! in K  
                           Option_gas_diffusivity_CompuMethod = 'Real_Gas_EOS',  
                           full_multiphase_diffusion          = .TRUE. 
                           / 
&Component_Diffusivities_in_Phases   
        phase        = 'Aqueous',  phase_number = 2,                                                 
        component(1) = 'CH4',      component_number(1) = 1,   
        component_diffusivity(1) = 1.0d-10,  ! (m2/s) ! Diffusivity of component 1 in phase 2 
        component(2) = 'H2O',      component_number(2) = 2,   
        component_diffusivity(2) = 1.0d-10,  ! (m2/s) ! Diffusivity of component 2 in phase 2 
        component(3) = 'NaCl',     component_number(3) = 3,   
        component_diffusivity(3) = 1.0d-10   ! (m2/s) ! Diffusivity of component 3 in phase 2 
        / 
&Component_Diffusivities_in_Phases   
        phase        = 'Gas',      phase_number = 1,                                                 
        component(1) = 'CH4',      component_number(1) = 1,   
        component_diffusivity(1) = 1.0d-05,  ! (m2/s) ! Diffusivity of component 1 in phase 1 
        component(2) = 'H2O',      component_number(2) = 2,   
        component_diffusivity(2) = 1.0d-05,  ! (m2/s) ! Diffusivity of component 2 in phase 1 
        component(3) = 'NaCl',     component_number(3) = 3,   
        component_diffusivity(3) = 0.0d-00   ! (m2/s) ! Diffusivity of component 3 in phase 1 
        / 

 
Figure 4.1.  The DIFFUSION data block, with examples of the Diffusion_Key_Parameters 
and Component_Diffusivities_in_Phases namelists 



 

 98  

6.4.1.  User Options for Multiphase Diffusion  

The treatment of full multiphase diffusion requires parameter specifications in two 

different data blocks. First, the user must set binary_diffusion to a value of 

.TRUE. in data block MEMORY.  Diffusivities are input through the data block DIFFU 

(Section 6.4).  See note in Section 6.4 regarding an alternative approach, which allows 

user to only specify the diffusion coefficient of salt and thus save in computation costs. 

For two gaseous components (NG = 2), the multicomponent diffusivities in the gas 

phase are the binary gas diffusivities.  For NG > 2 gaseous components κi, the 

multicomponent diffusivities of gas component κi are computed from the binary gas 

diffusivities by the Wilke method [API, 1977] as 

 DG
κi =

1−YG
κi

YG
κn

dG
κiκn

n=1,n≠i

NG

∑
κn , (6.4) 

where dG
κiκn  is the binary gas diffusivity of gasesous components κn  and κ i . 

When computing binary gas diffusivities dG
κiκn  using the option 

Option_gas_diffusivity_CompuMethod = 'Real_Gas_EOS', their pressure 

and temperature dependence is automatically accounted for in the computations. When 

Option_gas_diffusivity_CompuMethod = 'Standard', the binary gas 

diffusivities of any two components κ1 and κ2 depend on pressure and temperature as 

[Vargaftik, 1975; Walker et al., 1981] 

 dG
κ1κ2( P,T ) = dG

κ1κ2( P0 ,T0 )
P0
P

T+273.15
273.15

!

"
#

$

%
&

θ

 (6.5) 



 

  99 

For example, at standard conditions of P0 = 1 atm = 1.01325 bar, T0 = 0 ˚C, the diffusion 

coefficient for vapor-air mixtures has a value of 2.13x10-5 m2/s; the parameter θ for the 

temperature dependence is 1.80.  TOUGH+ v1.5 can model a temperature dependence of 

gas phase diffusion coefficients according to Equation (6.5) by specifying parameter θ = 

gas_diffusivity_equation_exponent in the first record of data block 

DIFFUSION (see Section 6.4). Presently there are no provisions for allowing the 

dependence of the parameter θ on the gas phase composition.   

The computation of the effective diffusion coefficient in equation (2.60) 

necessitates knowledge of the tortuosity.  In TOUGH+ v1.5, this is computed using one of 

the methods described by the variable Option_tortuosity_CompuMethod in data 

block MEMORY (see Section 5.1).  

 
 

6.5. Block-by-Block Permeability Modification  

TOUGH+ v1.5 provides a feature that applies permeability modification (PM) coefficients 

for individual grid blocks according to 

 
 kn → "kn = kn ⋅ζn  (6.6) 

 
Here, kn is the absolute (intrinsic or reference) permeability of grid block (cell, 

element) n, as specified in data block ROCKS or MEDIA for the domain to which that grid 

block belongs, while ζn is the permeability modification coefficient. The strength of 

capillary pressure will be automatically scaled according to Leverett [1941] as: 



 

 100  

 Pcap,n → "Pcap,n =
Pcap,n
ζn

 (6.7) 

 

The subroutine Initialize_Perm_Modifiers is called after all MESH data 

have been processed.  The Initialize_Perm_Modifiers routine initializes 

permeability modifiers and generates informative printout.  To engage block-by-block 

permeability modification, users need to specify a (dummy) domain named "SEED" in 

block ROCKS or MEDIA.  No grid blocks should be assigned to this domain; the presence 

of domain "SEED" simply serves as a flag to put permeability modification into effect, 

while data provided in domain "SEED" serve to select different options.  Random 

(spatially uncorrelated) PM data can be internally generated in TOUGH+.  Alternatively, 

externally defined permeability modifiers may be provided as part of the geometry data in 

block ELEME. This feature can be used to apply spatially correlated fields: users can run 

their own geostatistical package to generate whatever fields they desire, and then use a 

preprocessing program to place the PM-coefficients into the ELEME data block.  

Note that this approach of block-by-block permeability modification affects only 

grid block permeabilities but not porosities. Full details on the various user options for 

PM-coefficients are given in informative printout that is automatically generated with each 

TOUGH+ run.  

In addition to this approach, it is possible for the users to apply a geostatistical 

package of their choice to develop element-specific (block-by-block) statistically 

heterogeneous porosities φ, intrinsic permeabilities k, and phase saturations.  These data 

can then be read as part of the INCON data block, as will be discussed in Section 8. 



 

  101 

 

 

 

 

7.0.  Geometrical Representation, 
Domain Discretization, and 

Grid Generation 
 
 

The data blocks that specify the geometrical representation of the simulated system are 

discussed in this section, including the specification of elements (block ELEM), 

connections between elements (block CONNE), and the generation of grids (block MESHM) 

for radial symmetric grids, rectilinear grids, and grids containing fractured media. First, 

we discuss the convention used in TOUGH+ v1.5 for entering and processing geometrical 

data. 

 

7.1. TOUGH+ Convention for Geometrical Data 

Handling of flow geometry data in TOUGH+ is upward compatible with TOUGH2 

[Pruess et al., 1999] and earlier TOUGH+ [Moridis et al., 2008] input formats and data 



 

 102  

handling. As in other integral finite difference codes [Edwards, 1972; Narasimhan and 

Witherspoon, 1976], flow geometry is defined by means of a list of volume elements (grid 

blocks), and a list of flow connections between them (Section 3.3). This formulation can 

handle regular and irregular flow geometries in one, two, and three dimensions. Single- 

and multiple-porosity systems (porous and fractured media) can be specified, and higher 

order methods, such as seven- and nine-point differencing, can be implemented by means 

of appropriate specification of geometric data [Pruess and Bodvarsson, 1983].  

In TOUGH+ v1.5, as in TOUGH2 [Pruess et al., 1999; 2012], volume elements 

are identified by names that consist of a string of either five or eight characters, '12345' 

or '12345678'. These are arbitrary, except that the last two characters (#4 and #5 in 5-

character names; #7 and #8 in 8-character names) must be numbers; examples of valid 5-

character and 8-character element names are 'ELE10' and 'AB00CC23', respectively.  

Flow connections are specified as ordered pairs of elements, such as 'ELE10ELE11' (5-

character names) or 'AB00CC23AB00CC24' (8-character names).  A variety of options 

and facilities are available for entering and processing geometric data.  As in TOUGH2 

[Pruess et al., 1999; 2012], element volumes and domain identification can be provided 

by means of a data block ELEME in the standard input file, while a data block CONNE can 

be used to supply connection data, including interface area, nodal distances from the 

interface, and orientation of the nodal line relative to the vertical (see Sections 7.2 and 

7.3).  These data are internally written to a disk file MESH, which in turn initializes the 

geometry data arrays used during the flow simulation. It is also possible to omit the 

ELEME and CONNE data blocks from the standard input file, and provide geometry data 

directly in the MESH file. 



 

  103 

TOUGH+ v1.5 provides a capability for describing the flow system geometry and 

discretizing the domain by means of the MeshMaker.f95 application written in 

FORTRAN 95/2003 (see Section 7.4).  Unlike the approach in TOUGH2 [Pruess et al., 

1999; 2012], MeshMaker.f95 has been separate from (i.e., it is not integrated within) 

the core code since the first version of the TOUGH+ code [Moridis et al., 2008].  This 

application can perform a number of mesh generation and processing operations.  The 

MeshMaker.f95 code is written according to the tenets of Object-Oriented 

Programming, and has a modular structure.  It can generate two-dimensional radially 

symmetric (r,z) meshes, and one-, two-, and three-dimensional rectilinear (Cartesian) grids 

in (x,y,z).  Multiple-porosity processing for simulation of flow in naturally fractured 

reservoirs can be invoked by means of a keyword MINC, which stands for Multiple 

INteracting Continua (see Section 2.14).  The MINC process operates on the data of the 

primary (porous medium) mesh as provided on disk file MESH, and generates a secondary 

mesh containing fracture and matrix elements with identical data formats on file MINC.  

The file MESH used in this process can be either directly supplied by the user, or it can 

have been generated from an earlier application of the MeshMaker.f95 application. 

 

7.2. Data Block ELEME 

This block introduces element (grid block) information. 
 
Record ELEME.1 (for 5-character elements only) 

 
Format (A3, I2, 2I5, A5, 6E10.4, 1X, A3) 
 
ElName5C, NSEQ, NADD, MA12, elem_vol,  
elem_aht, elem_pm, X, Y, Z, elem_activity 
 



 

 104  

 
ElName5C  

The five-character name of an element. The first three characters can be 
letters, numbers or blanks, and the last two characters (NE = 
ElName5C(4:5)) must be numbers. 

NSEQ   
The number of additional elements having the same volume and belonging 
to the same reservoir domain. 

 
NADD  

The increment between the code numbers of two successive elements. 
(Note: if the longest dimension in the grid is <1000, the maximum 
permissible code number NE + NSEQ *NADD is ≤ 999.) 

 
MA12  

A five-character material identifier corresponding to one of the reservoir 
domains as specified in block ROCKS. If the first three characters are 
blanks and the last two characters are numbers, then they indicate the 
sequence number of the domain as entered in ROCKS. If left blank the 
element is by default assigned to the first domain in block ROCKS. 

 
elem_vol   

The element volume (m3). 
 
elem_aht  

The interface area (m2) for heat exchange with semi-infinite confining 
beds.  Internal MESH generation via the MeshMaker.f95 facility will 
automatically generate elem_aht. 

 
elem_pm  

The permeability modifier (optional, active only when a domain "SEED" 
has been specified in the ROCKS block; see Section 6.5). Will be used as 
multiplicative factor for the permeability parameters from block ROCKS. 
Simultaneously, the capillary pressure strength will be scaled as elem_pm 

-1/2. elem_pm = 0 will result in an impermeable block. 
 
Random permeability modifiers can be generated internally, see detailed 
comments in the TOUGH+ output file. The elem_pm may be used to 
specify spatially correlated heterogeneous fields, but users need their own 
preprocessing programs for this, as TOUGH+ provides no internal 
capabilities for generating such fields. 

 
X, Y, Z  

Cartesian coordinates of the grid block centers. These are included in the 
ELEME data for listing in output files of the simulation results that conform 
to the specifications of the TecPlot package.  Additionally, the 



 

  105 

coordinate data may be needed for (a) the computation of interblock 
properties in cylindrical grids or (b) the initialization of a gravity-capillary 
equilibrium (such as the one described in Sections 6.9 and 9.10 of Pruess et 
al. [1999]), and are needed (c) for mechanical dispersion computations in 
solute transport investigations [Moridis et al., 1999].  

 
elem_activity  

A (optional) character variable that describes the activity status of an 
element.  An element is rendered inactive (i.e., a Dirichlet boundary) by 
invoking the options elem_activity ='I__' (indicating that the 
element conditions are time-invariant) or elem_activity = 'Vxx' 
(denoting several time-variable conditions, each numbered by the xx 
identifier).  The grid block is assumed active by default for any other value 
of elem_activity, including a blank (see Section 8.4).  

 
 
Record ELEME.1 (for 8-character elements only) 

 
Format (A8, 7X, A5, 6E10.4, 1X, A1) 
 
ElName8C, MA12, elem_vol, elem_aht,  
elem_pm, X, Y, Z, elem_activity 
 

ElName8C  
The eight-character name of an element. The first five characters can be 
letters, numbers or blanks, and the last two characters (NE = 
ElName8C(7:8)) must be numbers. 

 
All other variables and parameters are as previously defined in case of the five-
character element names. 
 
Repeat record ELEME.1 for the number of elements desired. 
 
 
Record ELEME.2 
 
A blank record closes the ELEME data block. 
 
NOTE: The number of elements described in the ELEME data block cannot exceed 
the number Max_NumElem specified in the MEMORY data block (See Section 
5.1). If this happens, an error message is printed and the simulation is aborted. 

 



 

 106  

7.3. Data Block CONNE 

This block introduces information for the connections (interfaces) between elements. 

Record CONNE.1 (for connections involving 5-character elements only) 
 
Format (A5, A5, 4I5, 5E10.4)  
 

ConxName1, ConxName2, NSEQ, NAD1, NAD2, ConxKi, 
ConxD1, ConxD2, ConxArea, ConxBeta, emissivity 

 
These parameters are defined as follows:  
 

ConxName1  
The name of the first five-character element in the connection. 

 
ConxName2  

The code name of the five-character second element in the connection. 
 
NSEQ  

The number of additional connections in the sequence. 
 
NAD1  

The increment of the number of the first element (as defined by the last two 
characters of its name, i.e., ConxName1(4:5)) between two successive 
connections. 

 
NAD2  

The increment of number of the second element (as defined by the last two 
characters of its name, i.e., ConxName2(4:5)) between two successive 
connections. 
 

ConxKi  
The permeability index of the connection.  Setting it equal to 1, 2, or 3 
specifies absolute permeability to be MediaPerm(ConxKi) for the 
materials in elements (ConxName1) and (ConxName2), where 
MediaPerm is read in block ROCKS. This allows assignment of different 
permeabilities, e.g., in the horizontal and vertical direction. 

 
ConxD1, ConxD2  

The distance [m] between the common interface of a connection from the 
centers of the first and second element in the connection, respectively. 

 
ConxArea  

The element interface area [m2]. 
 
ConxBeta  

The cosine of the angle between the gravitational acceleration vector and 
the line between the two elements. ConxBeta*gravity > 0 (<0) 
corresponds to first element being above (below) the second element. 



 

  107 

emissivity  
The radiant emittance factor for radiative heat transfer, which for a 
perfectly “black” body is equal to 1.  The rate of radiative heat transfer 
between the two grid blocks is: 

QH ,rad = emissivity*σ 0 *ConxArea *(T2
4 −T1

4 )  
 
where σ0 = 5.6687e-8 J/m2 K4 s is the Stefan-Boltzmann constant, and T1 
and T2 are the absolute temperatures of the two grid blocks.  The term 
emissivity may be entered as a negative number, in which case the 
absolute value will be used, and heat conduction at the connection will be 
suppressed.  Setting emissivity = 0.0e0 will result in no radiative 
heat transfer. 

 
 

Record CONNE.1 (for connections involving 5-character elements only) 
 
Format (A8, A8, 9X, I5, 5E10.4)  
 

Conx8Name1, Conx8Name2, ConxKi,  
ConxD1, ConxD2, ConxArea, ConxBeta, 
emissivity 

 
Conx8Name1 

The name of the first eight-character element in the connection. 
 
Conx8Name2  

The code name of the second eight-character element in the connection. 
 
All other variables and parameters are as previously defined in case of connections 
between five-character elements. 
 
 
Repeat record CONNE.1 for the number of connections desired. 

 
 

Record CONNE.2  
 
A blank record closes the CONNE data block. Alternatively, connection 
information may terminate on a record with '+++  ' typed in the first 
five columns, followed by element cross-referencing information.  The 
second type of termination is generated in the MESH file upon completion 
of a TOUGH+ run. 

 
NOTE: The number of connections described in the CONNE data block cannot 
exceed the number Max_NumConx specified in the MEMORY data block (See 
Section 5.1). If this happens, an error message is printed and the simulation is 
aborted 

 
 



 

 108  

7.4. The MeshMaker.f95 Facility 

In this section we discuss the use of the MeshMaker.f95 facility, and the required 

parameter inputs for mesh generation and processing.  As indicated earlier, unlike in 

TOUGH2 [Pruess et al., 1999; 2012], MeshMaker.f95 is not integrated into the 

TOUGH+ code but is an independent program that is written in FORTRAN 95/2003, has 

a modular structure, and an architecture based on the principles of Object-Oriented 

Programming.  The MeshMaker.f95 input has a modular structure, which is organized 

by keywords in a manner analogous to that of TOUGH+. This section provides detailed 

instructions for preparing the input files, illustrative examples of which are shown in 

Figures 7.1 to 7.4. 

 

7.4.1.  Inputs Related to Problem Definition and Dimensioning 

These inputs occupy two records (both mandatory), and provide (a) a short description of 

the problem through an informative title, and (b) data to allow proper dimensioning of the 

work arrays and formatting of the MESH file to be generated.  These two initial records are 

discussed in detail below: 

Record MESHMAKER.1 
 

The first record of the input file in any MeshMaker.f95 application is the 
character variable TITLE, which includes a header of up to 80 characters and is 
read using a free format. This record is necessary for any MeshMaker simulation 
to begin. 

 
 

Record MESHMAKER.2 
 

The following variables are read in MESHMAKER.2 using a free format:  
 



 

  109 

MaxNum_Elem, Longest, ElemNameLength, 
FormatType, LengthUnits, media_by_number 

 
These parameters are defined as follows:  
 
Max_NumElem  

Integer denoting the maximum number of elements in the grid under 
construction. 

 
Longest  

Integer indicating the maximum expected number of subdivisions along 
any of the coordinates in the grid under construction.   

 

ElemNameLength  
Integer variable defining the number of characters in the element names.  It 
may be either 5 or 8.  If unequal to 8, ElemNameLength is internally 
resest to the default (= 5). 

 
FormatType  

Character variable indicating the format of the data in the MESH file to be 
created.  It may have one of two values: 
 
= 'Old': This option creates a MESH file that conforms to the data format 
described in Sections 7.2 and 7.3, and is consistent with the TOUGH2 
formats [Pruess et al., 1999; 2012].   
 
= 'New': This option creates a MESH file in which the element and 
connection data are listed using the NAMELIST format facility available in 
FORTRAN 95/2003.  This is intended for future versions of TOUGH+ 
 
NOTE: TOUGH+ v1.5 does not accept NAMELIST-based formats in the 
MESH file.  Thus, the option FormatType = 'Old' must be used in all 
MeshMaker.f95 applications. 
 

LengthUnits  
Character variable specifying the units of length of the grid to be created. 
The possible options are: 'm', 'mm', 'km', 'ft' and 'in', indicating meters, 
millimeteres, kilometers, feet and inches, respectively. Note that all 
dimensions are converted internally into SI units (meters), which is the 
standard unit of length of the resulting mesh. 
 

media_by_number  
Logical variable specifying how the various media (rocks) are to be named. 
The possible options are: .T. or .TRUE., in which case the media are named 
by the character variable H_RegionName (see Section 7.4.2), and .F. of 
.FALSE., indicating media identification by the number in the sequence of 
their listing.  The media_by_number = .T. option is to be used only in 
the case of fractured media that are to be described by the Multiple 



 

 110  

Intercative Continua (MINC) concept, and is needed for the creation of an 
MESH interim files.  This will be further processed to create the MINC file 
to be used in the simulation. When the media_by_number = .TRUE. 
option is invoked, unfractured media are identified by a negative number, 
and fractured media (identified by an ‘F’ or ‘f’ as the first letter of the value 
of the H_RegionName character variable) are identified by a positive 
number.  

 

7.4.2.  Inputs Related to Domain Heterogeneity 

These optional inputs provide information that allows the description of heterogeneity 

within the domain.  The assignment of heterogeneity is based on the definition of regions 

using geometrical information that describe the location and extent of these subdomains.  

Thus, each of the individually defined regions is assigned the properties of a particular 

medium that will have to be included in the ROCKS data block in the input file of the 

subsequent TOUGH+ v1.5 simulation.   

The records in this data block are discussed in detail below: 

Record MESHMAKER.3 (Optional) 
 

This record includes only the keyword (character variable) 'Regions', which is 
read using a free format.  If the domain is homogeneous, then there is no need to 
provide any of the inputs discussed in Section 7.4.2. 
Record MESHMAKER.3.1 (Optional – when the MESHMAKER.3 record is 
included) 

 
This record is read using a free format, and includes the single integer variable 
Num_HetRegions (> 0) that describes the number of heterogeneous regions 
(subdomains) that are to be described by the ensuing data records.  The minimum 
value that Num_HetRegions can accept is 1, corresponding to a homogeneous 
system. An error will occur and the execution will stop if Num_HetRegions < 
1. 
 
Because of dynamic dimensioning, there is no limit in the number of 
heterogeneous regions defined by Num_HetRegions.  However, practical 
considerations may limit the size of Num_HetRegions.  Thus, although it is 
possible to define element-by-element heterogeneity using this approach, this 
would be a very tedious process.  Generally speaking, the most useful application 



 

  111 

of this facility is in the description of extensive geologic units with distinctly 
different properties. 

 
 

Record MESHMAKER.3.2 (Optional – when the MESHMAKER.3 record is 
included) 

 
This record is read using a free format, and includes the single character variable 
dominant_medium that provides the name (5 character long) of the dominant 
(reference) porous medium in the heterogeneous domain.  Note that the selection 
of a medium as dominant_medium is be arbitrary, as there are no restrictions 
on the extent of its spatial distribution for it to be designated as such.   
 
If Num_HetRegions = 1, no more data need to be read.  This case is equivalent 
to a homogeneous system, and the entire heterogeneity-related data block (records 
MESHMAKER.3 to MESHMAKER.3.2 may be omitted. 

 
 

Record MESHMAKER.3.3.0 (Optional – when the MESHMAKER.3 record is 
included and Num_HetRegions > 1) 

 
This record is read using a free format, and includes the single character variable 
H_RegionName that provides the name (5 character long) of the porous medium 
in the region (subdomain) that is about to be defined.   

 
Record MESHMAKER.3.3.1 (Optional – when the MESHMAKER.3 record is 
included and Num_HetRegions > 1) 

 
Here the following character variables are read using a free format:  

 

H_RegionCoordinates, H_RegionUnits 
 
These parameters are defined as follows:  
 
H_RegionCoordinates  

A character variable indicating the coordinate system used in the geometric 
definition of the region that is about to be described in the heterogeneous 
domain. It my have one of two values: 
 
= 'Cartesian' : This option indicates that the region is defined 
geometrically in terms of Cartesian coordinates.  
 
= 'Cylindrical' : This option indicates that the region is defined 
geometrically in terms of cylindrical coordinates. 

 
H_RegionUnits  

A character variable describing the units of length used in the description 
of the geometry of the region.  The following values are acceptable options: 



 

 112  

'mm', 'km', 'km', 'in', or 'ft', 
 
indicating millimeters, meters, kilometers, inches and feet, respectively.  
Note that MeshMaker.f95 converts all length units into meters (the 
length unit used in the TOUGH+ simulations) prior to producing the MESH 
file. 

 
 

Record MESHMAKER.3.3.2 (Optional – when the MESHMAKER.3 record is 
included and Num_HetRegions > 1) 

 
If H_RegionCoordinates = 'Cartesian', the following real variables are 
read in MESHMAKER.3.3.2 using a free format:  

 

Xmin, Xmax, Ymin, Ymax, Zmin, Zmax 
 
These parameters are defined as follows:  
 
Xmin, Xmax  

Real variables indicating the range of the region along the x-axis of the 
Cartesian coordinate system.  

 
Ymin, Ymax  

Real variables indicating the range of the region along the y-axis of the 
Cartesian coordinate system.  

Zmin, Zmax  
Real variables indicating the range of the region along the z-axis of the 
Cartesian coordinate system.  
 

If H_RegionCoordinates = 'Cylindrical', the following real variables 
are read in MESHMAKER.3.3.2 using a free format:  

 
Rmin, Rmax, Zmin, Zmax 

 
These parameters are defined as follows:  
 
Rmin, Rmax  

Real variables indicating the range of the region along the r-axis of the 
cylindrical coordinate system.  

 
Zmin, Zmax  

Real variables indicating the range of the region along the z-axis of the 
cylindrical coordinate system.  

 
Repeat records MESHMAKER.3.3.0, MESHMAKER.3.3.1, 
MESHMAKER.3.3.3 for a total of Num_HetRegions – 1 regions.  Note that 
the region dominant_medium does not need geometric definition. 



 

  113 

7.4.3.  Inputs Related to Description of Boundaries 

These optional inputs provide information that describes the outer boundaries of the 

domain under discretization.  The assignment of grid subdomains as boundaries is based 

on the geometry-based definition of the outer spatial limits of the domain under 

discretization.  Thus, the boundaries are treated as special types of regions (see Section 

7.4.2) with the properties of a particular medium that will have to be included in the 

ROCKS data block in the input file of the subsequent TOUGH+ simulation.  It is possible 

for a region and one or more boundaries to be described by the same medium in the 

ROCKS data block.   

The records in this data block are discussed in detail below: 

Record MESHMAKER.4 (Optional) 
 

This record includes only the keyword (character variable) 'Boundaries', which 
is read using a free format.  If the domain is confined by no-flow (Newman-type) 
boundaries, then there is no need to provide any of the inputs discussed in Section 
7.4.3. 
 
 
Record MESHMAKER.4.1 (Optional – when the MESHMAKER.4 record is 
included) 

 
This record is read using a free format, and includes the single integer variable 
Num_Boundaries (> 0) that describes the number of boundaries that are to be 
described.  

 
 

Record MESHMAKER.4.2.0 (Optional – when the MESHMAKER.4 record is 
included and Num_Boundaries > 1) 

 
The following character variables are read in MESHMAKER.4.2 using a free 
format:  

 

BoundID, BoundRegionName 
 
These parameters are defined as follows:  
 



 

 114  

BoundID  
A character variable indicating the type of boundary described at the 
prescribed location.  It my have one of two values: 
 
= 'I': This option indicates an inactive boundary, the conditions and 
properties of which are time-invariant.  
 
= 'V': This option indicates a time-variable boundary.   
 
The result of this designation is reflected in the ELEME block, in which 
elem_activity (see Section 7.2) is set to BoundID in all the cells 
corresponding to the boundary defined here.  Any other value of the 
BoundID variable causes the program to print an error message and stop 
execution. 

 
BoundRegionName   

A character variable H_RegionNname that provides the name (5 
character long) of the porous medium in the boundary that is about to be 
defined.   

 
 
Record MESHMAKER.4.2.1 (Optional – when the MESHMAKER.4 record is 
included and Num_Boundaries > 1) 

 
Here the following character variables are read using a free format:  

 

BoundRegionCoordinates, BoundRegionUnits 
 

These parameters are defined as follows:  
 
BoundRegionCoordinates 

A character variable indicating the coordinate system used in the geometric 
definition of the boundary that is about to be described in the 
heterogeneous domain. It my have one of two values: 
 
= 'Cartesian': This option indicates that the region is defined 
geometrically in terms of Cartesian coordinates.  
 
= 'Cylindrical': This option indicates that the region is defined 
geometrically in terms of cylindrical coordinates. 

 
BoundRegionUnits  

A character variable describing the units of length used in the description 
of the geometry of the boundary.  The following values are acceptable 
options: 
 

'mm', 'km', 'km', 'in', or 'ft', 
 
indicating millimeters, meters, kilometers, inches and feet, respectively.  
Note that MeshMaker.f95 converts all length units into meters (the 



 

  115 

length unit used in the TOUGH+ simulations) prior to producing the MESH 
file. 

 
 

Record MESHMAKER.4.2.2 (Optional – when the MESHMAKER.4 record is 
included and Num_Boundaries > 1) 

 
If BoundRegionCoordinates = 'Cartesian', the following real variables 
are read in MESHMAKER.3.3.2 using a free format:  

 
Xmin, Xmax, Ymin, Ymax, Zmin, Zmax 

 
These parameters are defined as follows:  
 
Xmin, Xmax  

Real variables indicating the range of the boundary region along the x-axis 
of the Cartesian coordinate system.  

 
Ymin, Ymax  

Real variables indicating the range of the boundary region along the y-axis 
of the Cartesian coordinate system.  

 
Zmin, Zmax  

Real variables indicating the range of the boundary region along the z-axis 
of the Cartesian coordinate system.  

 
If BoundRegionCoordinates = 'Cylindrical', the following real 
variables are read in MESHMAKER.3.3.2 using a free format:  

 

Rmin, Rmax, Zmin, Zmax 
 
These parameters are defined as follows:  
 
Rmin, Rmax  

Real variables indicating the range of the region boundary along the r-axis 
of the cylindrical coordinate system.  

 
Zmin, Zmax  

Real variables indicating the range of the boundary region along the z-axis 
of the cylindrical coordinate system.  

 
Repeat records MESHMAKER.4.2.0, MESHMAKER.4.2.1, 
MESHMAKER.4.2.3 for a total of Num_Boundaries boudaries.   

 
 



 

 116  

7.4.4.  Inputs for Grid Construction 

There are three grid construction options available in MeshMaker.f95.  These options 

are activated by appropriate keywords.  Thus, the keywords 'RZ2D' or 'RZ2DL' invoke 

generation of a one or two-dimensional radially symmetric (r,z) mesh; 'XYZ' initiates 

generation of a one, two, or three dimensional Cartesian (x,y,z) mesh; and 'MINC' calls a 

modified version of the GMINC program [Pruess, 1983] to sub-partition a primary porous 

medium mesh into a secondary mesh for fractured media, using the method of Multiple 

INteracting Continua [Pruess and Narasimhan, 1982; 1985].   

The meshes generated under keyword 'RZ2D' or 'XYZ' are internally written to file 

MESH.  The MINC-processing operates on the data in a file MESH that is either pre-

existing or is created directly from the inputs of MeshMaker.f95 when the 'RZ2D', 

'RZ2DL' or 'XYZ' data blocks are followed by the 'MINC' datablock. We shall now 

separately describe the preparation of input data for the three grid construction options.  
 

7.4.4.1. Generation of radially symmetric grids (keyword 'RZ2D' or 'RZ2DL').  The 

keywords 'RZ2D' or 'RZ2DL' invoke generation of a radially symmetric mesh. Values for 

the radii to which the grid blocks extend can be provided by the user or can be generated 

internally (see below). Nodal points will be placed halfway between neighboring radial 

interfaces. When 'RZ2D' is specified, the mesh will be generated by columns; i.e., in the 

ELEME block we will first have the grid blocks at smallest radius for all layers, then the 

next largest radius for all layers, and so on.  

With keyword 'RZ2DL' the mesh will be generated by layers; i.e., in the ELEME 

block we will first have all grid blocks for the first (top) layer from smallest to largest 

radius, then all grid blocks for the second layer, and so on. Apart from the different 



 

  117 

ordering of elements, the two meshes for 'RZ2D' and 'RZ2DL' are identical. The reason for 

providing the two alternatives is as a convenience to users in implementing boundary 

conditions by way of inactive elements (see Section 6.4 in Pruess et al. [1991]). 

Assignment of inactive elements would be made by using a text editor on the RZ2D-

generated MESH file, and moving groups of elements towards the end of the ELEME block, 

past a dummy element with zero volume. 'RZ2D' makes it easy to declare a vertical 

column inactive, facilitating assignment of boundary conditions in the vertical, such as a 

gravitationally equilibrated pressure gradient.  'RZ2DL' on the other hand facilitates 

implementation of areal (top and bottom layer) boundary conditions.  

The inputs for cylindrical systems are as follows: 

Data Block GRID 
 
The first record in this data block includes only the keyword (character variable) 
'RZ2D' or 'RZ2DL'. This keyword is read using a Format (A5). 
 
 
Record RADII.0 
 
RADII: A keyword that introduces data for defining a set of interfaces (grid 

block boundaries) in the radial direction. It is read using a Format (A5). 
 
 

Record RADII.1 
Format (I5)  
NRAD 

 
NRAD: Number of radii that will be read. At least one radius must be provided, 

indicating the inner boundary of the mesh. 
 
 

Record RADII.2, RADII.3, etc. 
Format (8E10.4) 
RC(i), i = 1,NRAD 

 
RC(i): The radii defining the element boundaries in ascending order [m]. 
 



 

 118  

Record EQUID.0 
 
EQUIDistant 

Keyword indicating that the ensuing data describe a set of equal radial 
increments.  This keyword is read using Format (A5). 

 
 
Record EQUID.l 

Format (I5, 5X, E10.4) 
NEQU, DR 

 
NEQU: The number of desired radial increments. 
 
DR: The size of the radial increment [m].  

 
NOTE: At least one radius must have been defined via block RADII before 
EQUID can be invoked. 

 
 
Record LOGAR.0 
 

LOGARithmic  This keyword introduces data on radial increments 
that increase from one to the next by the same factor 
(i.e., Δrn+1 = f • Δrn).  

 
Record LOGAR.l 

Format(I5, 5X, 2E10.4) 
NLOG, RLOG, DR 

 

NLOG: The number of desired radial increments. 
 

RLOG: The desired radius rmax of the last (largest) of these radii.   
 

DR: The reference radial increment Δr0: the first Δr generated will be equal to 
f • Δr0, with f internally determined such that the last increment will bring 
total radius to RLOG = rmax.  The factor f < 1 for decreasing radial 
increments is permissible.  If Δr0 is set equal to zero, or left blank, the last 
increment Δr generated before the keyword LOGAR is invoked will be 
used as default. 

 
Additional blocks RADII, EQUID, and LOGAR can be specified in arbitrary order.  
 
NOTE: At least one radius must have been defined before the LOGAR option can 
be invoked.  If Δr0 = 0, at least two radii must have been defined.  
 
 



 

  119 

Record LAYER.0 
 

LAYER: This keyword introduces information on horizontal layers, and signals 
closure of RZ2D input data.  It is read using a Format (A5). 

Record LAYER.l 
Format (I5) 
NLAY 

 
NLAY: The number of horizontal layers in the cylindrical grid. 

 
 

Record LAYER.2 
 

Format (8E10.4) 
H(i), i = 1, NLAY 

 
H(i): The thicknesses of the horizontal layers in the cylindrical grid, from top 

layer downward.  By default, zero or blank entries for layer thickness will 
result in assignment of the last preceding non-zero entry.  Assignment of 
a zero layer thickness, as needed for inactive layers, can be accomplished 
by specifying a negative value.  

 
NOTE: The LAYER data close the RZ2D or RZ2DL data block.  
 
Record GRID-END 
 
Two blank records close the input data file if further MINC-processing of the grid 
is not needed. If such processing is specified, then a single blank record terminates 
the RZ2D or RZ2DL data block, and is then followed by the MINC data block (see 
Section 7.2.5). 
 
 

7.4.4.2. Generation of rectilinear grids (keyword 'XYZ')  
 

Data Block GRID 
 
The first record in this data block includes only the keyword (character variable) 
'XYZ' that is invokes generation of a Cartesian (rectilinear) mesh. This keyword is 
read using a Format (A5). 

 
 

Record XYZ.l 
 

DEG, X_ref, Y_ref, Z_ref (Free format) 
 

DEG: The angle (in degrees) between the y-axis and the horizontal. If 
gravitational acceleration (parameter gravity in record PARAM.2, see 
Section 10) is positive, -90° < DEG < 90° corresponds to grid layers 
going from top down.  Grids can be specified from the bottom layer up 



 

 120  

by setting gravity or ConxBeta (Section 7.3) to negative values.  
The default (DEG = 0.0e0) corresponds to horizontal y- and vertical z-
axis. The x-axis is always horizontal. 

 
X_ref, Y_ref, Z_ref: 

The reference x-, y-, and z-coordinates at the origin of the axes.  
 
 
Record XYZ.2 

Format (A2, 3X, I5, E10.4) 
NTYPE, NO, DEL  

 
NTYPE: A character variable that can assume one of the values 'NX', 'NY' or 'NZ', 

specifying grid increments in the x-, y-, or z-direction, respectively.  
 
NO: The number of grid increments.  
 
DEL: The constant grid increment for NO grid blocks, if set to a non-zero value. 

 
 

Record XYZ.3 (Optional, DEL = 0.0e0 or blank only) 
Format (8E10.4) 
DEL(i), i = 1, NO  

 
DEL(i): A set of grid increments in the direction specified by NTYPE in record 

XYZ.2.  Additional records with formats as XYZ.2 and XYZ.3 can be 
provided, with x-, y-, and z-data in arbitrary order. 

 
 
Record XYZ.4  A blank record closes the XYZ data block. 

 
NOTE: The end of the data block GRID is also marked by a blank record. Thus, 
when GRID/XYZ is used, there will be two blank records at the end of the input 
data file. Alternatively, a single blank record and a new record with the keyword 
'MINC' can be used to invoke MINC-processing for fractured media (see below). 

 
 



 

  121 

 
 
 
 

Meshmaker test: Cartesian grid 
1000 20  5 'Old' 'm'  .FALSE. 
XYZ 
       00. 
NX      10    1.0e00 
NY       5       2.0 
NZ      20       1.0 
     
     
 

Figure 7.1.  An example of a MeshMaker.f95 input file for the creation of a Cartesian 3D grid.  
Note that no heterogeneous regions or boundaries are defined in this grid. 
 
 

 
 
 
 
Meshmaker test: Cylindrical grid 
6000  6000  5 'Old' 'm'  .FALSE. 
RZ2DL 
RADII 
    2 
    1.0e-5    1.0e-3 
EQUID 
 4000         2.5e-2 
LOGAR 
  500         2.5e+3 
EQUID 
    1         1.0e-3 
LAYER 
    1 
    1.0e00     
     
     

 
Figure 7.2.  An example of a MeshMaker.f95 input file for the creation of a single-layer (1D) 
cylindrical grid.  Note that no heterogeneous regions or boundaries are defined in this grid 



 

 122  

 
Input file for a large 3D cartesian grid       ! Title      
500000 100 5  'Old' 'm' .FALSE. 
Regions                                        ! Keyword denoting heterogeneous subdomains  
6                                              ! ==> # of heterogeneous media regions 
'HydrL'                                        ! Region #1: Name of dominant medium   
'Aquif'                                        ! Region #2: medium name  
'cartesian'     'm'                            !    coordinates, units 
0.0e0 1.5e3 0.0e0 1.5e3 -6.3e1 -4.825e1        !    Xmin, Xmax, Ymin, Ymax, Zmin, Zmax 
'OverB'                                        ! Region #3: medium name  
'cartesian'   'm'                              !    coordinates, units 
0.0e0 1.5e3 0.0e0 1.5e3  -3.0e1  0.0e1         !    Rmin, Rmax, Zmin, Zmax 
'UndrB'                                        ! Region #4: medium name  
'cartesian'   'm'                              !    coordinates, units 
0.0e0 1.5e3 0.0e0 1.5e3  -9.4e1 -6.3e1         !    Rmin, Rmax, Zmin, Zmax 
'WellA'                                        ! Region #5: medium name  
'cartesian'   'm'                              !    coordinates, units 
0.0e0 5.0e-2 0.0e0 5.0e-2 -5.4e1 -3.0e1        !    Rmin, Rmax, Zmin, Zmax 
'WellA'                                        ! Region #6: medium name  
'cartesian'   'm'                              !    coordinates, units 
4.9995e2 5.0e2 4.9995e2 5.0e2 -5.4e1 -3.0e1    !    Rmin, Rmax, Zmin, Zmax 
Boundaries 
2                                              ! ==> # of boundaries 
'I' 'TopBB'                                    ! Boundary #1: type and medium name  
'cartesian'   'm'                              !    coordinates, units 
0.0e0 1.5e3 0.0e0 1.5e3 -1.0e-2  0.0e0         !    Rmin, Rmax, Zmin, Zmax 
'I' 'BotBB'                                    ! Boundary #2: type and medium name  
'cartesian'   'm'                              !    coordinates, units 
0.0e0 1.5e3 0.0e0 1.5e3 -9.4e1 -9.3e1          !    Rmin, Rmax, Zmin, Zmax 
XYZ 
       00. 
NX      76         
    5.0e-2 2.5000e-1 2.8599e-1 3.2716e-1 3.7426e-1 4.2813e-1 4.8976e-1 5.6027e-1 
 6.4092e-1 7.3319e-1 8.3873e-1 9.5947e-1 1.0976e+0 1.2556e+0 1.4363e+0 1.6431e+0  
 1.8797e+0 2.1502e+0 2.4598e+0 2.8139e+0 3.2190e+0 3.6823e+0 4.2124e+0 4.8188e+0  
 5.5125e+0 6.3061e+0 7.2139e+0 8.2524e+0 9.4404e+0 1.0799e+1 1.2354e+1 1.4132e+1  
 1.6167e+1 1.8494e+1 2.1157e+1 2.4202e+1 2.7686e+1 3.1672e+1 3.1672e+1 2.7686e+1 
 2.4202e+1 2.1157e+1 1.8494e+1 1.6167e+1 1.4132e+1 1.2354e+1 1.0799e+1 9.4404e+0 
 8.2524e+0 7.2139e+0 6.3061e+0 5.5125e+0 4.8188e+0 4.2124e+0 3.6823e+0 3.2190e+0 
 2.8139e+0 2.4598e+0 2.1502e+0 1.8797e+0 1.6431e+0 1.4363e+0 1.2556e+0 1.0976e+0 
 9.5947e-1 8.3873e-1 7.3319e-1 6.4092e-1 5.6027e-1 4.8976e-1 4.2813e-1 3.7426e-1 
 3.2716e-1 2.8599e-1 2.5000e-1    5.0e-2  
NY      76         
    5.0e-2 2.5000e-1 2.8599e-1 3.2716e-1 3.7426e-1 4.2813e-1 4.8976e-1 5.6027e-1 
 6.4092e-1 7.3319e-1 8.3873e-1 9.5947e-1 1.0976e+0 1.2556e+0 1.4363e+0 1.6431e+0  
 1.8797e+0 2.1502e+0 2.4598e+0 2.8139e+0 3.2190e+0 3.6823e+0 4.2124e+0 4.8188e+0  
 5.5125e+0 6.3061e+0 7.2139e+0 8.2524e+0 9.4404e+0 1.0799e+1 1.2354e+1 1.4132e+1  
 1.6167e+1 1.8494e+1 2.1157e+1 2.4202e+1 2.7686e+1 3.1672e+1 3.1672e+1 2.7686e+1 
 2.4202e+1 2.1157e+1 1.8494e+1 1.6167e+1 1.4132e+1 1.2354e+1 1.0799e+1 9.4404e+0 
 8.2524e+0 7.2139e+0 6.3061e+0 5.5125e+0 4.8188e+0 4.2124e+0 3.6823e+0 3.2190e+0 
 2.8139e+0 2.4598e+0 2.1502e+0 1.8797e+0 1.6431e+0 1.4363e+0 1.2556e+0 1.0976e+0 
 9.5947e-1 8.3873e-1 7.3319e-1 6.4092e-1 5.6027e-1 4.8976e-1 4.2813e-1 3.7426e-1 
 3.2716e-1 2.8599e-1 2.5000e-1    5.0e-2  
NZ      77         
    1.0e-3    7.00e0    5.00e0    4.0e+0    3.2e+0    2.5e+0    2.0e00    1.6e00 
   1.25e00    1.0e00    8.0e-1    6.5e-1    5.0e-1    5.0e-1    4.0e-1    4.0e-1 
    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1 
    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1 
    4.0e-1    4.0e-1    4.5e-1    4.5e-1    4.5e-1    4.5e-1    4.5e-1    4.0e-1 
    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1 
    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1    4.0e-1 
    4.0e-1    4.0e-1    4.0e-1    5.0e-1    5.0e-1    6.5e-1    8.0e-1    1.0e00 
    1.0e00   1.25e00    1.6e00    2.0e00    2.5e00    3.2e00    3.0e00    4.00e0 
    4.0e00    5.0e00    6.0e00    8.0e00    1.0e-3 
     
     
====> ====> ====> ====> 

 
Figure 7.3.  An example of a MeshMaker.f95 input file for the creation of a large Cartesian 3D 
grid with heterogeneous regions and defined boundaries. 
 



 

  123 

 
 
 
 
Input file for a large cylindrical grid  ……! Title  
15000 30000 5 'Old' 'm' .FALSE. 
Regions                       ! Keyword denoting heterogeneous subdomains  
  6                           ! => Num_HetRegions ( = number of heterogeneous regions) 
'HydrL'                       !    Region #1: dominant_medium  
'Aquif'                       !    Region #2: H_RegionName  
'cylindrical'   'm'           !       H_RegionCoordinates, H_RegionUnits 
0.0e0 1.5e3 -6.3e1 -4.825e1   !       Rmin, Rmax, Zmin, Zmax 
'OverB'                       !    Region #3: H_RegionName  
'cylindrical'   'm'           !       H_RegionCoordinates, H_RegionUnits 
0.0e0 1.5e3 -3.0e1  0.0e1     !       Rmin, Rmax, Zmin, Zmax 
'UndrB'                       !    Region #4: H_RegionName  
'cylindrical'   'm'           !       H_RegionCoordinates, H_RegionUnits 
0.0e0 1.5e3 -9.4e1 -6.3e1     !       Rmin, Rmax, Zmin, Zmax 
'Casng'                       !    Region #5: H_RegionName  
'cylindrical'   'm '          !       H_RegionCoordinates, H_RegionUnits 
0.0e0 1.0e-1 -4.6e1 -3.0e1    !       Rmin, Rmax, Zmin, Zmax 
'Perfo'                       !    Region #5: H_RegionName  
'cylindrical'   'm '          !       H_RegionCoordinates, H_RegionUnits 
0.0e0  1.0e-1 -5.225e1 -4.6e1 !       Rmin, Rmax, Zmin, Zmax 
Boundaries                    ! Keyword denoting boundaries 
2                             ! ==> Num_Boundaries  
'I' 'TopBB'                   !    Boundary #1: BoundID, BoundRegionName 
'cylindrical'   'm'           !       BoundRegionCoordinates, BoundRegionUnits 
0.0e0 1.5e3 -1.0e-2  0.0e0    !       Rmin, Rmax, Zmin, Zmax 
'I' 'BotBB'                   !    Boundary #2: BoundID, BoundRegionName 
'cylindrical'   'm'           !       BoundRegionCoordinates, BoundRegionUnits 
0.0e0 1.5e3 -9.4e1 -9.3e1     !       Rmin, Rmax, Zmin, Zmax 
RZ2DL 
RADII 
    2 
     0.001   0.10795 
EQUID 
    1         2.0e-2 
LOGAR 
  199         1.0e+3 
LAYER 
  68 
    1.0e-3    6.50e0    5.00e0    5.0e+0    3.0e+0    3.0e+0    2.0e00    2.0e00 
    1.0e00    1.0e00    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1 
    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1 
    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1 
    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1 
    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.5e-1    5.5e-1    5.5e-1    5.5e-1 
    5.5e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    5.0e-1    1.0e00 
    1.0e00    2.0e00    2.0e00    3.0e+0    3.0e+0    4.0e+0    4.0e+0    5.00e0 
    5.0e+0    6.00e0    6.0e+0    1.0e-3 
 
 
====> ====> ====> ====> 

 
Figure 7.4.  An example of a MeshMaker.f95 input file for the creation of a large cylindrical 2D 
grid with multiple layers, heterogeneous regions and defined boundaries. 
 
 
 
 



 

 124  

7.4.4.3. MINC processing for fractured media (keyword 'MINC') 
Data Block GRID 
 
The first record in this data block includes only the keyword (character variable) 
'MINC' that is invokes post-processing of a primary porous medium mesh from a 
previously developed file MESH.  This keyword is read using a Format (A5).  The 
input formats in data block MINC are identical to those of the GMINC program 
[Pruess, 1983], with two enhancements: (a) there is an additional facility for 
specifying global matrix-matrix connections (dual permeability option); (b) only 
active elements (see Section 8.4) will be subjected to MINC-processing, the 
remainder of the MESH remaining unaltered as porous medium grid blocks.  See 
Section 2.14 for further discussion.  
 
NOTE: If the application of the MeshMaker.f95 aims to process a pre-existing 
external MESH file, the input file begins with records MESHMAKER.1 and 
MESHMAKER.2 (see Section 7.2.1) as the first two data blocks, followed by the 
data inputs described in detail below.  

 
Record MINC.1 
 

Format (2A5, 5X, A5) 
PART, TYPE, DUAL 

 
PART: This is the first keyword following the 'MINC' keyword.  It will be 

followed on the same line by parameters TYPE and DUAL with 
information on the nature of fracture distributions and matrix-matrix 
connections.  

 
PART: An identifier of the data block with partitioning parameters for secondary 

mesh.  
 
TYPE: A five-character variable for selecting one of the following six different 

proximity functions provided in MINC [Pruess, 1983].  
 

= 'ONE-D': A set of plane parallel infinite fractures with matrix block 
thickness between neighboring fractures equal to PAR(l). 
 
= 'TWO-D': Two sets of plane parallel infinite fractures, with arbitrary 
angle between them. Matrix block thickness is PAR(l) for the first set, 
and PAR(2) for the second set. If PAR(2) is not specified explicitly, it 
will be set equal to PAR(l). 

 
= 'THRED': Three sets of plane parallel infinite fractures at right 
angles, with matrix block dimensions of PAR(l), PAR(2), and 
PAR(3), respectively. If PAR(2)  and/or PAR(3) are not explicitly 
specified, they will be set equal to PAR(l) or PAR(2), respectively. 



 

  125 

= 'STANA': Average proximity function for rock loading of Stanford 
large reservoir model [Lam et al., 1988]. 
 
= 'STANB': Proximity function for the five bottom layers of Stanford 
large reservoir model. 
 
= 'STANT': Proximity function for top layer of Stanford large reservoir 
model. 

 
DUAL A five-character word for selecting the treatment of global matrix flow.  

 
= '     ' (Blank – default): The global flow occurs only through the 
fracture continuum, while rock matrix and fractures interact locally by 
means of interporosity flow (double-porosity model).  
 
= 'MMVER': The global matrix-matrix flow is permitted only in the 
vertical; otherwise like the double-porosity model; for internal 
consistency this choice should only be made for flow systems with one or 
two predominantly vertical fracture sets.  
 
= 'MMALL': The global matrix-matrix flow in all directions; for internal 
consistency only two continua, representing matrix and fractures, should 
be specified (dual-permeability model).  

 
NOTE: A user wishing to employ a different proximity function other than the 
options provided through the TYPE variable in MINC needs to replace the function 
subprogram PROX(x) in MeshMaker.f95 with a routine of the form:  

 
FUNCTION PROX(x)  
PROX = (arithmetic expression in x)  
RETURN  
END 

 
It is necessary that PROX(x) be defined even when x exceeds the maximum 
possible distance from the fractures, in which case PROX = 1.  Additionally, 
when the users supply their own proximity function subprogram, the parameter 
TYPE must be set equal to 'ONE-D', 'TWO-D', or 'THRED', depending on the 
dimensionality of the proximity function. This will assure proper definition of the 
innermost nodal distances [Pruess, 1983]. 
 
 
Record PART.l 
 

Format (2I3, A4, 7E10.4) 
J, NVOL, WHERE, (PAR(i), i = 1, 7) 

 
J: The total number of multiple interacting continua  (J < 36). 



 

 126  

 
NVOL: The total number of explicitly provided volume fractions (NVOL < J).  

If NVOL < J, the volume fractions with indices NVOL+1, ..., J will be 
internally generated; all being equal and chosen such as to yield proper 
normalization to 1.  

 
WHERE: Character variable specifying whether the sequentially specified volume 

fractions begin with the fractures (WHERE = 'OUT') or in the interior 
of the matrix blocks (WHERE = 'IN'). 

 
PAR(i): Real array that stores the parameters describing the fracture spacing (see 

discussion of previous record).  
 
 

Record PART.2.1, PART.2.2, etc. 
 

Format (8E10.4)  
(VOL(i), i = 1, NVOL)  

 
VOL(i): The volume fraction (having a value between 0 and 1) of a continuum 

with index i (for WHERE = 'OUT') or index J+l-i (for WHERE = 
'IN'). NVOL volume fractions will be read. For WHERE = 'OUT', 
i=1 is the fracture continuum, i=2 is the matrix continuum closest to 
the fractures, i=3 is the matrix continuum adjacent to i=2, etc. The sum 
of all volume fractions must not exceed 1.  

 
Record GRID-END 

 
Two blank records close the input data file.  

 



 

  127 

 

 

 

 

8.0.  Initial Conditions and 
Boundary Conditions 

 
 

In this section the data blocks that allow for domain-specific initial conditions (block 

INDOM), element-specific initial conditions (INCON), extended capabilities for specifying 

initial conditions (EXT-INCON), including features for assigning initial conditions by a 

variety of methods. Following that the procedure is described for implementing initial 

conditions and boundary conditions in TOUGH+ v1.5. 

 

8.1. Data Block INCON 

This block introduces element-specific initial conditions. 

Record INCON.1 (for 5-character element names) 
 

Format (A5, 2I5, E15.8, 2x, A3, 36x, 3(E15.8))  
 
ElName5C, NSEQ, NADD, porosity, StateIndex, (perm(i), i=1,3) 



 

 128  

ElName5C  
The 5-character name of the element that is being initialized. 

 
NSEQ  

The number of additional elements with the same initial conditions. 
 
NADD  

The increment between the code numbers of two successive elements with 
identical initial conditions. 

 
Porosity 

The porosity of the element that is being initialized.  If porosity is zero 
or blank, the element porosity will be taken as specified in block ROCKS or 
MEDIA.  This feature is necessary for assignment of element-specific 
properties for the description of highly or statistically heterogeneous 
domains. 

 
StateIndex  

State identifier (see Section 3.1, Tables 3.1 and 3.2): the initial conditions 
corresponding to this identifier are applied uniformly over the element. 

 
perm(i), i=1,3 

The intrinsic (absolute) permeabilities of the element that is being 
initialized along the three directions described by the ConxKi variable 
(see Section 7.3). If all perm(i), i=1,…,3 are zero or blank, the 
element permeabilities will be taken as specified in block ROCKS or 
MEDIA.  This feature is necessary for assignment of element-specific 
properties for the description of highly or statistically heterogeneous 
domains. 

 
 

Record INCON.1 (for 8-character element names) 
 

Format (A8, 7X, E15.8, 2x, A3, 36x, 3(E15.8))  
 

ElName8C, NSEQ, NADD, porosity, StateIndex, (perm(i), i=1,3) 
 

ElName8C is the 8-character name of the element that is being initialized. All 
other variables remain as in the case of five-character element names. 

 
 

Record INCON.2 specifies primary variables. 
 

Format (6E20.13) 
X(i), i = 1,NumCom+1 
 

The primary variables defining the state of the element specified in record 
INCON.l.  INCON specifications will supersede default conditions specified in 



 

  129 

PARAM.4 (see Section 10), and domain-specific conditions that may have been 
specified in data block INDOM.  See Section 3.1 (Tables 3.1 and 3.2) for a detailed 
description of the potential sets of primary variables. 

 
 
Record INCON.3  
 
There are three ways to close the INCON data block.   
 
If the simulation is not a continuation run, then a blank line or a record with ‘<<<’ 
typed in the first three columns closes the INCON data block. 
 
For continuation runs from a previous TOUGH+ v1.5 simulation, the element-
related INCON data terminate with a record with ‘:::’ typed in the first three 
columns.  This is followed by a namelist that includes data describing the origin of 
time, the simulated time at the conclusion of the preceding TOUGH+ v1.5 
simulation and the cumulative numbers of the timesteps and of the Newtonian 
iterations at the end of the previous run (see Figure 8.1).  These data are recorded 
automatically at the end of the SAVE file (see Section 8.4) upon completion of the 
any TOUGH+ v1.5 run using a NAMELIST format.  This is a very powerful 
format that allows maximum clarity and flexibility, accepting free formats, 
arbitrary ordering of variables, insertions of comments anywhere in the input 
fields, and providing the option of ignoring any of the NAMELIST parameters by 
omitting it or by not assigning a value to it.  For more information, the reader is 
directed to a textbook on FORTRAN 95/2003. 
 

. 

. 

. 

. 
FJ000           0.00000000E+00  Aqu: P,     X_m_A, X_i_A, T            
 3.2500495961160E+07 0.0000000000000E+00 3.0000000000000E-02 9.3974540000000E+00 
FJ106           0.00000000E+00  Aqu: P,     X_m_A, X_i_A, T            
 3.3467136230360E+07 2.9244292873310E-03 3.0000000000690E-02 1.2627840000000E+01 
:::   
 &Data_For_Continuation_Run 
       timesteps_to_this_point     =       6818, 
       NR_iterations_to_this_point =      71226, 
       number_of_detected_media    =          8, 
       origin_of_time              =  0.00000000000000E+00, 
       time_to_this_point          =  4.69736464257198E+07, 
       accumulated_quantities      =  7.35454091207164E+04,  1.08644220169487E+05,   
                                      1.03974248845536E+05,  6.43009774059305E+04,  
                                      0.00000000000000E+00,  0.00000000000000E+00,  
                                   / 
<<<   

 
Figure 8.1.  An example of the NAMELIST-described termination data printed at the end of the 
SAVE file from a TOUGH+ v1.5 simulation.  These data can be read as part of the INCON data 
block, or of the INCON external file.  The names of the variables defined in the NAMELIST are self-
explanatory.  For reference, this figure lists the conditions in the last two elements (FJ000 and 
FJ106) of the grid in the TOUGH+ v1.5 simulation. 
 



 

 130  

8.2. Data Block INDOM 

This block introduces domain-specific initial conditions. These will supersede default 

initial conditions specified in PARAM.4 (see Section 10), and can be overwritten by 

element-specific initial conditions in data block INCON or data block EXT-INCON. The 

option START is needed to use INDOM conditions. 

Record INDOM.l 
 

Format (A5, 2X, A3) 
Rk_name, StateIndex 

 
Rk_name  

The name of a medium (corresponding to a system subdomain), as 
specified in data block ROCKS. 

 
StateIndex 

The state identifier describing the conditions applying to the Rk_name 
medium/subdomain.  

 
Record INDOM.2 

 
Format (6E20.13) 
X(i), i = 1,NumCom+1 
 

X(i) are the primary variables assigned to all grid blocks in the domain specified 
in record INDOM.l.  See Section 3.1 (Tables 3.1 and 3.2) for description of the 
potential sets of primary variables. 

 
 
Record INDOM.3 

 
A blank record closes the INDOM data block.  
 

Repeat records INDOM.l and INDOM.2 for as many domains as desired.  The 
ordering is arbitrary and need not be the same as in block ROCKS. 

 



 

  131 

8.3. Data Block EXT-INCON 

This block introduces extended capabilities for specifying initial conditions of subdomains 

(i.e., groups of element).  The user has several options to provide element information 

(e.g., an element name or number list, location, element sequence, columnar structure, 

etc.) that defines a subdomain to be initialized with the specified conditions.  The first 

entry is the total number of initialization entities entered within the block.  Following that, 

each of the various input entities may be entered in an arbitrary order. 
Record EXT-INCON.0 
 

This record includes the single integer variable Total_input_num that 
describes the total number of input entities (representing initial conditions in 
particular subdomains) that will be entered.  This is read using a free format. 
 
 
Record EXT-INCON.1 
 

This record includes the single character variable INTYPE that is read using a free 
format, and which provides a keyword defining the type of data describing the 
subdomain to be initialized. INTYPE can assume one of the following values: 
'GEOMETRY', 'LIST', 'SEQUENCE', or 'COLUMN'.  Thus, INTYPE determines 
what kind of variables/data will be read in record in EXT-INCON.2.   
 
 

8.3.1. Data Block GEOMETRY 

The data in this block are read when INTYPE = 'GEOMETRY', and define a set of 

elements in a subdomain that is bounded within prescribed minimum and maximum 

coordinates.  All elements within this range will be assigned the initial conditions entered 

in the record EXT-INCON.3. 

Record EXT-INCON.2.0 
 
For a Cartesian grid (coordinate_system = 'Cylindrical', see Section 
5), the following real variables are read in EXT-INCON.2 using a free format:  
 



 

 132  

Xmin, Xmax, Ymin, Ymax, Zmin, Zmax 
 
These parameters are defined as follows:  
 
Xmin, Xmax  

Real variables indicating the range of the subdomain to-be-initialized along 
the x-axis of the Cartesian coordinate system.  

 
Ymin, Ymax  

Real variables indicating the range of the subdomain to-be-initialized along 
the y-axis of the Cartesian coordinate system.  

 
Zmin, Zmax 

Real variables indicating the range of the subdomain to-be-initialized along 
the z-axis of the Cartesian coordinate system.  

 
 
For a cylindrical grid (coordinate_system = 'Cartesian', see Section 
5), the following real variables are read in EXT-INCON.2 using a free format:  

 
Rmin, Rmax, Zmin, Zmax 

 
These parameters are defined as follows:  
 
Rmin, Rmax  

Real variables indicating the range of the subdomain to-be-initialized along 
the r-axis of the cylindrical coordinate system.  

 
Zmin, Zmax 

Real variables indicating the range of the subdomain to-be-initialized along 
the z-axis of the cylindrical coordinate system.  

 

8.3.2.  Data Block SEQUENCE 

For INTYPE = 'SEQUENCE' 
 
Record EXT-INCON.2.0 
 

Format (*), i.e., free format 
 
SequICFirstElemNum,  
SequICLastElemNum, 
SequICStride 

 
These parameters are defined as follows:  
 



 

  133 

SequICFirstElemNum 
Integer describing the global number of the first element in the sequence. 

 
SequICLastElemNum 

Integer describing the global number of the last element in the sequence. 
 
SequICStride 

Integer describing the stride in the numbering sequence 
 
Thus, a sequence of elements is defined by the beginning and ending element 
number, as well as by the stride (number of elements to skip between two 
successive elements in the subdomain defined by the sequence). For example, a 
sequence with SequICFirstElemNum = 10, SequICLastElemNum = 
20, and SequICStride = 2 results in the a group (subdomain) of elements 
with the following global element numbers: 10, 12, 14, 16, 18, 20.  If 
SequICLastElemNum < SequICFirstElemNum or if SequICStride 
< 0, an error message is printed and the simulation is aborted. 
 
All elements within this sequence will be assigned the initial conditions entered in 
the record EXT-INCON.3. 

 

8.3.3.  Data Block LIST 

For INTYPE = 'LIST' 
 
Record EXT-INCON.2.0 
 

Format (*), i.e., free format 
 
ListICLength, N_per_row 

 
These parameters are defined as follows:  
 
ListICLength  

Integer denoting the length of the list (i.e., the total number of element 
numbers in the list) that is about to be read. 

 
N_per_row 

Integer defining the number of entries (= element numbers) per row in the 
list that that is about to be read.  The last row may have fewer than 
N_per_row entries. 

 
 



 

 134  

Record EXT-INCON.2.1 
 

Format (*), i.e., free format 
 
ElemNum(i), i=1, ListICLength 

 
NOTE: The number of entries per row of the ElemNum(i) input data is 
N_per_row 
 
The element numbers that are defined through their participation in a list are read 
in rows (= records), each (except possibly the last one) containing N_per_row 
entries.  The last row/record may have fewer than N_per_row entries.  For 
example, if ListICLength = 8 and N_per_row = 3, then the element 
numbers would be listed as follows: 
 

ElemNum(1),ElemNum(2),ElemNum(3),  ! 1st record 
ElemNum(4),ElemNum(5),ElemNum(6),  ! 2nd record 
ElemNum(7),ElemNum(8)              ! 3rd record 

 
All elements in this list will be assigned the initial conditions entered in the 
following record (EXT-INCON.3). 

 

8.3.4.  Remaining Data Blocks in EXT-INCON 

For INTYPE = 'GEOMETRY', 'SEQUENCE', or 'LIST' 
 
Record EXT-INCON.3 

 
Format (*), i.e., free format 
 
StateIndex, X0(i),i=1,NumCom+1 

 
These parameters are defined as follows:  
 
StateIndex  

A character variable indicating the state index (see Section 3) 
corresponding to the initial conditions that are to be assigned to the 
subdomain defined by INTYPE. 

 
X0(i),i=1,NumCom+1 

A real array that includes the primary variables (corresponding to 
StateInd) describing the conditions to which the respective subdomain 
is initialized.  See Section 3.1 for a thorough description of the potential 
sets of primary variables. 

 
Repeat records EXT-INCON.3, EXT-INCON.2 and EXT-INCON.3 for a total 
of Total_input_num subdomain-based initializations.  



 

  135 

8.3.5.  Data Block COLUMN 

This data block is somewhat different from the previous ones, and is very useful in 

applying initial conditions in problems that involve initialization after achieving gravity 

equilibration in a single column of the domain, which then serves as the reference column.  

Thus, when INTYPE = 'COLUMN', the following records and data are read: 

Record EXT-INCON.2.0 
 
This record includes the single integer variable ColmICSize that is read using a 
free format, and which describes the column length, i.e., the number of elements in 
the column.   
 
 
Record EXT-INCON.2.1 

 
Format (*), i.e., free format 
 
ColmICFirstElemNum,  
ColmICNumElemInCol, 
ColmICstride 

 
These parameters are defined as follows:  

 
ColmICFirstElemNum An integer variable indicating the global element 

number of the first element in the columnar structure 
to be initialized. 

 
ColmICNumElemInCol An integer variable describing the total number of 

elements to be initialized using the columnar 
structure. Thus, the total number of columns to be 
initialized using the data provided in this block is: 
ColmICNumElemInCol/ColmICSize 

 
ColmICstride An integer variable describing the stride in the 

numbering sequence.  This number is the difference 
between the global numbers of two elements that 
two successive locations in the same column.  

 
For example, if ColmICSize=10, ColmICFirstElemNum=1, 
ColmICNumElemInCol=80, and ColmICstride=1, then initialization using 
the COLUMN data block will assign the initial conditions (obtained from the 10 
elements of the reference column) to columns composed of elements with the 



 

 136  

following global numbers: Column #1, elements 1 to 10; Column #1, elements 11 
to 20; … Column #8, elements 71 to 80.  In this case, elements 1, 11, 21,…,71 
have the same initial conditions (equal to those of the first entry in the reference 
column).  Similarly, elements 2, 12, 22, …, 72 have all the same initial conditions 
(equal to those of the second entry in the reference column).   
 
Conversely, if ColmICstride=1, then elements 1 to 8 have all the same initial 
conditions (equal to those of the first entry in the reference column), 2 to 16 have 
all the same initial conditions (equal to those of the second entry in the reference 
column), etc.   
 
 
Record EXT-INCON.3.x, x=1,…,ColmICSize 

 
Format (*), i.e., free format 
 

StateIndex, (X0(i),i=1,NumCom+1) 
 
A total of ColmICSize records are read, each providing the state index and 
primary variables of the elements of the reference column. The variables in these 
records are as previously defined (see Section 8.3.4). 

 

8.4. Implementing Initial Conditions  

Flow systems are initialized by assigning a complete set of primary thermodynamic 

variables to all grid blocks into which the flow domain is discretized.  Various options are 

available in a hierarchical system, as follows. During the initialization of a TOUGH+ run, 

all grid blocks are first assigned to default thermodynamic conditions specified in data 

block PARAM. The defaults can be overwritten for selected reservoir domains by assigning 

domain-specific conditions in data blocks INDOM or EXT_INCON. These in turn may be 

superseded by thermodynamic conditions assigned to individual grid blocks in data block 

INCON.  A disk file INCON written to the same specifications as data block INCON may 

also be used.  



 

  137 

The possible sets of primary variables are discussed in Section 3.1 (Tables 3.1 and 

3.2), with the actual primary variables depending on the fluid/solid phase composition. 

During phase change primary variables will be automatically switched from one set to 

another.  In multiphase flow systems, therefore, different grid blocks will in general have 

different sets of primary variables, and must be initialized accordingly. 

For many applications, special initial conditions are needed, such as gravity-

capillary equilibrium, or steady state corresponding to certain mass and heat flows. This 

can be realized by performing a series of TOUGH+ runs, in which thermodynamic 

conditions obtained in one run, and written to disk file SAVE, are used as initial conditions 

in a subsequent continuation run.  For example, in a hydrate accumulation simulation, a 

first run may be made to obtain hydrostatic pressure conditions. These may subsequently 

be used as boundary conditions in a second run segment to simulate undisturbed natural 

state conditions with through-flow of mass and heat. This could be followed by a third run 

segment with fluid production and injection.  

Restarting of a TOUGH+ run is accomplished by renaming the file SAVE 

generated in a previous run as file INCON for initialization. Usually additional (often 

minor) adjustments will be made for a restart. For example, different specifications for the 

number of time steps and desired printout times may be made. Some editing of the MESH 

file may be needed to make certain grid blocks inactive, so that previously calculated 

pressures can serve as boundary conditions (see below). In a continuation run, simulation 

time and time step counters may be continuously incremented, or they may be reset to 

zero. For example, the latter option will be used when simulating production and injection 



 

 138  

operations following preparation of a natural initial state, which may correspond to a large 

simulation time.  

As far as the internal workings of the code is concerned, there is no difference 

between a fresh start of a simulation and a restart. The only feature that makes a 

simulation a continuation run is that the INCON data were generated by a previous 

TOUGH2 or TOUGH+ run, rather than having them explicitly provided by the user.   

The file SAVE originating from TOUGH2 simulations [Pruess et al., 1991; 2012] 

always ends with a data record with ‘+++’ in the first three columns, followed by one 

record with restart information (time step and iteration counters, simulation time).  The 

file SAVE originating from a TOUGH+ simulation terminates with continuation data 

written using the NAMELIST format shown in Figure 8.1.  In either case, to reset all 

counters and continuation data to zero when using SAVE as file INCON for another 

TOUGH+ run, users can simply replace all records below the conditions of the last 

element with a single blank record. 

 

8.5. Implementing Boundary Conditions 

8.5.1.  General  

Boundary conditions can be of two basic types. Dirichlet conditions prescribe 

thermodynamic conditions, such as pressure, temperature, etc. on the boundary, while 

Neumann conditions prescribe fluxes of mass or heat crossing boundary surfaces. A 

special case of Neumann boundary conditions is no flux, which is the default in the 

integral finite difference framework when no flow connections are specified across the 



 

  139 

boundary. More general flux conditions are prescribed by introducing sinks or sources of 

appropriate strength into the elements adjacent to the boundary. 

In TOUGH2 [Pruess et al., 1999; 2012], Dirichlet conditions could be 

implemented by assigning very large volumes (e.g., V = 1050 m3, as described by the 

elem_vol variable in Section 7.2) to grid blocks adjacent to the boundary, so that their 

thermodynamic conditions do not change at all from fluid or heat exchange with finite-

size blocks in the flow domain.  In addition, a small value (such as 10-9 m) should be 

specified for the nodal distance (ConxD1 or ConxD2, see Section 7.3) of such blocks, so 

that boundary conditions are in fact maintained in close proximity to the surface where 

they are desired, and not at some distance from it.  It is possible to specify a nodal distance 

that is outright zero; however, this may interfere with options for the computation of 

interface mobilities that are intended for modeling fracture-matrix interactions.  Therefore, 

assigning zero nodal distances (ConxD1 or ConxD2) should be used with caution.  

For time-independent Dirichlet boundary conditions, TOUGH2 [Pruess et al., 

1999; 2012] offered an alternative implementation, which provided savings in 

computational work along with added user conveniences in running simulation problems. 

This was accomplished by defining active and inactive elements.  By convention, 

elements encountered in data block ELEME  (or in geometry files MESH or MINC) were 

taken to be active until the first element entry with a zero or negative volume was 

encountered.  The first element with volume elem_vol 

€ 

≤ 0.0E0, and all subsequent 

elements, were by convention taken to be inactive.  The easiest way to declare selected 

grid blocks as inactive was to use a text editor to move them to the end of the ELEME data 

block, and then insert a dummy grid block of zero volume in front of them. 



 

 140  

TOUGH+ v1.5 maintains these two older options available in TOUGH2, but 

provides an additional one that is much simpler as it does not require any editing of the 

element volume or physically moving any portions of the element list.  In TOUGH+ v1.5, 

elements can be designated as inactive if the parameter element_activity in record 

ELEME.1 (see Section 7.2) is set to 'I' (when its conditions are time-invariant) or 

'Vxx' (when its conditions and properties vary over time).  Then, these elements, as well 

as all elements designated as inactive by the older TOUGH2 options, are treated as 

inactive.  

For the inactive elements no mass or energy balance equations are set up, their 

primary thermodynamic variables are not included in the list of unknowns, and their 

thermodynamic conditions remain unchanged during the course of the simulation.  

Inactive elements can appear in flow connections and initial condition specifications like 

all other elements.  The computational overhead of inactive elements is small because they 

do not increase the number of equations to be solved in a flow problem.  

 

8.5.2.  Data Block BOUNDARIES 

This data block provides time-variable boundary conditions that are applicable to 

gridblocks with an activity indicator elem_activity = ‘Vxx’ (xx is a number, see 

Section 7.2). When this data block is present in the input data file, the time-variable 

boundary conditions are read in a tabular form.  

The data in this record are read using a NAMELIST format, and may occupy one or 

more lines (a choice left to the user).  As already discussed (Section 8.1), NAMELIST-

based formats are a feature of FORTRAN 95/2003 and provide unique power and 



 

  141 

flexibility, allowing (a) assignment of updated values to any subset of the parameters 

included in the NAMELIST definition, (b) arbitrary order, (c) free formats of individual 

parameter values, (d) inclusion of comments, etc.  Future versions of TOUGH+ will 

involve NAMELIST-based formats to read most input data. 

The following records and data are read in the ‘BOUNDARIES’ data block: 

Record BOUNDARIES.1 
 
The namelist in this record is named Transient_Boundaries, has the 
following general form 
 
&Transient_Boundaries  number_of_defined_boundaries = x, 
                       num_table_defined_boundaries = x / 
 
and includes the following variables: 
 
number_of_defined_boundaries:   

An integer variable describing the number of time-variable boundaries that 
are to be described 

 
num_table_defined_boundaries: 

An integer variable describing the number of tables that are to be read, 
which describe the time-variable behavior of these boundaries.  

 
The variable number_of_defined_boundaries can be equal or smaller 
than num_table_defined_boundaries.  However, the current TOUGH+ 
v1.5 version can only accommodate tabular data in the BOUNDARIES.1 block, 
requiring that: 
 
number_of_defined_boundaries = num_table_defined_boundaries  

 
 

Record BOUNDARIES.2 
 
This record includes general data defining the boundary.  A total of 
num_table_defined_boundaries such records need to be provided.  The 
namelist in this record is named Transient_Boundary_Definition, has 
the form  
 
&Transient_Boundary_Definition boundary_number = x, 
                               boundary_name = 'x',  
                               num_PV_to_read = x,  
                               PV_numbers = x,   
                               data_form = 'x'/ 



 

 142  

and includes the following parameters: 
 
boundary_number: 

Integer parameter describing the number of the boundary (more than one 
boundaries can be defined).   

 
boundary_name: 

The name of of the boundary corresponding to boundary_number.   
 
num_PV_to_read:   

Integer parameter describing the number of the primary variables to be 
used from among the data read from the table.  More than one primary 
variables can be used to define a boundary, and the maximum number is 
num_PV_to_read = NumEqu. 

 
PV_numbers:   

The number of the primary variables (as listed in the order of the primary 
variables in the EOS of the User’s Manuals of the individual TOUGH+ 
application options) corresponding to each column of the tabular data. 

 
data_form:   

This character parameter (5 characters long) describes the type of the data 
defining the boundary.  In the current version of TOUGH+, the only option 
is data_form = 'Table'. 
 

The structure of the Transient_Boundary_Definition namelist (and its 
use as an input format in the data block BOUNDARIES) is best illustrated in the 
example of Figure 8.2. 
 
 
Record BOUNDARIES.3 

 
This record includes specific data describing the tabular data of the conditions at 
the boundary.  A total of num_table_defined_boundaries such records 
need to be provided.  The namelist in this record is named 
Tabular_Data_Definition, has the form  
 
&Tabular_Data_Definition read_by_row_or_by_col = x, 
                         number_of_rows        = 'x',  
                         tot_number_of_columns = x,  
                         RowColNum_to_PrimVarNum = x,…,x, 
                         units_of_PrimVar = 'x',…,'x', 
                         read_format      = 'x'/ 
 
and includes the following parameters: 
 
read_by_row_or_by_col: 

Character parameter of length 3 describing if the tabular data are to be read 
by row or by column. The following self-explanatory options are available: 



 

  143 

='Row':  The data are read by row.  Each row includes the time and the 
corresponding primary variable value(s); each column corresponds to a 
single time. 
 
='Col':  The data are read by column.  Each column lists the entire series 
of time or of one or more primary variables. 

 
number_of_rows: 

Integer parameter defining the number of data points.  
 
tot_number_of_columns:   

Integer parameter describing the number of the number of columns to be 
read, including both the time and the boundary primary variable columns 
(must be > 1). 

 
units_of_PrimVar:   

A character array of length 3 and of dimension NumEqu+1 that describes 
the units of time and of the primary variables in the table.  

 
read_format:   

This character parameter (up to 120 characters long) describes the format to 
read the tabular data.   

 
The structure and use of the namelists in the data block BOUNDARIES is best 
illustrated by the example of Figure 8.2. 
 
 
Record BOUNDARIES.4 
This record includes a comment (a character variable of 200 characters) that 
provides some information on the table to follow.   
 
 
Record BOUNDARIES.5.1, 5.2, 5.3, …, number_of_rows  
Each one of those records includes tot_number_of_columns individual data 
points of the table that are read using the format specified by read_format.   
 

The structure and use of the data block BOUNDARIES is best illustrated by the 
example of Figure 8.2. 
 

 



 

 144  

 

 

BOUNDARIES  
&Transient_Boundaries   number_of_defined_boundaries = 1, 
                        num_table_defined_boundaries = 1  
                        / 
  &Transient_Boundary_Definition   boundary_number = 1,  
                                   boundary_name   = 'V01'’,  
                                   num_PV_to_read  = 2,  
                                   PV_numbers      = 1,3,  
                                   data_form = 'Table'  
                                   / 
    &Tabular_Data_Definition  read_by_row_or_by_col    = 'row', 
                              number_of_rows           = 3,  
                              tot_number_of_columns    = 4, 
                              RowColNum_to_PrimVarNum  = 3,-1,0,1,  
                              units_of_Primvar(0) ='sec',  
                              units_of_Primvar(1) = 'Pa', 
                              units_of_Primvar(3) = 'C', 
                              read_format         = '*'  
                              / 
'The PV are in the sequence: Temperature, dummy, time, dummy' 
     12.5e0  -1222.34     0.0e0  9.80e6 
     14.0e0  -1.48e03     3.0e3  8.80e6 
     17.0e0  -1.77e03     9.0e3  8.00e6      
    
 

Figure 8.2.  An example of the namelist structure of the BOUNDARIES data block.  The time-
variable data are provided and read in tabular form.   
 



 

  145 

 

 

 

9.0.  Sources and Sinks 
 

 

9.1. Data Block GENER 

This block introduces sinks and/or sources to the system 

 
Record GENER.1 (for 5-character element names) 
 

Format (A5, A5, 4I5, 5X,A4, A1, 3E10.4 ,A4, 6x, 3(E10.4))  
 
ElName5C, SS_name, NSEQ, NADD, NADS, LTAB, 
SS_Type, ITAB, GX, EX, HX, 
WellResponse, PresLimits,  
RateStepChange, RateLimit 

 
These parameters are defined as follows:  

 
ElName5C: 

The code name of the 5-character element containing the sink/source. 
 
SS_name: 

The name of the sink/source. The first three characters are arbitrary, the 
last two characters must be numbers. 

 



 

 146  

NSEQ: The number of additional sinks/sources with the same 
injection/production rate (not applicable for SS_Type = 'DELV'). 

 
NADD: The increment between the code numbers of two successive elements 

with identical sink/source. 
 
NADS: The increment between the code numbers of two successive 

sinks/sources. 
 
LTAB: The number of points in table of generation rate versus time.  Set 0 or 1 

for constant generation rate. For wells on deliverability, LTAB denotes 
the number of open layers, to be specified only for the bottommost layer. 

 
SS_Type: 

The type of source or sink.  This variable specifies different options for 
fluid or heat production and injection. For example, different fluid 
components may be injected, the nature of which depends on the EOS 
module being used. Different options for considering wellbore flow 
effects may also be specified.  The following options are available: 
 
='HEAT': Introduces a heat sink/source.  This option is to be used for 

injection only. 
='COM1': Indicates mass component #1 (usually water).  This option is 

to be used for injection only. 
='WATE':  Indicates water injection. 
='COM2': Indicates mass component #2.  This option is to be used for 

injection only. 
='COM3': Indicates mass component #3.  This option is to be used for 

injection only. 
='COMn': Indicates mass component #n.  This option is to be used for 

injection only. 
='MASS': Specified a mass production rate, i.e., the mass rate of all the 

fluids withdrawn from a system. 
 
ITAB: Unless left blank, a table of specific enthalpies will be read (LTAB > 1 

only). 
 
GX: The constant generation rate. GX is positive for injection and negative for 

production. GX describes a mass rate [kg/sec] for generation types COMl, 
COM2, COM3, etc., and MASS; it describes an energy rate [W] for a HEAT 
sink/source. For wells on deliverability, GX is the productivity index PI 
[m3] – see Equation (9.2). 

 
EX: The fixed specific enthalpy [J/kg] of the fluid for mass injection (GX>0). 

For wells on deliverability against fixed bottomhole pressure, EX is the 



 

  147 

bottomhole pressure Pwb [Pa] at the center of the topmost producing layer 
in which the well is open.  

 
HG: The thickness of layer [m].  This is to be used only in cases of wells on 

deliverability with specified bottomhole pressure. 
 
WellResponse: 

A character variable that describes how the source/sink is to be treated if 
pressure limits (as described by the variable PresLimits) at the 
corresponding cell are violated.  The following options are available: 
 
='STOP': The simulation is halted. 
='ZERO': The source/sink rate GX is reset to zero, and the simulation 

continues. 
='ADJU':  The source/sink rate GX is adjusted, and the simulation 

continues. Note that a simulation involving the 
WellResponse = 'ADJU' option may involve several 
successive GX adjustments. 

 
PresLimits: 

A real variable describing the pressure limit [Pa] that acts as a trigger for 
WellResponse to be enacted. For injection, pressure in the element 
containing the source has to exceed PresLimits for changes to be 
implemented.  For production, pressure in the element containing the sink 
has to fall below PresLimits for changes to be implemented. 

 
RateStepChange:  

A real variable that is used only when WellResponse = 'ADJU'.  
By convention, RateStepChange is always a positive number.  It 
represents the absolute value of the fraction by which GX is to decrease 
when the PresLimits criterion is violated.  For obvious reasons,  
0 ≤ RateStepChange ≤ 1.   

 
RateLimit: 

A real variable describing the minimum rate limit, described as the lowest 
fraction of the original GX to which the rate is allowed to decline.  The 
simulation stops when RateLimit is reached. 

 
 

Record GENER.1 (for 8-character element names) 
 

Format (A8, A5, 12X, I5, 5X,A4, A1, 3E10.4 ,A4, 6x, 3(E10.4))  
 
ElName8C, SS_name, LTAB, 
SS_Type, ITAB, GX, EX, HX, 
WellResponse, PresLimits,  



 

 148  

RateStepChange, RateLimit 
 

Here ElName8C is the name of the 8-character element containing the 
sink/source.  All other variables and parameters are as in the case of the 5-
character elements. 
 
 
Record GENER.l.l (Optional, LTAB > l only) 

 
Format (4E14.7) 
Fl(k), k=l, LTAB 

 
F1(k): Generation times in the table of the time variable source/sink data. 

 
 

Record GENER.1.2 (Optional, LTAB > l only) 
 

Format (4E14.7) 
F2(k), k=1, LTAB 

 
F2(k): Generation rates in the table of the time variable source/sink data. 

 
 

Record GENER.1.3 (Optional, LTAB > l and ITAB non-blank only) 
 

Format (4E14.7)  
F3(k), k=1, LTAB 

 
F3(k): Specific enthalpy of produced or injected fluid in the table of the time 

variable source/sink data. 
 
Repeat records GENER.1, GENER.1.1, GENER.1.2, and GENER.1.3 for the 
desired number of sinks/sources. 

 
Record GENER.2  
 
A blank record closes the GENER data block. Alternatively, generation information 
may terminate on a record with ‘+++’ typed in the first three columns, followed by 
data describing the numbers of the elements where the sources/sinks are located.  

 



 

  149 

9.2. Discussion on sinks and sources 

Sinks and sources are introduced through data block GENER in the input file. Several 

options are available for specifying the production (q < 0) or injection (q > 0) of fluids 

and heat. Any of the mass components may be injected in an element at a constant rate, or 

at time-dependent rates that may be prescribed through user-defined tables. The user has 

the option of specifying the specific enthalpy of the injected fluid as either a constant or 

time dependent value.  Heat sources/sinks (with no mass injection) may be either constant 

or time-dependent. 
Fluid production from an element may be handled by prescribing a constant or 

time-dependent mass rate. In this case, the phase composition of the produced fluid may 

be determined by the relative phase mobilities in the source element. Alternatively, the 

produced phase composition may be specified to be the same as the phase composition in 

the producing element. In either case, the mass fractions of the components in the 

produced phases are determined by the corresponding component mass fractions in the 

producing element. Different options are available for interpolating time-dependent rates 

from user-supplied tabular data; these may be selected through parameter MOP(12) – see 

Section 10. 



 

 150  

 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 

 



 

  151 

 

 

 

10.  Computational Parameters 
 

 

In this section the data blocks (PARAM and SOLVR) that specify computational 

parameters are described and followed by a discussion on linear equation solvers. 

 

10.1. Data Block PARAM 

This block describes an assortment of computation parameters. 

 
Record PARAM.1 
 

Format (2I2, 3I4, 24I1, 3E10.4, 2I5) 
 
Max_NumNRIterations, OutputOption,  
Max_NumTimeSteps, iCPU_MaxTime,  
PRINT_frequency, (MOP(i),i=1,24), 
BaseDiffusionCoef, DiffusionExpon, 
DiffusionStrength,  
SAVE_frequency, TimeSeries_frequency 

 
These parameters are defined as follows:  
 



 

 152  

Max_NumNRIterations:  
Integer specifying the maximum number of Newtonian iterations per time 
step (default is 8)  

 
OutputOption: 

Integer defining an option that controls the amount of printout in the 
standard TOUGH+ output (the default is 1).  The following options are 
available: 
 
= 0,1: Print a selection of the most important variables. 
 
= 2: In addition, print the mass and heat fluxes and the flow velocities.  
 
= 3: In addition, print the primary variables and their changes. 
 
If the above values for OutputOption are increased by 10, printout will 
occur after each Newton-Raphson iteration (not just after convergence).  

 
Max_NumTimeSteps: 

An integer defining the maximum number of time steps allowed during the 
simulation.  
  
NOTE: If Max_NumTimeSteps < 0, then the maximum number of 
timesteps becomes 1000*ABS(Max_NumTimeSteps) 

 
iCPU_MaxTime:  

An integer describing the maximum duration, in CPU seconds, of the 
simulation (default is infinite).  

 
PRINT_frequency:  

An integer describing the printout frequency.  This, printout will occur for 
every multiple of PRINT_frequency steps (the default is 1).  
  
NOTE: If PRINT_frequency < 0, then the printout frequency 
becomes 1000*ABS(PRINT_frequency) 

 
MOP(i), i=1,24:  

An integer array that allows choice of various computational options.  
These are described in detail below, and are documented in the printed 
standard output from a TOUGH+ v1.5 run.  

 
MOP(1):  

If MOP(1) ≠ 0, a short printout for non-convergent iterations will be 
generated at the end of each Newton-Raphson iteration.  

 
MOP(2)to MOP(6): 

If ≠ 0, these options generate additional printout in various subroutines at 
the end of each Newton-raphson iteration. This feature is not needed in 



 

  153 

normal applications, but can be convenient in the development of new 
capabilities as they can be used to identify coding errors. The amount of 
printout increases with the value of MOP(i).  The user is encouraged to 
consult the source code listings for details.  Below we list the subroutines 
corresponding to MOP(2)to MOP(6): 

 
MOP(2): 

Simulation_Cycle (executive subroutine that advances time and 
controls the flow of data during the simulation) 

 
MOP(3): 

JACOBIAN_SetUp (routine computing the flow and accumulation terms 
in the mass and energy balance equations). 

 
MOP(4): 

SourceSink_Equation_Terms (subroutine determining the 
contribution of sinks/sources to the mass and energy balance equations). 

 
MOP(5): 

Equation_Of_State (routine describing the equation of state of the 
system under investigation and computing all thermophysical properties). 

 
MOP(6): 

Solve_Jacobian_Matrix_Equation (routine that solves the linear 
equations of the Jacobian matrix). 

 
MOP(7): 

If MOP(7) ≠ 0, a printout of the input data is provided in the standard 
output file.  

 
MOP(8): 

It determines how relative permeability and capillary pressure are estimated 
in the presence of solid phases (see discussion of Section 2.12).  The 
following options are available: 
 
=0: Based on the OPM model; capillary pressure scaling based on EPM #1. 
 
=1: Based on EPM #1 model; capillary pressure scaling based on EPM #1. 
 
=2: Based on EPM #2 model; capillary pressure scaling based on EPM #2. 
 
=3: Based on EPM #1 model, no capillary pressure scaling. 
 
=4: Based on EPM #2 model, no capillary pressure scaling. 
 
=9: Based on OPM model, no capillary pressure scaling. 



 

 154  

MOP(9): 
It determines the composition of produced fluid with the MASS option - see 
discussion on the data block GENER in Section 9.  The relative amounts of 
phases are determined as follows: 
 
= 0:  according to relative mobilities in the source element. 
 
= 1: the produced source fluid has the same phase composition as the 

producing element. 
 
MOP(10): 

It controls the selection of the interpolation formula for the composite heat 
conductivity as a function of the various phase saturations.  The following 
options are available 
 

= 0: kθ =kθd + SA kθw −kθd( )+φSIkθI   
 

= 1: kθ =kθd +SA kθw −kθd( )+φSIkθI  
 

= 2: kθ =kθd +φ SAkθβ
β=1,...,Nβ
β≠G

∑  

 

= 3: kθ =kθd +φ SAkθβ
β=1,...,Nβ

∑  

 
Options MOP(10)=0 and MOP(10)=1 are based on extensions of an 
earlier model of Somerton et al. [2003; 2004] and are applicable to two-
phase systems, in which SA represents the saturation of the wetting phase 
(not necessarily the aqueous phase). It is not known under what conditions 
(if any) the linear model of Bejan [1984] (invoked for MOP(10)= 2 and 
3, indicating ignoring and accounting for the gas contribution) is 
applicable, but it is included for completeness.  The option MOP(10)= 3 
is discouraged because of (a) doubts about the validity of the Bejan [1984] 
linear model, (b) the very demanding computations for the estimation of 
the gas thermal conductivity from the real gas property package in 
TOUGH+ v1.5 is demanding, and (c) the small overall contribution to the 
composite thermal conductivity.  
 

MOP(11): 
It provides alternative options for the evaluation of mobility and 
permeability at interfaces.  These are: 
 
= 0:  The mobilities are upstream weighted according to the 

W_upstream factor (see discussion in PARAM.3), and the 
permeability is upstream-weighted. 



 

  155 

= 1: The mobilities are averaged between adjacent elements, and the 
permeability is upstream-weighted. 

 
= 2: The mobilities are upstream weighted, and the permeability is 

harmonic-weighted. 
 
= 3: The mobilities are averaged between adjacent elements, and the 

permeability is harmonic-weighted. 
 
= 4: The mobility and permeability are both harmonic weighted. 
 
For multiphase flow simulations in which the upstream element is not 
known a priori, MOP(11) = 0 or MOP(11) = 2 are the recommended 
options.  The user is strongly cautioned against using other options. 

 
MOP(12): 

It determines the interpolation procedure of the tabular data (involving 
times, flow rates and enthalpies, see Section 8) in time-dependent sources 
and sinks.  The following options are available: 
 
= 0: triple linear interpolation; tabular data are used to obtain 

interpolated rates and enthalpies for the beginning and end of the 
time step; the average of these values is then used. 

 
= 1: step function option; rates and enthalpies are taken as averages of 

the table values corresponding to the beginning and end of the time 
step. 

 
= 2: rigorous step rate capability for time dependent generation data. 
 
A set of times ti and generation rates qi provided in data block GENER is 
interpreted to mean that sink/source rates are piecewise constant and 
change in discontinuous fashion at table points. Specifically, generation is 
assumed to occur at constant rate qi during the time interval [ti, ti+1), and 
changes to qi+1 at ti+1.  The actual rate used during a time step that ends at 
time t, with ti ≤ t ≤ ti+1, is automatically adjusted in such a way that total 
cumulative exchanged mass at time t 

 Q(t) = qdt
0

t

∫ = qj (t j+1 − t j )
j=1

i−1

∑ + qi (t − ti )  

is rigorously conserved.  If tabular data for enthalpies are also provided, an 
analogous adjustment is made to fluid enthalpy to preserve qh dt∫ . 

 
MOP(13): 

Option used in processes involving mechanical dispersion. 
 
MOP(14): 

It specifies the handling of gas solubility in liquid phases according to one 
of the following options: 



 

 156  

= 0: The gas solubility is computed using appropriate equations of 
Henry’s dissolution parameters (T-dependent). 

 
> 0: The gas solubility is computed using fugacities (T- and P-dependent) 
 
For low P and T variations, it is possible to use the MOP(14)=0 option, 
which leads to the use of a P- and T-invariant Henry’s constants for the 
estimation of solubility. When MOP(14)=0, solubility is computed from 
fast parametric equations that describe the effect of temperature.  For 
MOP(14)>0, gas solubility is computed from fugacities and activity 
coefficients. This option is not activated for all TOUGH+ v1.5 application 
options; in several application options, it is not possible to enable the 
computationally intensive MOP(14)>0 option because it is excessive and 
unnecessary.  

 
MOP(15): 

A flag indicating whether conductive heat exchange with impermeable 
confining layers (see Section 7.4) is to be considered. 
 
= 0: The heat exchange is not considered. 
 
= 1: The heat exchange is activated (for grid blocks that have a non-zero 

heat transfer area; see data block ELEME in Section 7.2). 
 
MOP(16): 

It provides automatic time step control.  Time step size will be doubled if 
convergence occurs within ITER ≤ MOP(16) Newton-Raphson iterations.  
It is recommended to set MOP(16) in the range of 2 - 5.  The default 
value is 4. 

 
MOP(17): 

It specifies the handling of binary gas diffusivities according to one of the 
following options: 
 
= 0: The binary gas diffusivity is computed from the method of Fuller et 

al. [1969]. 
 
= 7: The basic estimate of the binary gas diffusivity is computed from 

the method of Fuller et al. [1969], and is then adjusted for high 
pressures using the method of Riazi and Whitson [1993]. 

 
MOP(18): 

A flag determining the method for estimating interface density. 
 
= 0: Perform upstream weighting for interface density. 
 
> 0: Use the average interface density between the two grid blocks.  

However, when one of the two phase saturations is zero, upstream 
weighting is to be performed. 



 

  157 

MOP(19): 
 This is the parameter that controls the simulation output. When 

MOP(19)<8, a standard ASCII file output (as described in general terms 
in all the User’s Manuals of the individual TOUGH+ v1.5 application 
options) is produced.  Depending on the value of the OutputOption 
parameter in block PARAM.1, this output can includes pressure, 
temperature and saturation distribution of the various phases, 
concentrations, thermophysical properties, and primary and secondary 
variables.  
 
When MOP(19)=8, an additional file containing the most important 
properties are also printed in a format that conforms to the requirements of 
the TecPlot package [TecPlot, 2003], and is suitable for most other plotting 
and graphing packages.  The name of this file is Plot_Data_Elem, and 
it stores the element-specific properties and parameters for plotting and 
graphing. For MOP(19)=9, the plotting files and a truncated standard 
output file are produced (listing only mass balances at the prescribed 
printout times). 

 
MOP(20): 

Flag determining whether the validity of the initial conditions is to be 
checked.  The options are: 
 
< 9: The initial conditions are checked to ensure physically meaningful 
and non-contradictory state indices and the corresponding primary variable 
values (default). 
 
= 9: No checking of initial conditions is performed. 
 
This option may be useful in continuation runs involving large grids, in 
which case checking of the initial conditions (as provided by the SAVE file) 
is both time consuming (in terms of computation time) and generally 
unnecessary.  In general, the user is discouraged from bypassing the 
checking process. 
 

MOP(21): 
A computational parameter to selects the linear equation solver (see 
Section 10.2) from among the following options: 
 
= 0: defaults to MOP(21) = 3. 
 
= 1: LUBAND, banded direct solver using LU decomposition. 
 
= 2: DSLUBC, bi-conjugate gradient solver with preconditioner. 
 
= 3: DSLUCS (default), Lanczos-type preconditioned bi-conjugate 

gradient solver with preconditioner. 
 



 

 158  

= 4: DSLUGM, generalized minimum residual preconditioned conjugate 
gradient solver with preconditioner. 

 
= 5: DLUSTB, stabilized bi-conjugate gradient solver with 

preconditioner. 
 
All conjugate gradient solvers use incomplete LU-factorization as a default 
preconditioner. Other preconditioners may be chosen by means of the data 
block SOLVR (see Section 10.2). 
 

MOP(22), MOP(23), MOP(24):  
The function of these variables are described in the individual User’s 
Manuals of the TOUGH+ v1.5 application options (EOS) in which they are 
active/enabled.  

 
BaseDiffusionCoef: 

The base gas diffusion coefficient [m2] 
 
DiffusionExpon: 

Parameter (exponent) describing the temperature dependence of gas phase 
diffusion coefficient – see Equation (6.4). 

 

DiffusionStrength: 
Parameter (optional) describing the effective strength of enhanced vapor 
diffusion; if set to a non-zero value, it will replace the parameter group 
φτ0τβ for vapor diffusion – see Equations (2.15) and (2.17), and Section 
6.4.1. 

 
SAVE_frequency: 

Frequency of writing and saving the SAVE file.  This feature avoids data 
loss if the simulation is interrupted.  A value between 100 and 500 is 
recommended. When SAVE_frequency = 0, the SAVE file is written 
and stored only once at the conclusion of the simulation. 
 

TimeSeries_frequency: 
Frequency of writing and saving the data in the various time-series output 
files tracking subdomains, interfaces and/or source-sink (well) groups (see 
Sections 10.3 to 10.5).  This feature avoids the creation of very large time 
series files in long simulations that involve many thousands of time steps.  
Note that mass-balance related calculations related to some of the 
parameters included in the time series output files are conducted at the 
conclusion of each time step, but the results are printed only when specified 
by this parameter.  The default value of TimeSeries_frequency = 1. 

 
 



 

  159 

Record PARAM.2 
 

Format (4E10.4, A5, 5X, 3E10.4) 
 
TimeOrigin, SimulationTimeEnd, 
InitialTimeStep, MaxTimeStep, TrackElemName, 
gravity, Dt_reducer, scale 

 
These parameters are defined as follows:  
 
TimeOrigin: 

A real variable indicating the origin of time (starting time) in the simulation 
[sec].  The default is TimeOrigin = 0.0E0. 

 
SimulationTimeEnd: 

A real variable indicating the time [sec] at which simulation should stop.  
The default is infinite.  

 
InitialTimeStep: 

A real variable specifying the initial time step size [sec].  If 
InitialTimeStep<0, then the program proceeds to read NumDts = 
INT(ABS(InitialTimeStep)) records with time step information.  

 
MaxTimeStep: 

A real variable defining the upper limit for time step size [sec].  The default 
is infinite. 

 
TrackElemName: 

A character variable providing the name of an element, the behavior of 
which is to be tracked over time by printing a short printout of the 
evolution of its key conditions and properties after each time step.  
 

Gravity: 
A real variable specifying the magnitude [m/sec2] of the gravitational 
acceleration vector.  Blank or zero gives "no gravity" calculation. 

 
Dt_reducer: 

A real variable defining the factor by which time step is reduced in case of 
convergence failure or other problems.  The default value is 4.   

 
Scale: 

The scale factor (a real variable) by which the size of the mesh is adjusted 
(default = 1.0). 

 
 



 

 160  

Record PARAM.3 
 

Format (7E10.4, 2X, A3, 3E10.4)  
 

rel_convergence_crit, abs_convergence_crit,  
U_p, W_upstream, W_NRIteration,  
derivative_increment, W_implicitness, 
DefaultStateIndex, P_overshoot, T_overshoot, 
S_overshoot 
 

These parameters are defined as follows:  
 
rel_convergence_crit: 

Convergence criterion for relative error (real variable, parameter ε1, see 
Equation (3.8), default = 10-5). 

 
abs_convergence_crit: 

Convergence criterion for absolute error (real variable, parameter ε2, see 
discussion of Equation (3.9), default = 1). 

 
U_p:  Not used in TOUGH+ v1.5; maintained only to ensure compatibility with 

older TOUGH2 [Pruess et al., 1999] input files. 
 
W_upstream: 

The upstream weighting factor (real variable) for computing mobilities and 
enthalpies at interfaces.  The default W_upstream = 1.0 is strongly 
recommended for multi-phase flows (0 ≤ W_upstream ≤ 1). 

 
W_NRIteration: 

A weighting factor 0 < W_NRIteration ≤ 1 (real variable) determining 
the level of updating of the solutions based on the results of the 
Newton/Raphson iteration.  The default W_NRIteration = 1.0E0 is 
recommended. 

derivative_increment: 
The increment factor (a real variable) for numerically computing 
derivatives.  The default value is derivative_increment = 10-m/2, 
where m, evaluated internally, is the number of significant digits of the 
floating point processor used.  For 64-bit arithmetic, 
derivative_increment ≈ 10-8. 

 
W_implicitness: 

A weighting factor 0 < W_implicitness ≤ 1 (a real variable) describing 
the level of implicitness in the solutions.  The default W_implicitness 
= 1.0 is recommended. 

 
DefaultStateIndex: 

The default state identifier (a character variable) of the general initial 
conditions that apply uniformly over the entire if not amended by the data 
blocks/files describing initial conditions in the domain (see Section 8). 



 

  161 

P_overshoot: 
A real variable specifying the level of overshoot (defined as a fraction) 
allowed in the computation of pressure if P is used as a criterion for 
triggering phase and state changes.  When P_overshoot = 0.0e0 
(default), the P-triggered phase and state changes are at their most accurate 
and sensitive (hair-trigger).   

 
This variable is introduced to alleviate potential problems caused by 
narrow oscillations about phase equilibrium lines that are possible under 
certain conditions.  In most cases, a value of 10-6 ≤ P_overshoot ≤ 10-4 
is sufficient if a hair trigger causes problems. If P_overshoot < 0 or 
P_overshoot ≥ 5.0x10-2, it is rest internally to its default value (=0). 

 
T_overshoot: 

A real variable specifying the level of overshoot (defined as a fraction) 
allowed in the computation of temperature if T is used as a criterion for 
triggering phase and state changes.  The definitions, defaults, limits and 
application are entirely analogous to those of P_overshoot.  

 
S_overshoot: 

A real variable specifying the level of overshoot (defined as a fraction) 
allowed in the computation of saturations if thearese used criteria for 
triggering phase and state changes.  The definitions, defaults, limits and 
application are entirely analogous to those of P_overshoot. 

 
 
Record PARAM.4  
 
This record introduces a set of primary variables that are used as default initial 
conditions for all grid blocks that are not assigned by means of data blocks 
INDOM, INCON or EXT-INCON. The format and date read here are: 
 

Format (6E20.13) 
 

default_initial_cond(i), i=1,NumCom+1 
 
As is self evident, the real variables default_initial_cond(i) describe the 
initial conditions of the state defined by StateIndex, as defined by the 
corresponding primary variables.  When more than six primary variables are 
needed, more than one line (record) must be provided.  See Section 3.1 for 
description of potential sets of state indices and primary variables. 

 



 

 162  

10.2. Modification of Computational Parameters 
During the Course of a TOUGH+ Simulation 

 
It is possible to modify the computational parameters described in Section 10.1 in the 

course of a TOUGH+ v1.5 simulation without having to interrupt the execution.  This 

feature is particularly useful in simulations involving large grids and a large number of 

timesteps (Max_NumTimeSteps) when the user observe solution convergence and time 

advancement that can be improved by varying some of these computational parameters.  

The process is controlled by the parameter SAVE_frequency (see Section 10.1, 

record PARAM.1) that determines the frequency of updating the SAVE file.  At the time of 

updating the SAVE file, TOUGH+ also interrogates the directory of execution for the 

presence of a file called Parameter_Update_File.  If no such file exists, there is no 

updating of the computational parameters. 

If a file Parameter_Update_File exists, then it is opened and the following 

data are read: 

Record UPDATE.1 
 

This record includes the single character variable UpdateHeader that is read 
using a free format.  The TOUGH+ computational parameters are updated only 
when UpdateHeader = 'Update_Simulation_Parameters'.  
Otherwise, the Parameter_Update_File is closed and the simulation 
continues without any parameter updating. 
 
 
Record UPDATE.2 

 
This record includes a set of real variables (computational parameters) that are to 
be updated.  The data in this record are read using a NAMELIST format, and may 
occupy one or more lines (a choice left to the user).  As already discussed (Section 
8.1), NAMELIST-based formats are a feature of FORTRAN 95/2003 and provide 
unique power and flexibility, allowing (a) assignment of updated values to any 
subset of the parameters included in the NAMELIST definition, (b) arbitrary order, 
(c) free formats of individual parameter values, (d) inclusion of comments, etc.  



 

  163 

Future versions of TOUGH+ will involve NAMELIST-based formats to read most 
input data. 
 
The namelist in this record is named Real_Parameters_To_Update, and 
includes the following real parameters: 
 

(1) SimulationTimeEnd 
(2) MaxTimeStep 
(3) rel_convergence_crit 
(4) abs_convergence_crit 
(5) P_overshoot 
(6) T_overshoot 
(7) S_overshoot 

 
The corresponding TOUGH+ computational parameters will be updated if values 
are provided for any of these computational parameters.  The structure of the 
Real_Parameters_To_Update namelist (and its use as an input format) is 
best illustrated in the example of Figure 10.1. 
 
 
Record UPDATE.3 

 
This record includes a set of integer computational parameters that are to be 
updated.  The data in this record are read using a NAMELIST format. This namelist 
is named Integer_Parameters_To_Update, and includes the following 
integer parameters: 
 

(1) Max_NumTimeSteps 
(2) Max_NumNRIterations 
(3) MOP_16 
(4) SAVE_frequency 
(5) TimeSeries_frequency 

 
The corresponding TOUGH+ integer parameters will be updated if values are 
provided for any of these computational parameters.  It is possible to stop a 
simulation by providing a Max_NumTimeSteps value that is smaller than its 
current value in the code.  Then, the simulation will be halted upon reading the 
smaller Max_NumTimeSteps value while at the same time preserving the data in 
the SAVE file, which would be lost if the execution is interrupted.  
 
The structure of the Integer_Parameters_To_Update namelist (and its 
use as an input format) is best illustrated in the example of Figure 10.1. 
 
Upon reading the contents of the Parameter_Update_File and updating the 
computational parameters, TOUGH+ v1.5 (a) prints a prominent message in the 
standard output file that provides all the new parameter values, and (b) replaces the 



 

 164  

UpdateHeader = 'Update_Simulation_Parameters' value with the 
value UpdateHeader = '==> Completed Update # n', where n is the 
number of the update.  Because UpdateHeader has no longer the value that will 
cause TOUGH+ to read the subsequent data, this substitution prevents multiple 
readings of the same Parameter_Update_File while keeping track of the 
number of updates and preserving the evolution of the updated parameters in the 
input file.  Note that several updates are possible in the course of a long simulation.  
To accomplish this, the data for the next update are simply added to the top of the 
Parameter_Update_File file without erasing the updating history up to this 
point.  The process is clearly illustrated in the example of Figure 10.2.  

 
 
 
 
'Update_Simulation_Parameters'      ! UpdateHeader  
    &Real_Parameters_To_Update    ! Namelist #1 
        SimulationTimeEnd    = 5.0d6  , 
        MaxTimeStep          = 3600.  , 
        rel_convergence_crit = 1.5d-5 , 
        P_overshoot          = 1.0e-4 , 
        S_overshoot          = 1.0e-5  
        /                      ! Not updated: abs_convergence_crit, T_overshoot 
    &Integer_Parameters_To_Update   ! Namelist #2 
        Max_NumTimeSteps    =  500   ,   
        Max_NumNRIterations =  10000 , 
        MOP_16              =  4     ,  
        SAVE_frequency      =  100   , 
        TimeSeries_frequency = 5      
        / 

 
Figure 10.1.  An example of a Parameter_Update_File for parameter updating in the course 
of a TOUGH+ v1.5 simulation.  Within the namelists (Real_Parameters_To_Update and 
Integer_Parameters_To_Update), parameters can be entered in any order, data are read 
using any kind of appropriate format, only the needed parameters are included, and comments 
can be added. 



 

  165 

 
 
 
Update_Simulation_Parameters    
    &Real_Parameters_To_Update       
        SimulationTimeEnd    = 3.0d7   
        /   
    &Integer_Parameters_To_Update   
        Max_NumTimeSteps    =  2000       
        / 
==> Completed Update #  3             ! 3rd Update             
    &Real_Parameters_To_Update      
        SimulationTimeEnd    = 2.0d7  , 
        MaxTimeStep          = 8.64e4 , 
        rel_convergence_crit = 2.5d-5 , 
        /   
    &Integer_Parameters_To_Update   
        Max_NumTimeSteps    =  1500  ,   
        Max_NumNRIterations =  20000   
        / 
==> Completed Update #  2             ! 2nd Update             
    &Real_Parameters_To_Update      
        SimulationTimeEnd    = 8.0d6  , 
        MaxTimeStep          = 7200.  , 
        rel_convergence_crit = 2.0d-5 , 
        P_overshoot          = 1.0e-5   
        /   
    &Integer_Parameters_To_Update   
        Max_NumTimeSteps    =  1000  ,   
        MOP_16              =  5     ,  
        SAVE_frequency      =  200   , 
        TimeSeries_frequency = 5      
        / 
==> Completed Update #  1             ! 1st Update             
    &Real_Parameters_To_Update      
        SimulationTimeEnd    = 5.0d6  , 
        MaxTimeStep          = 3600.  , 
        rel_convergence_crit = 1.5d-5 , 
        P_overshoot          = 1.0e-4 , 
        S_overshoot          = 1.0e-5  
        /   
    &Integer_Parameters_To_Update   
        Max_NumTimeSteps    =  500   ,   
        Max_NumNRIterations =  10000 , 
        MOP_16              =  4     ,  
        SAVE_frequency      =  100   , 
        TimeSeries_frequency = 5      
        / 

 

 
Figure 10.2.  An example of a Parameter_Update_File indicating three completed parameter 
updates, in addition to another one (at the top of the file) that has not yet been executed. 

 



 

 166  

10.3. Data Block SOLVR 

This (optional) block specifies parameters used by linear equation solvers. 
Record SOLVR.1 

 
Format(I1,2X,A2,3X,A2,2E10.4) 
 
MatrixSolver, Z_preprocessing,  
O_preprocessing, Max_CGIterationRatio, 
CG_convergence_crit 
 

These parameters are defined as follows:  
 

MatrixSolver: 
This integer variable selects the linear equation solver from among the 
following options: = 1: LUBAND 

= 2: DSLUBC 
= 3: DSLUCS 
= 4: DSLUGM 
= 5: DLUSTB 

 
Z_preprocessing: 

A character variable that determines the type of  
Z-preconditioning [Moridis and Pruess, 1998]. Regardless of user 
specifications, Z-preprocessing will only be performed when iterative 
solvers are used (2 ≤ MatrixSolver ≤ 5), and if there are zeros on the 
main diagonal of the Jacobian matrix.  The following options are available: 

 
='Z0': No Z-preprocessing; default for NumEqu=1 and 

MatrixSolver=1 
 

='Z1': Replace zeros on the main diagonal by a small near-zero constant 
(1.0E-25; default for NumEqu>1 and for 
1<MatrixSolver≤5  

 
='Z2': Make linear combinations of equations for each grid block to 

produce non-zero main diagonal entries 
 

='Z3': Normalize equations, followed by Z2 
 

='Z4': Same as in O_preprocessing='O4' 
 

O_preprocessing: 
A character variable that determines the type of O-preconditioning 
[Moridis and Pruess, 1998].  It can take the following possible values: 
 



 

  167 

='O0': No O-preprocessing; default for NumEqu=1 and 
MatrixSolver=1 

 
='O1': Elimination of lower half of the main-diagonal submatrix with 

center pivoting 
 
='O2': O1 + Elimination of upper half of the main-diagonal submatrix 

with center pivoting 
 
='O3': O2 + Normalization; results in unit main-diagonal submatrices 
 
='O4': Pre-processing which results in unit main-diagonal submatrices 

without center pivoting 
 
Max_CGIterationRatio: 

An integer variable that specifies the maximum number of CG iterations as 
a fraction of the total number of equations  
(0 < Max_CGIterationRatio ≤ 1; default is 
Max_CGIterationRatio = 0.1) 

 
CG_convergence_crit: 

A real variable that specifies the convergence criterion for the CG iterations 
(1.0E-12≤CG_convergence_crit≤1.0E-6; the default 
CG_convergence_crit=1.0E-6) 

 
The solver DLUSTB implements the BiCGSTAB(m) algorithm [Sleijpen and 

Fokkema, 1993], an extension of the BiCGSTAB algorithm of van der Vorst (1992). 

DLUSTB provides improved convergence behavior when iterations are started close to the 

solution, i.e., near steady state. The preconditoning algorithms can cope with difficult 

problems in which many of the Jacobian matrix elements on the main diagonal are zero. 

An example was given in Pruess et al. [1999; 2012] in “two-waters” problems in which 

typically 2/3 of the elements in the main diagonal are zero. Our tests show that this type of 

problem can be solved by means of Z2 or Z3 preconditioning [Moridis and Pruess, 1998]. 



 

 168  

10.4. Discussion on Linear Equation Solvers 

The computational work to be performed in the course of a TOUGH+ v1.5 simulation 

includes evaluation of thermophysical properties for all grid blocks, assembly of the 

vector of residuals and the Jacobian matrix, and solution of the linear equation system for 

each Newton-Raphson iteration step. Except for small problems with just a few grid 

blocks, the most computationally intensive of these different tasks is the solution of the 

linear equation system. TOUGH+ v1.5 offers a choice of direct or iterative methods for 

linear equation solution; technical details of the methods and their performance can be 

found in Moridis and Pruess [1998]. 

The most reliable linear equation solvers are based on direct methods, while the 

performance of iterative techniques tends to be problem-specific and lacks the 

predictability of direct solvers. The robustness of direct solvers comes at the expense of 

large storage requirements and execution times that typically increase with problem size N 

(= number of equations solved) proportional to N3. In contrast, iterative solvers have 

much lower memory requirements, and their computational work will increase much less 

rapidly with problem size, approximately proportional to Nω, with ω ≈ 1.4 - 1.6 [Moridis 

and Pruess, 1995]. For large problems and especially 3-D problems with several thousand 

grid blocks or more, iterative conjugate gradient (CG) type solvers are therefore the 

method of choice.  

The default linear equation solution technique in TOUGH+ uses DSLUCS, a 

Lanczos-type bi-conjugate gradient solver, with incomplete LU-factorization as 

preconditioner. Users need to beware that iterative methods can be quite “fickle” and may 

fail for matrices with special features, such as many zeros on the main diagonal, large 



 

  169 

numerical range of matrix elements, and nearly linearly dependent rows or columns. 

Depending on features of the problem at hand, appropriate matrix preconditioning may be 

essential to achieve convergence. Poor accuracy of the linear equation solution will lead to 

deteriorated convergence rates for the Newtonian iteration, and an increase in the number 

of iterations for a given time step. In severe cases, time steps may fail with residuals either 

stagnating or wildly fluctuating. Information on the convergence of the linear equation 

solution is written to disk file LINEQ, which may be examined with any text editor. Users 

experiencing difficulties with the default settings are encouraged to experiment with the 

various solvers and preconditioners included in the TOUGH+ package. 

 



 

 170  

 
 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 



 

  171 

 
 

 

11.  Output Specifications 
 

 

In this section, the various primary and secondary variables that may be provided as 

outputs from TOUGH+ v1.5 are discussed. In addition, data blocks are described for 

specifying output data, such as the times at which data are printed (data block TIMES), 

and for defining subdomains, interfaces and groups of sinks and sources (optional data 

blocks SUBDOMAINS, INTERFACES and SS_GROUPS, respectively) where important 

variables are to be monitored and tracked by printing time-series data in external output 

files.  With the exception of data block TIMES that was available in the TOUGH2 family 

of codes [Pruess et al., 1991; 2012], these are new TOUGH+ v1.5 output capabilities 

unavailable to any earlier version of the code. This section also includes a few comments 

on error messages and warnings in the TOUGH+ v1.5 family of codes. 

 



 

 172  

11.1  Output of Primary and Secondary Variables 

The TOUGH+ v1.5 code can provide the following output:  

1. The pressure, temperatures, saturations, and equilibrium pressure 
distributions.  

2. The mass fractions of the various components in the various phases.  
3. Flows and velocities of the phases across the gridblock interfaces 

(connections) of the domain. 
4. The primary variables and their changes in the elements of the domain.  
5. Capillary pressures and relative permeabilities.  
6. Densities, viscosities (when mobile), and enthalpies of the various phases.  
7. Dissociation reaction rates and the corresponding heat of dissociation.  
8. Volume and mass balances of the phases and components in the domain.  
9. Production rates and production composition at wells.  
10. Time series of the evolution of the most important variables at user-

specified elements, connections and sources/sinks.  
 

Of those possible outputs, (1), (8), (9), and (10) are always printed in the standard 

TOUGH+ v1.5 output. The amount of the output is controlled by the parameter 

OutputOption in the data block PARAM. In keeping with the TOUGH2 convention, if 

the OutputOption values are increased by 10, printouts will occur after each iteration 

(not just after convergence).  The specific outputs are discussed in detail in the User’s 

Manuals of the various TOUGH+ application options.  

 

11.2. Data Block TIMES 

This optional block permits the user to obtain printout at specified times. This printout will 

occur in addition to printout specified in record PARAM.1. 

Record TIMES.1 
 
Format (2I5, 2E10.4) 
 
NumPrintTimes, Max_NumPrintTimes, 
TimeStepMax_PostPrint, PrintTimeIncrement 



 

  173 

These parameters are defined as follows:  
 

NumPrintTimes: 
The number of times provided on records TIMES.2, TIMES.3, etc., (see 
below; restriction: NumPrintTimes ≤ 100). 

 
Max_NumPrintTimes: 

The total number of times at which an output is desired  
(NumPrintTimes ≤ Max_NumPrintTimes ≤ 100; default is 
NumPrintTimes = Max_NumPrintTimes). 

 
TimeStepMax_PostPrint: 

The maximum time step size after any of the prescribed times have been 
reached (default is infinite). 

 
PrintTimeIncrement : 

Time increment for times with indices NumPrintTimes, 
NumPrintTimes+1, ..., Max_NumPrintTimes. 

 
 

Record TIMES.2, TIMES.3, etc. 
Format (8E10.4) 
(PrintTime(i), i = l, NumPrintTimes) 

 
PrintTime(i): 

A list of times (in ascending order) at which printout is desired.  Note that, 
if any PrintTime(i+1)< PrintTime(i), the resulting negative 
timestep forces the simulation to stop. 

 

11.3. Data Block SUBDOMAINS 

This optional data block is a new TOUGH+ v1.5 feature that is unavailable to any earlier 

version of the code.  It allows monitoring of the evolution of the pore volume-averaged 

and properties and conditions in a set of subdomains (subsets) of the global grid (domain).  

The time series results are written in a number of separate output files that are equal to the 

number of the subdomains (a file for each subdomain), and are named according to the 

convention SubdomName_Time_Series, where 'SubdomName' is the name of the 



 

 174  

subdomain under observation. If the keyword 'SUBDOMAINS' is present in the input 

file, then the following data are read using NAMELIST formats: 

Record SUBDOMAIN.1 
 

This record includes general data describing the number of subdomains to be 
monitored.  The namelist in this record is named Subdomain_General_Info 
and has the general form: 
 

&Subdomain_General_Info  number_of_subdomains = x /, 
 
i.e., it contains only the following single parameter: 
 
number_of_subdomains: 

An integer parameter describing the number of subdomains on which time 
series data are to be obtained.  There is no upper limit in the number of 
subdomains that can be defined.   
 
NOTE: The number_of_subdomains parameter must be set to a 
positive value for the simulation to continue. 
 

The structure of the Subdomain_General_Info namelist and its use as the 
input format in the data block SUBDOMAINS is best illustrated in the examples of 
Figure 11.1. 
 
 
Record SUBDOMAIN.2 

 
The namelist in this record provides general information on each of the 
subdomains. A total of number_of_subdomains such records/namelists must 
be provided.  This namelist is named Individual_Subdomain_Specifics, 
has the general form 
 

&Individual_Subdomain_Specifics subdomain_name    = x,  
                                number_of_regions = x /  

 

and includes the following parameters: 
 
subdomain_name: 

The subdomain name is described by this character variable of a maximum 
of 8 characters.  Upon reading the variable, the TOUGH+ code creates an 
output file named SubdomName_Time_Series, where  
'SubdomName' is the value of subdomain_name.  If this variable is 
omitted in the input, then the TOUGH+ code assigns internally the name 
SubdomName = 'SubDomNN', where 'NN' is the 2-digit subdomain 
number in the subdomain definition sequence.  
 
 



 

  175 

number_of_regions: 
An integer parameter specifying the number of regions of which the 
subdomain is composed. NOTE: The number_of_regions parameter 
must be set to a positive value for the simulation to continue. 

 

The structure of the Individual_Subdomain_Specifics namelist and its 
use as an input format in the data block SUBDOMAINS is best illustrated in the 
examples of Figure 11.1. 
 
 
Record SUBDOMAIN.2.1 

 
The namelist in this record is named Region_Specifics.  It provides 
information that allows the definition of a region within a subdomain and 
identification of the elements belonging to it.  A total of number_of_regions 
such records must by provided in order to fully define the subdomain.  In its most 
complete form it has the following structure: 
 

&Region_Specifics  definition_mode         = 'x',  
                   number_of_elements      =  x,   
                   first_element_number    =  x,   
                   first_element_name      = 'xxxxx', 
                   element_sequence_stride =  x,   
                   format_to_read_data     = 'x', 
                   region_shape            = 'x',  
                   Xmin                    =  x.xEx, 
                   Xmax                    =  x.xEx, 
                   Ymin                    =  x.xEx, 
                   Ymax                    =  x.xEx, 
                   Zmin                    =  x.xEx, 
                   Zmax                    =  x.xEx, 
                   Rmin                    =  x.xEx, 
                   Rmax                    =  x.xEx, 
                   top_cylinder_center_xyz =  x.xEx, 
                   bot_cylinder_center_xyz =  x.xEx, 
                   sphere_center_xyz       =  x.xEx 
                   / 

 

The great advantage of the use of namelists is that only their necessary components 
may be used and be assigned values; the rest can be omitted or commented-out.  
Additionally, the namelist components can be listed in any order.  The parameters 
in the Region_Specifics namelist are defined as follows:   
 
definition_mode: 

This character variable (up to 10 characters in length) describes the method 
by which the region is defined.  It can take the following possible values: 
 
='Geometry': The region is defined by its geometric boundaries 
 
='Sequence': The region is defined by a sequence of element numbers 
 



 

 176  

='NumberList': The region is defined by a list of element numbers 
 
='NameList': The region is defined by a list of element names 

 
number_of_elements: 

This integer parameter is needed as an input when definition_mode 
≠'Geometry' and describes the number of elements in the region. 

 
format_to_read_data: 

This character variable (up to 50 characters long) is needed as an input 
when definition_mode ='NumberList' or 'NameList', and 
describes the format to read the list of number_of_elements element 
numbers or names.  The number_of_elements elements to be read 
according to the format format_to_read_data are listed 
immediately after the end of the namelist (see examples of Figure 11.1). 
 
NOTE: no other parameters of those in the namelist are needed if 
definition_mode ='NumberList' or 'NumberList'.  

 
first_element_number, first_element_name,  
element_sequence_stride: 

These integer parameters are needed as inputs when definition_mode 
='Sequence'.  Using the provided first_element_number or 
determining it from the first_element_name, a total of 
number_of_elements element numbers are determining using the 
element_sequence_stride.  
 
NOTE: no other parameters of those in the namelist are needed if 
definition_mode ='Sequence'.  

 
region_shape: 

This character variable (up to 9 characters in length) is needed as an input 
when definition_mode ='Geometry' and describes the shape of 
the region that is about to be defined.  The following self-explanatory 
options are available: 
 
='Rectangle':  This option can only be used in Cartesian grids, i.e., if 
coordinate_system = 'Cartesian' (see Section 5.1).  
 
='Cylinder':  This option can only be used for either Cartesian or 
cylindrical grids.   
 
='Sphere':  This option can only be used for either Cartesian or 
cylindrical grids.   

 



 

  177 

If region_shape = 'Rectangle' and coordinate_system = 
'Cartesian', then the following parameters must be included in the 
namelist: 
  

Xmin, Xmax, Ymin, Ymax, Zmin, Zmax 
 
These real parameters indicate the range (minimum and maximum) of the 
region along the x-, y- and z-axis of the Cartesian coordinate system, 
respectively.  
 
If region_shape = 'Cylinder' and coordinate_system = 
'Cartesian', then the following parameters must be included in the 
namelist:  
 

Rmin, Rmax, top_cylinder_center_xyz,  
bot_cylinder_center_xyz 

 
The real parameters Rmin and Rmax are the minimum and maximum 
radii of the cylindrical region. The 1D arrays 
top_cylinder_center_xyz and bot_cylinder_center_xyz 
are of size 3.  These are the (x,y,z) coordinates of the centers of the top and 
bottom circular surfaces of the cylinder, respectively.  
 
If region_shape = 'Cylinder' and coordinate_system = 
'Cylindrical', then the following parameters must be included in the 
namelist: 
  

Rmin, Rmax, Zmin, Zmax 
 
These real parameters indicate the range (minimum and maximum) of the 
region along the r- and z-axis of the Cartesiancylindrical coordinate system, 
respectively.  
 
If region_shape = 'Sphere' and coordinate_system = 
'Cartesian' or coordinate_system = 'Cylindrical', then 
the following parameters must be included in the namelist: 
  

Rmin, Rmax, sphere_center_xyz 
 
The real parameters Rmin and Rmax are the minimum and maximum 
radius of the sphere. The (x,y,z) coordinates of the center of the sphere are 
stored in the elements of the real array top_cylinder_center_xyz 
of size 3.  Of those three values, only the 3rd (corresponding to the z-
coordinate of the center of the sphere) one is used when 
coordinate_system = 'Cylindrical'. 
 
NOTE: no other parameters of those in the namelist are needed if 
definition_mode ='Geometry'.  



 

 178  

The use of these inputs in the SUBDOMAINS datablock is best illustrated in the 
examples of Figure 11.1. 
 
NOTE #1: It is possible to combine regions of very different geometries to create 
subdomains that are very irregular in shape.  Each one of these regions can be 
defined independently, i.e., by using different definition_mode values. 
 
NOTE #2: All the various parameter combinations and permutations in the user-
supplied namelist Region_Specifics must be defined for the simulation to 
continue.  
 
NOTE #3: All the regions within the subdomain must be defined.  A total of 
number_of_regions records (one for each region of the subdomain) must be 
provided in SUBDOMAIN.2.1.  Thus, if we define two subdomains, the first with 
3 regions and the second with 4, then we need to provide the following data: 
For the 1st Subdomain: One SUBDOMAIN.2 record, and 3 SUBDOMAIN.2.1 
records.  For the 2nd Subdomain: One SUBDOMAIN.2 record, and 4 
SUBDOMAIN.2.1 records. 

 
 
 
 

11.4. Data Block INTERFACES 

This optional data block is a new TOUGH+ v1.5 feature that is unavailable to any earlier 

version of the code.  It allows monitoring the flow – instantaneous and cumulative – 

through user-defined interfaces (composed of smalled individual surfaces).  The time 

series results are written in a number of separate output files that are equal to the number 

of the interfaces (a file for each interface), and are named according to the convention 

InterfName_Time_Series, where 'InterfName' is the name of the interface 

under observation.  The InterfName_Time_Series files are important in continuatin 

runs: information from the last TOUGH+ simulation is gleaned from the older files and is 

used to seamlessly continue the computations of the cumulative mass flows through the 

interfaces. 

If the keyword 'INTERFACES' is present in the input file, then the following 

data are read using NAMELIST formats: 



 

  179 

 

SUBDOMAINS  
&Subdomain_General_Info  number_of_subdomains = 1 / 
   &Individual_Subdomain_Specifics  subdomain_name    = 'Zone1', 
                                    number_of_regions = 1 / 
      &Region_Specifics  definition_mode = 'Geometry',    
                         region_shape    = 'Rectangle',    
                         Xmin =  2.0e-1, Xmax = 4.0e-1,    
                         Ymin = -1.0e8,  Ymax = 1.0e8,     
                         Zmin = -1.0e8,  Zmax = 1.0e8,     
                       ! Rmin, Rmax,                   ! Not used – commented out 
                       ! top_cylinder_center_xyz,      ! Not used – commented out 
                       ! bot_cylinder_center_xyz,      ! Not used – commented out 
                         / 
 
 
SUBDOMAINS  
&Subdomain_General_Info  number_of_subdomains = 1 / 
   &Individual_Subdomain_Specifics  subdomain_name = 'Zone8', 
                                 number_of_regions = 2  
                                 / 
      &Region_Specifics  definition_mode = 'Sequence',    
                         number_of_elements      = 5,  
                         first_element_number    = 8,    
                         element_sequence_stride = 1 
                         / 
      &Region_Specifics  definition_mode = 'Sequence',    
                         number_of_elements      =  5,  
                         first_element_name      = 'A0010',     
                         element_sequence_stride = 1 
                      / 

 
 
&Subdomain_General_Info  number_of_subdomains = 1 / 
   &Individual_Subdomain_Specifics  subdomain_name = 'Zone5', 
                                    number_of_regions = 3 / 
      &Region_Specifics  definition_mode = 'NumberList',    
                         number_of_elements = 5,          
                         format_to_read_data = '*', 
                         / 
8 9 10 11 12     
      &Region_Specifics  definition_mode = 'NameList',    
                         number_of_elements = 5,          
                         format_to_read_data = '*', 
                         / 
'A0012'  'A0013'  'A0014'  'A0015'  'A0016'   
         &Region_Specifics  definition_mode = 'Geometry',    
                            region_shape    = 'Cylinder' 
                            Rmin =  2.0e-1, Rmax = 1.0e00,    
                         !  Ymin = -1.0e8,  Ymax = 1.0e8,    ! Not used – commented out 
                            Zmin = -1.0e8,  Zmax = 1.0e8,     
                         !  top_cylinder_center_xyz,          ! Not used – commented out 
                         !  bot_cylinder_center_xyz           ! Not used – commented out 
                           / 

 
Figure 11.1.  Examples of the SUBDOMAINS data block for tracking the evolution of volume-
averaged properties and conditions in specified subdomains.  This data block uses namelist-based 
formats for data inputs. 
 
 
 
 



 

 180  

Record INTERFACE.1 
 

This record includes general data describing the number of interfaces to be 
monitored. The namelist in this record is named Interface_General_Info 
and has the general form: 
 

&Interface_General_Info  number_of_interfaces = x /, 
 
i.e., it contains only the following single parameter: 
 
number_of_interfaces: 

An integer parameter describing the number of interfaces at which time 
series data are to be obtained.  There is no upper limit in the number of 
interfaces that can be defined.   
 
NOTE: The number_of_interfaces parameter must be set to a 
positive value for the simulation to continue. 
 

The structure of the Interface_General_Info namelist and its use as the 
input format in the data block INTERFACES is best illustrated in the examples of 
Figure 11.2. 
 
 
Record INTERFACE.2 

 
The namelist in this record provides general information on each of the interfaces. 
A total of number_of_interfaces such records/namelists must be provided.  
This namelist is named Individual_Interface_Specifics, has the 
general form 
 
&Individual_Interface_Specifics interface_name         ='x', 
                                number_of_surfaces     = x, 
                                sign_of_flow_direction ='x'/ 
 
and includes the following parameters: 
 
interface_name: 

The interface name is described by this character variable of a maximum of 
8 characters.  Upon reading the variable, the TOUGH+ v1.5 code creates an 
output file named InterfName_Time_Series, in which 
'InterfName' is the value of interface_name.  If this variable is 
omitted in the input, then the TOUGH+ code assigns internally the name 
InterfName = 'IntrFcNN', where 'NN' is the 2-digit interface 
number in the interface definition sequence.  

 



 

  181 

number_of_surfaces: 
An integer parameter specifying the number of individual surfaces of which 
the interface is composed. NOTE: The number_of_surfaces 
parameter must be set to a positive value for the simulation to continue. 

 
sign_of_flow_direction: 

A character parameter of length 3 that defines how the sign of the flow 
(positive or negative) is to be treated in reporting the information.  It can 
take the following possible values: 
 
='ABS': The absolute value of the flows at the surface connections is 

used.  This is necessary in cases where the arbitrariness in the 
order of the elements in a connection (a TOUGH+ v1.5 
feature) may produce erroneous results if the arithmetic sum of 
the flows through individual connections is used.  For example, 
in computing flow toward a well in a 3D Cartesian grid, the 
direction of flow is well known but the signs of the individual 
flows through each connection in the surface may differ 
because of the element orientation.  In such a case, the 'ABS' 
value is known to accurately describe flows. 

 
='DIR': The internal signs of the individual flows at the surface 

connections are maintained in the flow summations.  This 
option is used when the order of elements in the definition of 
the connections is known to be monotonic (in terms of 
direction), i.e., when the grid numbering is predictably 
consistent and the flow through a surface is known to be 
variable in direction (e.g., the net recharge of an aquifer from 
an aquitard with an operating injection well – water escapes 
into int overlying aquifer near the injection well, but recharge 
from the aquitard occurs away from the well).  

 
The structure of the Individual_Interface_Specifics namelist and its 
use as an input format in the data block INTERFACES is best illustrated in the 
examples of Figure 11.2. 
 
 
Record INTERFACE.2.1 

 
The namelist in this record is named Surface_Specifics.  It provides 
information that allows the definition of a surface within an interface and the 
identification of the connections belonging to it.  A total of 
number_of_surfaces such records must by provided in order to fully define 
the interface.  In its most complete form it has the following structure: 
 



 

 182  

&Surface_Specifics   definition_mode         = 'x',  
                     number_of_connections   =  x,   
                     format_to_read_data     = 'x', 
                     surface_shape           = 'x',  
                     Xmin                    =  x.xEx, 
                     Xmax                    =  x.xEx, 
                     Ymin                    =  x.xEx, 
                     Ymax                    =  x.xEx, 
                     Zmin                    =  x.xEx, 
                     Zmax                    =  x.xEx, 
                     surface_location        =  x.xEx, 
                     surface_coord_number    =  x.xEx, 
                     cylinder_radius         =  x.xEx, 
                     top_cylinder_center_xyz =  x.xEx, 
                     bot_cylinder_center_xyz =  x.xEx, 
                     inner_circle_radius     =  x.xEx 
                     outer_circle_radius     =  x.xEx 
                     sphere_center_xyz       =  x.xEx 
                     sphere_radius           =  x.xEx 
                     / 

 

The great advantage of the use of namelists is that only their necessary components 
may be used and assigned values; the rest can be completely omitted or 
commented-out.  Additionally, the components of the namelist can be listed in any 
order.  The parameters in the Surface_Specifics namelist are defined as 
follows:   
 
definition_mode: 

This character variable (up to 10 characters in length) describes the method 
by which the region is defined.  It can take the following possible values: 
 
='Geometry': The surface is defined by its geometric attributes 
 
='NumberList': The region is defined by a list of connection numbers 
 
='NameList': The region is defined by a list of connection names 

 
number_of_connections: 

This integer parameter is needed as an input when definition_mode 
≠'Geometry' and describes the number of connections in the surface. 

 
format_to_read_data: 

This character variable (up to 50 characters long) is needed as an input 
when definition_mode ='NumberList' or 'NameList', and 
describes the format to read the list of number_of_connections 
connection numbers or names.  The number_of_connections 
elements to be read according to the format format_to_read_data 
are listed immediately after the end of the namelist (see examples of 
Figure 11.2).  



 

  183 

NOTE: No other parameters of those in the namelist are needed if 
definition_mode ='NumberList' or 'NumberList'.  

 
surface_shape: 

This character variable (up to 9 characters in length) is needed as an input 
when definition_mode ='Geometry' and describes the shape of 
the surface that is about to be defined.  The following self-explanatory 
options are available: 
 
='Rectangle':  This option can only be used in Cartesian grids, i.e., if 
coordinate_system = 'Cartesian'(see Section 5.1).  
 
='Cylinder':  This option can only be used for either Cartesian or 
cylindrical grids.   
 
='Circle':  This option can only be used for either Cartesian or 
cylindrical grids.  It is used to compute flows through a circular surface, 
e.g., at the top a bottom permeable boundaries of an aquifer with a well at 
its center. 
 
='Sphere':  This option can only be used for either Cartesian or 
cylindrical grids.   

 
If surface_shape = 'Rectangle' and 'coordinate_system 
= 'Cartesian', then the following parameters must be included in the 
namelist: 
  

Xmin, Xmax, Ymin, Ymax, Zmin, Zmax 
 
The first four real parameters in the list indicate the range (minimum and 
maximum) of the surface along the x-, y- and z-axis of the Cartesian 
coordinate system, respectively.  Obviously, the max and min values along 
one (only) direction have to be identical, thus defining the orientation of the 
planar surface.  For example, a planar surface perpendicular to the z-axis is 
defined when Zmin = -20m and Zmax = -20m.  If the max and min 
coordinate values match in more than one direction, or if there is no match 
in any direction, an error message is printed and the simulation is aborted 
because the orientation of the planar surface cannot be determined. No 
other parameters of those in the namelist are needed to define the planar 
surface.  
 
If surface_shape = 'Cylinder' and coordinate_system = 
'Cartesian' or coordinate_system = 'Cylindrical', then 
the following parameters must be included in the namelist:  
 



 

 184  

top_cylinder_center_xyz, 
bot_cylinder_center_xyz,  
cylinder_radius 

 
The function of the cylinder_radius real parameter is obvious.  The 
real 1D arrays top_cylinder_center_xyz and 
bot_cylinder_center_xyz are of size 3.  These are the (x,y,z) 
coordinates of the centers of the top and bottom circular surfaces of the 
cylinder, respectively.  When coordinate_system = 
'Cylindrical', only the z-coordinates in the two arrays are important 
because the axis of the cylindrical surface is automatically aligned with the 
z-axis. No other parameters of those in the namelist are needed to define 
the cylindrical surface. 
 
If surface_shape = 'Circle' and coordinate_system = 
'Cylindrical' or coordinate_system = 'Cylindrical', 
then flow is perpendicular to the circular surface and the following 
parameters must be included in the namelist: 
  

inner_circle_radius, outer_circle_radius, 
surface_location, surface_coord_number 

 
The function of first two real parameters is self-explanatort.  The integer 
parameter surface_coord_number identifies is the direction of flow 
through the surface (i.e., it is perpendicular to the circular surface).  Thus, 
for flow along the x-direction, surface_coord_number = 1; for 
flow along the z-direction, surface_coord_number = 3.  The real 
parameter surface_location identifies the location (coordinate) of 
the circular surface on the axis specified by surface_coord_number.  
Thus, if surface_coord_number = 3 and 
surface_location=-40 m, then the circular surface is perpendicular 
to the z-axis at this elevation.  When coordinate_system = 
'Cylindrical', only the surface_location is important (i.e., the 
surface_coord_number parameter may be omitted from the namelist) 
because the circular surface is taken to be perpendicular to the z-axis. No 
other parameters of those in the namelist are needed to define the circular 
surface. 
 
If surface_shape = 'Sphere'and coordinate_system = 
'Cylindrical' or coordinate_system = 'Cylindrical', 
then the following parameters must be included in the namelist:  
 

sphere_center_xyz, sphere_radius 
 
The (x,y,z) coordinates of the center of the sphere are stored in the elements 
of the real, 1D array top_cylinder_center_xyz of size 3.  



 

  185 

Of those three values, only the 3rd (corresponding to the z-coordinate of the 
center of the sphere) one is used when coordinate_system = 
'Cylindrical' because in this case the center of the spherical surface 
is assumed to be at a radius r = 0. No other parameters of those in the 
namelist are needed to define the spherical surface. 

 
format_to_read_data: 

This character parameter (up to 50 characters long) is needed as an input 
when definition_mode ='NumberList' or 'NumberList', and 
describes the format to read the list of number_of_connections 
connection numbers or names.  The number_of_connections 
elements to be read according to the format format_to_read_data 
are listed immediately after the end of the namelist (see examples in Figure 
11.2). 
 
NOTE: no other parameters of those in the namelist are needed if 
definition_mode ='NumberList' or 'NumberList'.  

 
The use of these inputs in the INTERFACES namelist is best illustrated in the 
examples of Figure 11.2. 
 
NOTE #1: It is possible to combine surfaces of very different geometries to create 
interfaces that are very irregular in shape.  Each one of these surfaces can be 
defined independently, i.e., using different definition_mode values for each. 
 
NOTE #2: All the various parameter combinations and permutations in the user-
supplied namelist Interface_Specifics must be defined for the simulation 
to continue.  
 
NOTE #3: All the surfaces within the interface must be defined.  A total of 
number_of_surfaces records (one for each surface of the interface) must be 
provided in INTERFACE.2.1.  Thus, if we define two interfaces, the first with 3 
surfaces and the second with 4, then we need to provide the following data: 
For the 1st Interface: One INTERFACE.2 record, and 3 SUBDOMAIN.2.1 
records.  For the 2nd Interface: One INTERFACE.2 record, and 4 
INTERFACE.2.1 records. 
 
The structure and use of the namelists in the data block INTERFACES is best 
illustrated by the examples of Figure 11.2. 



 

 186  

INTERFACES  
&Interface_General_Info  number_of_interfaces = 1 / 
   &Individual_Interface_Specifics  interface_name         = 'Int03', 
                                    number_of_surfaces     = 1, 
                                    sign_of_flow_direction = 'DIR' 
                                    / 
      &Surface_Specifics  definition_mode       = 'NameList',    
                          number_of_connections = 5, 
                          format_to_read_data = '*', 
                          / 
'A00 4A00 5' 
'A00 3A00 4' 
'A00 5A00 6' 
'A00 6A00 7' 
'A00 7A00 8' 
 
 
INTERFACES  
&Interface_General_Info  number_of_interfaces = 2 / 
   &Individual_Interface_Specifics  interface_name         = 'LBase', 
                                    number_of_surfaces     = 1, 
                                    sign_of_flow_direction = 'DIR' / 
      &Surface_Specifics  definition_mode      = 'Geometry',    
                          surface_shape        = 'Rectangle' 
                          Xmin = -2.0e3,  Xmax = 5.0e03,     
                          Ymin = -2.0e3,  Ymax = 5.0e03,     
                          Zmin = -1.1d2,  Zmax = -1.1d2,     
                          / 
   &Individual_Interface_Specifics  interface_name         = 'MBase', 
                                    number_of_surfaces     = 1, 
                                    sign_of_flow_direction = 'DIR' / 
      &Surface_Specifics  definition_mode      = 'Geometry',    
                          surface_shape        = 'Rectangle' 
                          Xmin = -2.0e3,  Xmax = 5.0e03,     
                          Ymin = -2.0e3,  Ymax = 5.0e03,     
                          surface_location     = -3.0d1 
                          surface_coord_number = 3, 
                          / 
 
 
INTERFACES  
&Interface_General_Info  number_of_interfaces = 1 / 
   &Individual_Interface_Specifics  interface_name         = 'Int03', 
                                    number_of_surfaces     = 1, 
                                    sign_of_flow_direction = 'ABS'/ 
      &Surface_Specifics  definition_mode         = 'Geometry',    
                          surface_shape           = 'Cylinder' 
                          top_cylinder_center_xyz = 0.0d0, 0.0d0, -2.0d1, 
                          bot_cylinder_center_xyz = 0.0d0, 0.0d0, -6.0d1, 
                          cylinder_radius = 1.0d1, 
                          / 
 
 
INTERFACES  
&Interface_General_Info  number_of_interfaces = 1 / 
   &Individual_Interface_Specifics  interface_name         = 'Int04', 
                                    number_of_surfaces     = 1, 
                                    sign_of_flow_direction = 'ABS'/ 
      &Surface_Specifics  definition_mode         = 'Geometry',    
                          surface_shape           = 'Sphere' 
                          sphere_center_xyz = 0.0d0, 0.0d0, -5.0d1, 
                          sphare_radius     = 2.0d1 
                          / 
 
 
Figure 11.2.  Examples of the INTERFACES data block for tracking flows at specified interfaces.  
This data block uses namelist-based formats for data inputs. 



 

  187 

11.5. Data Block SS_GROUPS 

This optional data block is a new TOUGH+ v1.5 feature that is unavailable to any earlier 

version of the code.  It allows monitoring the flow – instantaneous and cumulative – 

through user-defined groups of sources and sinks (hereafter referred to as SSG).  The time 

series results are written in a number of separate output files that are equal to the number of 

the SSG’s (one for each SSG), and are named according to the convention 

SSGName_Time_Series, where 'SSGName' is the name of the SSG under 

observation.  The SSGName_Time_Series files are important in continuatin runs: 

information from the last TOUGH+ simulation is gleaned from the older files and is used 

to seamlessly continue the computations of the cumulative mass flows through the SSG’s. 

If the keyword 'SS_GROUPS' is present in the input file, then the following data 

are read using NAMELIST formats: 

Record SS_GROUP.1 
 

This record includes general data describing the number of interfaces to be 
monitored. The namelist in this record is named SSGroup_General_Info and 
has the general form: 
 

&SSGroup_General_Info  number_of_SSGroups = x /, 
 
i.e., it contains only the following single parameter: 
 
number_of_SSGroups: 

An integer parameter describing the number of SSG’s at which time series 
data are to be obtained.  There is no upper limit in the number of SSG’s 
that can be defined.   
 
NOTE: The number_of_SSGroups parameter must be set to a positive 
value for the simulation to continue. 
 

The structure of the SSGroup_General_Info namelist and its use as the input 
format in the data block SS_GROUPS is best illustrated in the example of Figure 
11.3. 
 



 

 188  

Record SS_GROUP.2 
 

The namelist in this record provides general information on each of the interfaces. 
A total of number_of_SSGroups such records/namelists must be provided.  
This namelist is named Individual_SSGroup_Specifics, has the general 
form 
 

&Individual_SSGroup_Specifics   SSGroup_name        ='x', 
                                definition_mode     = x, 
                                number_of_SS        ='x', 
                                format_to_read_data ='x',/ 

 
and includes the following parameters: 
 
SSGroup_name: 

The interface name is described by this character variable of a maximum of 
9 characters.  Upon reading the variable, the TOUGH+ v1.5 code creates an 
output file named SSGroupName_Time_Series, where 
'SSGroupName' is the value of interface_name.  If this variable is 
omitted in the input, then the TOUGH+ code assigns internally the name 
SSGroupName = 'SSGroupNN', where 'NN' is the 2-digit interface 
number in the interface definition sequence.  

 
definition_mode: 

This character variable (up to 10 characters in length) describes the method 
by which the region is defined.  It can take the following possible values: 
 
='NumberList': The region is defined by a list of connection numbers 
 
='NameList': The region is defined by a list of connection names 

 
number_of_SS: 

An integer parameter specifying the number of individual sources and sinks 
in the SS group.  The number_of_SS parameter must be set to a positive 
value for the simulation to continue. 

 
format_to_read_data: 

This character variable (up to 50 characters long) is needed as an input 
when definition_mode ='NumberList' or 'NameList', and 
describes the format to read the list of number_of_SS numbers or names 
of the sources/sinks in the group.  The number_of_SS elements to be 
read according to the format format_to_read_data are listed 
immediately after the end of the namelist (see example of Figure 11.3).  

 
The structure and use of the namelists in the data block SS_GROUPS is best 
illustrated by the example of Figure 11.3. 



 

  189 

11.8. Warning Output and Error Messages  

If inputs indicate conflicting conditions and/or parameter values are outside realistic 

ranges, TOUGH+ is designed to respond according to the severity of the violation.  Non-

critical conflicts result in a warning or clarifying message, internal adjustment of the 

corresponding conditions and/or parameters, and continuation of the simulation.  Serious 

violations (e.g., initial conditions that violate fundamentals of physics and 

thermodynamics) result in an error message identifying the problem and the interruption 

of the simulation.  

 

 

 

 
 
SS_GROUPS  
&SSGroup_General_Info  number_of_SSGroups = 1 /      
   &Individual_SSGroup_Specifics  SSGroup_name        = '     ',          
                                  definition_mode     = 'NameList',           
                                  number_of_SS        = 3,           
                                  format_to_read_data = '*'  
                                  / 
'Pro01'                                                
'Pro02'                                                
'Wel06'                                                
 
 
Figure 11.3.  Example of the SS_GROUPS data block for tracking flows through specified groups of 
sources/sinks.  This data block uses namelist-based formats for data inputs. 

 



 

 190  

 
 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 



 

  191 

 

 

 

 

   Acknowledgements 

 

This work was supported by the Assistant Secretary for Fossil Energy, Office of Natural 

Gas and Petroleum Technology, through the National Energy Technology Laboratory, 

under the U.S. Department of Energy, Contract No DE-AC02-05CH11231.  



 

 192  

 
 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 



 

  193 

 

 

 

 

   References 
 

Americal Petroleum Institute (API), Division of Refining, Technical Data Book, 
Petroleum Refining, American Petroleum Institute, Refining Department, Washington, 
1977.  

Barree R.D., and M.W. Conway, Multiphase non-Darcy flow in proppant packs, Paper 
SPE 109561, 2007 Annual Technical Conference and Exhibition, Anaheim, CA, 11–
14 Nov 2007. 

 
Bejan, A., Convection Heat Transfer, John Wiley & Sons, New York, 1984 
 
Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, New York: John 

Wiley & Sons, Inc., 2007.  
 
Brooks, R.H. and A.T. Corey, Hydraulic Properties of Porous Medium, Hydrology Paper 

No. 3, Colorado State University, Fort Collins, Colorado, March 1964. 

Cass, A., G.S. Campbell and T.L. Jones, Enhancement of Thermal Water Vapor Diffusion 
in Soil. Soil Sci. Soc. Am. J., 48(1), 25 - 32, 1984. 

Chung, T.H., M. Ajlan, L.L. Lee and K.E. Starling, Generalized multiparameter 
correlation for nonpolar and polar fluid transport properties, Ind. Eng. Chem. Res., 
27(4), 671-679, 1988 (doi: 10.1021/ie00076a024) 

Corey, A.T., The Interrelation Between Gas and Oil Relative Permeabilities, Producers 
Monthly, 38-41, November 1954. 



 

 194  

de Marsily, G., Quantitative Hydrogeology, Academic Press, Orlando, FL, 1986. 

Doughty, C., Investigation of conceptual and numerical approaches for evaluating 
moisture, gas, chemical, and heat transport in fractured unsaturated rock, J. Contam.t 
Hydrol., 38(1-3), 69-106, 1999 

Edwards, A.L., TRUMP: A Computer Program for Transient and Steady State 
Temperature Distributions in Multidimensional Systems, National Technical 
Information Service, National Bureau of Standards, Springfield, VA, 1972. 

Falta, R.W., K. Pruess, I. Javandel and P.A. Witherspoon, Density-Driven Flow of Gas in 
the Unsaturated Zone Due to the Evaporation of Volatile Organic Compounds, 
Water. Resour. Res., 25(10), 2159 - 2169, 1989. 

Fatt, I. and W.A. Klikoff, Effect of Fractional Wettability on Multiphase Flow Through 
Porous Media, AIME Transactions, 216, 246, 1959. 

Finsterle, S., iTOUGH2 User's Guide, Report LBNL-40040, Lawrence Berkeley National 
Laboratory, Berkeley, California, 1999. 

Finsterle, S., Implementation of the Forchheimer Equation in iTOUGH2, Project Report, 
Lawrence Berkeley National Laboratory, Berkeley, Calif., 2001. 

Forchheimer, P., Wasserbewewegung durch Boden, Zeit.Ver. Dtsch. Ing. 45, 1781, 1901. 

Freeman, C.M., G.J. Moridis, and T.A. Blasingame, A Numerical Study of Microscale 
Flow Behavior in Tight Gas and Shale Gas Reservoir Systems, Transp. in Porous 
Med., 90(1): 253-268, 2011 (doi: 10.1007/ s11242-011-9761-6) 

Fuller, E. N., K. Ensley, and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in 
Helium: The Effect of Structure on Collision Cross Sections, J. Phys. Chem., 73, 
3679-3685, 1969. 

Grant, M.A., Permeability Reduction Factors at Wairakei, paper 77-HT-52, presented at 
AICHE-ASME Heat Transfer Conference, Salt Lake City, Utah, August 1977. 

International Association for the Properties of Water and Steam (IAPWS), Release on the 
IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water 
and Steam. Erlangen, Germany, 1997.  

International Association for the Properties of Water and Steam (IAPWS). Revised 
Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic 
Properties of Water and Steam, Lucerne, Switzerland, 2007.  

International Association for the Properties of Water and Steam (IAPWS). Release on the 
IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. Berlin, 
Germany, 2008.  



 

  195 

International Association for the Properties of Water and Steam (IAPWS). Revised 
Release on the Equation of State 2006 for H2O Ice Ih. Doorwerth, The Netherlands, 
2009.  

International Association for the Properties of Water and Steam (IAPWS). Release on the 
IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water 
Substance. Plzeň, Czech Republic, 2011a.  

International Association for the Properties of Water and Steam (IAPWS). Revised 
Release on the Pressure along the Melting and Sublimation Curves of Ordinary 
Water Substance. Plzeň, Czech Republic, 2011b.  

International Association for the Properties of Water and Steam (IAPWS). Guideline on a 
Low-Temperature Extension of the IAPWS-95 Formulation for Water Vapor. 
Boulder, Colorado, USA, 2012.  

International Formulation Committee, A Formulation of the Thermodynamic Properties of 
Ordinary Water Substance, IFC Secretariat, Düsseldorf, Germany, 1967.  

Itasca Consulting Group. FLAC3D: Fast Lagrangian Analysis of Continua in 3 
Dimensions, Minneapolis, Minnesota, 2002. 

Jones, S. C., A rapid accurate unsteady-state Klinkenberg parameter, SPE Journal 383–
397, 1972. 

Jury, W.A., W.F. Spencer and W.J. Farmer,  Behavior Assessment Model for Trace 
Organics in Soil: I. Model Description, J. Environ. Qual., 12(4), 558 - 564, 1983. 

Kim, J., and G.J. Moridis, Development of the T+M coupled flow-geomechanical 
simulator to describe fracture propagation and coupled flow-thermal-geomechanical 
processes in tight/shale gas systems, Computers & Geosciences, 60, 184-198, 2013 
(doi: 10.1016/j.cageo.2013.04.023).  

Klinkenberg, L.J., The Permeability of Porous Media to Liquids and Gases, in API 
Drilling and Production Practice, 200–213, 1941. 

 
Lam, S.T., A. Hunsbedt, P. Kruger and K. Pruess, Analysis of the Stanford Geothermal 

Reservoir Model Experiments Using the LBL Reservoir Simulator, Geothermics, 
17(4), 595- 605, LBL-25957, 1988. 

Leverett, M.C., Capillary Behavior in Porous Solids, Trans. Soc. Pet. Eng. AIME, 142, 
152-169, 1941. 

Mason, E.A. and A.P. Malinauskas, Gas Transport in Porous Media: The Dusty Gas 
Model, Elsevier, Amsterdam, The Netherlands, 1983. 

Millington, R.J. and J.P. Quirk, Permeability of Porous Solids, Trans. Faraday Soc., 57, 
1200-1207, 1961. 



 

 196  

Milly, P.C.D., Moisture and Heat Transport in Hysteretic, Inhomogeneous Porous Media:  
A Matric-Head Based Formulation and a Numerical Model, Water Resour. Res., 
18(3), 489 - 498, 1982. 

Moridis, G.J., User’s Manual for the HYDRATE v1.5 option of TOUGH+ v1.5: A Code 
for the Simulation of System Behavior in Hydrate-Bearing Geologic Media, 
Lawrence Berkeley National Laboratory Report LBNL-6871E, August 2014. 

Moridis, G.J. and C.M. Freeman, User’s Manual for the REALGASBRINE v1.0 option of 
TOUGH+: A Code for the Simulation of System Behavior in Gas-Bearing Geologic 
Media, Lawrence Berkeley National Laboratory Report LBNL-6870E, August 2014. 

Moridis, G. and K. Pruess, TOUGH Simulations of Updegraff’s Set of Fluid and Heat 
Flow Problems, Lawrence Berkeley Laboratory Report LBL-32611, Berkeley, CA, 
November 1992. 

Moridis, G. and K. Pruess, Flow and Transport Simulations Using T2CG1, a Package of 
Conjugate Gradient Solvers for the TOUGH2 Family of Codes, Lawrence Berkeley 
Laboratory Report LBL-36235, Berkeley, CA, 1995. 

Moridis, G. and K. Pruess, T2SOLV: An Enhanced Package of Solvers for the TOUGH2 
Family of Reservoir Simulation Codes, Geothermics, 27(4), 415 - 444, 1998. 

Moridis, G.J., M.B. Kowalsky and K. Pruess, TOUGH+HYDRATE v1.0 User’s Manual: 
A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media, 
Report LBNL-0149E, Lawrence Berkeley National Laboratory, Berkeley, CA 
(2008). 

Moridis, G.J., M.B. Kowalsky and K. Pruess, TOUGH+HYDRATE v1.1 User’s Manual: 
A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media, 
Report LBNL-0149E, Lawrence Berkeley National Laboratory, Berkeley, CA 
(2009). 

Moridis, G.J., M.B. Kowalsky and K. Pruess, TOUGH+HYDRATE v1.2 User’s Manual: 
A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media, 
Report LBNL-0149E, Lawrence Berkeley National Laboratory, Berkeley, CA 
(2012). 

Morrow, C., D. Lockner, D. Moore and J. Byerlee, Permeability of Granite in a 
Temperature Gradient, Journal of Geophysical Research, 86(84), 3002-3008, April 
1981. 

Mualem, Y., A New Model for Predicting the Hydraulic Conductivity of Unsaturated 
Porous Media, Water Resour. Res., 12(3), 513 - 522, 1976. 

Narasimhan, T.N. and P.A. Witherspoon, An Integrated Finite Difference Method for 
Analyzing Fluid Flow in Porous Media, Water Resour. Res., 12(1), 57 – 64, 1976. 



 

  197 

Narasimhan, T.N., P.A. Witherspoon and A.L. Edwards, Numerical Model for Saturated-
Unsaturated Flow in Deformable Porous Media, Part 2: The Algorithm, Water 
Resour. Res., 14(2), 255-261, 1978. 

Pape, H., C. Clauser and J. Iffland, Permeability Prediction Based on Fractal Pore-Space 
Geometry, Geophysics, 64(5), 1447 - 1460, 1999.  

Parker J.C., Lenhard R.J. and T. Kuppusamy, A Parametric Model for Constitutive 
Properties Governing Multiphase Flow in Porous Media, Water Resour. Res., 23(4), 
618- 624, 1987.  

Peaceman, D.W., Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, 
The Netherlands, 1977. 

Peng, D.Y., and D.B. Robinson, A New Two-Constant Equation of State, Indust. and 
Engr. Chemistry: Fundamentals 15, 59-64, 1976.  

Phillips, O.M., Flow and Reactions in Permeable Rocks, Cambridge University Press, 
Cambridge, New York, Melbourne, 1991. 

Pickens, J.F., R.W. Gillham and D.R. Cameron, Finite Element Analysis of the Transport 
of Water and Solutes in Tile-Drained Soils, J. of Hydrology, 40, 243-264, 1979. 

Pruess, K., GMINC - A Mesh Generator for Flow Simulations in Fractured Reservoirs, 
Lawrence Berkeley Laboratory Report LBL-15227, Berkeley, CA, March 1983. 

Pruess, K., TOUGH2 - A General Purpose Numerical Simulator for Multiphase Fluid and 
Heat Flow, Lawrence Berkeley Laboratory Report LBL-29400, Berkeley, CA, 1991. 

Pruess, K., and T.N. Narasimhan, On Fluid Reserves and the Production of Superheated 
Steam from Fractured, Vapor-Dominated Geothermal Reservoirs, J. Geophys. Res., 
87(B11), 9329 - 9339, 1982. 

Pruess, K. and G.S. Bodvarsson, A Seven-Point Finite Difference Method for Improved 
Grid Orientation Performance in Pattern Steam Floods, Proceedings, Seventh 
Society of Petroleum Engineers Symposium on Reservoir Simulation, Paper SPE-
12252, 175 - 184, San Francisco, CA, 1983. 

Pruess, K. and T.N. Narasimhan, A Practical Method for Modeling Fluid and Heat Flow in 
Fractured Porous Media, Soc. Pet. Eng. J., 25(1), 14-26, February 1985. 

Pruess, K., C. Oldenburg, and G. Moridis, TOUGH2 User’s Guide, Version 2.0, Report 
LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1999.   

Pruess, K., C. Oldenburg, and G. Moridis, TOUGH2 User’s Guide, Version 2.1, Report 
LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, Calif., 2012.   

Redlich, O. and J.N.S. Kwong, On The Thermodynamics of Solutions. Chem. Rev. 44(1), 



 

 198  

233–244, 1949. doi:10.1021/cr60137a013. 

Riazi, M. R., and C. H. Whitson, Estimating Diffusion Coefficients of Dense Fluids, Ind. 
Eng. Chem. Res., 32, 3081-3088, 1993. 

Rutqvist J. and C.-F Tsang, A Study of Caprock Hydromechanical Changes Associated 
with CO2 Injection into a Brine Aquifer. Environmental Geology, 42, 296-305, 2002. 

Scheidegger, A. E., The Physics of Flow Through Porous Media, University of Toronto 
Press, Toronto and Buffalo, Third Edition, 1974. 

Sleijpen, G.L.G. and D. Fokkema, BiCGSTAB(m) for Linear Equations Involving 
Unsymmetric Matrices with Complex Spectrum, Electronic Transactions on 
Numerical Analysis, 1, 11 - 32, 1993. 

Soave, G., Equilibrium Constants from a Modified Redlich–Kwong Equation of State, 
Chem. Eng. Sci., 27, 1197-1203, 1972. 

Somerton, W.H., et al., Thermal Behavior of Unconsolidated Oil Sands, Paper SPE-4506, 
48th Annual Fall Meeting of the Society of Petroleum Engineers, Las Vegas, NV, 
1973. 

Somerton, W.H., et al., High Temperature Behavior of Rocks Associated With 
Geothermal Type Reservoirs, Paper SPE-4897, 44th Annual California Regional 
Meeting of the Society of Petroleum Engineers, San Francisco, CA, 1974. 

Stone, H.L., Probability Model for Estimating Three-Phase Relative Permeability, Trans. 
SPE of AIME, 249, 214-218, 1970. 

TecPlot, Inc., Tecplot 10 User’s Manual, Bellevue, Washington, 2003. 

Udell, K.S. and J.S. Fitch, Heat and Mass Transfer in Capillary Porous Media Considering 
Evaporation, Condensation, and Non-Condensible Gas Effects, 23rd ASME/AIChE 
National Heat Transfer Conference, Denver, CO, 1985. 

van der Vorst, H.A.,  Bi-CGSTAB: A Fast and Smoothly Converging Variant of BiCG in 
the Presence of Rounding Errors, SIAM J. Sci. Statist. Comput., 13, 631 - 644, 1992. 

vanGenuchten, M.Th., A Closed-Form Equation for Predicting the Hydraulic Conductivity 
of Unsaturated Soils, Soil Sci. Soc., 44, 892 - 898, 1980. 

Vargaftik, N.B., Tables on the Thermophysical Properties of Liquids and Gases, 2nd Ed., 
John Wiley & Sons, New York, NY, 1975. 

Vaughan, P.J., Analysis of Permeability Reduction During Flow of Heated, Aqueous Fluid 
Through Westerly Granite, in C.F. Tsang (ed.), Coupled Processes Associated with 
Nuclear Waste Repositories, 529 - 539, Academic Press, New York, 1987. 



 

  199 

Verma, A.K., K. Pruess, C.F. Tsang and P.A. Witherspoon, A Study of Two-Phase 
Concurrent Flow of Steam and Water in an Unconsolidated Porous Medium, Proc. 
23rd National Heat Transfer Conference, Am. Society of Mechanical Engineers, 
Denver, CO, 135–143, 1985. 

Verma, A. and K. Pruess, Thermohydrologic Conditions and Silica Redistribution Near 
High-Level Nuclear Wastes Emplaced in Saturated Geological Formations, J. of 
Geophys. Res., 93(B2), 1159-1173, 1988. 

Wagner W. et al., The IAPWS Industrial Formulation 1997 for the Thermodynamic 
Properties of Water and Steam, ASME J. Eng. Gas Turbines and Power, 122, 150-
182, 2000. 

Walker, W.R., J.D. Sabey, and D.R. Hampton, Studies of Heat Transfer and Water 
Migration in Soils, Final Report, Department of Agricultural and Chemical 
Engineering, Colorado State University, Fort Collins, CO, 80523, April 1981. 

Warren, J.E. and P.J. Root, The Behavior of Naturally Fractured Reservoirs, Soc. Pet. 
Eng. J., Transactions, AIME, 228, 245-255, September 1963. 

Webb, S.W., Gas-Phase Diffusion in Porous Media - Evaluation of an Advective-
Dispersive Formulation and the Dusty Gas Model for Binary Mixtures, J. Por. 
Media, 1(2), 187 - 199, 1998. 

Webb, S.W. and C.K. Ho, Enhanced Vapor Diffusion in Porous Media - LDRD Final 
Report, Sandia National Laboratories Report SAND98-2772, Albuquerque, NM, 
1998b. 

Wilke, C. R., A Viscosity Equation for Gas Mixtures, J. Chem. Phys., 18, 517-519,1950. 

Wu, Y., Pruess, K., and P. Persoff, Gas Flow in Porous Media with Klinkenberg Effects. 
Transp. Porous Media, 32, 117-137, 1988. 

Xu, T., Y. Ontoy, P. Molling, N. Spycher, M. Parini and K. Pruess, Reactive Transport 
Modeling of Injection Well Scaling and Acidizing at Tiwi Field, Philippines, 
Geothermics, 33(4), 477 - 491, 2004. 

Yaws, C., Chemical Properties Handbook, McGraw-Hill Education, 1999 
 



 

 200  

 
 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 



 

  201 

 
 

 

   APPENDIX 

A Sample Input File 
 



 

 202  

 
 

 
 

 

 

 

 

 

 

 

 

PAGE LEFT INTENTIONALLY BLANK 

 


