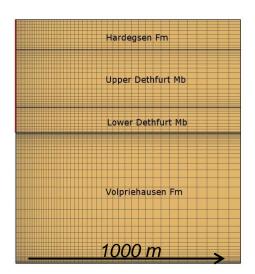
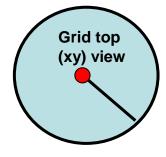


Problem description


Define equilibrium water and gas saturation in gas reservoirs

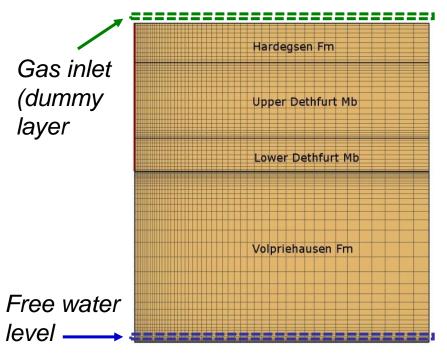
Model gas reservoir

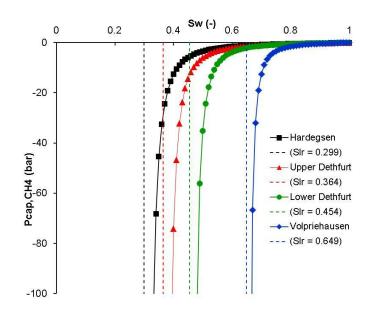

Known reservoir properties

- Porosity and permeability (per layer)
- Capillary pressure (P_{cap}) (per layer)
- Free water level (FWL)
- Pressure and temperature

Unknown reservoir properties

- Equilibrium gas saturation (S_g) and water saturation (S_w)




Compute equilibrium S_w - Why important?

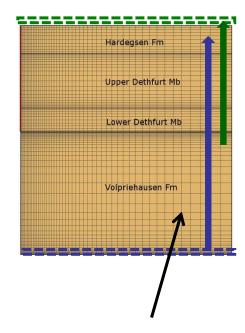
- Equilibrium S_w depends on P_{cap}(S_w) (and height above FWL)
- S_w < residual S_w → no flow
- $S_w > residual S_w \rightarrow flow$

Gas reservoir with 4 layers

- Each layer has a different P_{cap}(S_w)
- FWL located in lowest layer of grid blocks
- Add gas inlet (dummy layer) on top of the reservoir
 - Very thin (e.g. 1 cm)
 - Turn off capillary pressure!

Three step approach

Step 1: Compute pressure profile over depth

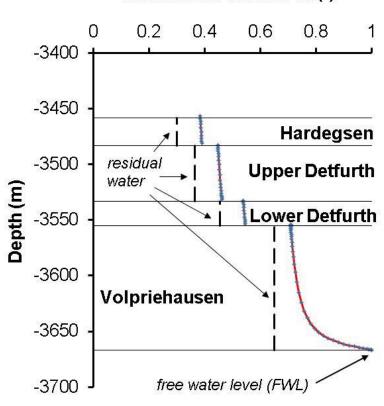

- Fill reservoir with gas $(S_a=1)$, no water $(S_w=0)$
- Define <P> and compute P over depth

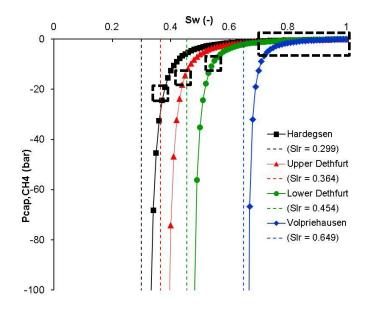
Step 2: Compute S_w and S_g

- Read in pressure data from step 1 (use SAVE file)
- Assign FWL \rightarrow S_w=1 and inactive (constant P)
- Gas inlet \rightarrow keep $S_a=1$ and inactive (constant P)
- Other cells \rightarrow keep $S_q=1$ ($S_w=0$)
- Run the simulation

Step 3: Equilibrium check

- Remove dummy layer and check




- Water flows in from FWL
- Gas flows out to gas inlet
- Final pressure similar to pressure from step 1

Result: equilibrium S_w

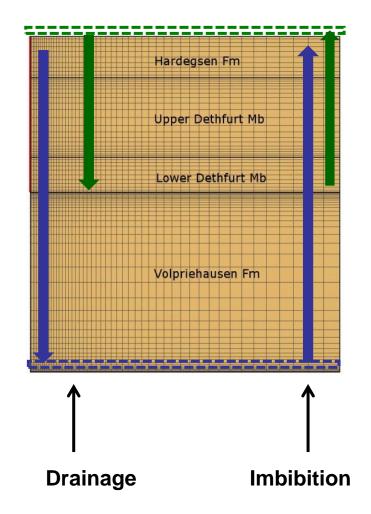
Initial water saturation (-)

Effect of Gas Field Production And CO₂ Injection on Brine Flow and Salt Precipitation

Paper TOUGH Symposium 2012

Imbibition and drainage

Drainage $(S_w=1)$


- Water flows out to FWL
- Gas flows in from gas inlet

Imbibition $(S_w=0)$

- Water flows in from FWL
- Gas flows out to gas inlet

Depends on geological history?

Both approaches give a similar results without hysteresis

