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1. INTRODUCTION 
 

1.1  About This Manual 
 
 iTOUGH2 is a program for parameter estimation, sensitivity analysis, and uncertainty 
propagation analysis. It is based on the TOUGH2 simulator for nonisothermal multiphase flow in 
porous and fractured media [Pruess, 1987, 1991a]. 
 
 The key to a successful application of iTOUGH2 is (1) a good understanding of multiphase 
flow processes, (2) the ability to conceptualize the given flow and transport problem and to develop 
a corresponding TOUGH2 model, (3) detailed knowledge about the data used for calibration, (4) an 
understanding of parameter estimation theory and the correct interpretation of inverse modeling 
results, and (5) proficiency in using iTOUGH2 options. This report primarily addresses Issue (4), 
through the introduction of inverse modeling concepts for applications in multiphase flow and 
transport simulations. While inverse modeling can be discussed in the jargon of applied 
mathematics and mathematical statistics, this manual is tailored to the needs of engineers and 
scientists who are interested in calibrating TOUGH2 models against observed data. It describes the 
inverse modeling framework and provides the theoretical background for the methodologies 
employed by iTOUGH2. Furthermore, it discusses the architecture of iTOUGH2 and contains 
instructions for code installation and execution. This manual supplements the “iTOUGH2 
Command Reference” [Finsterle, 2007b], which explains the syntax of all iTOUGH2 commands 
(Issue 5), and the report “iTOUGH2 Sample Problems” [Finsterle, 2007c], which contains a 
collection of illustrative iTOUGH2 applications. It is assumed that the reader is familiar with the 
workings of TOUGH2 (Issue 2). 
 
 The report is organized as follows. After an introductory discussion of inverse modeling issues 
(Chapter 1), each element involved in automatic model calibration is described in detail in Chapter 
2. These elements include the parameter vector, the vector of observable variables, the stochastic 
model, the objective function, the minimization algorithm, convergence criteria, the residual and 
error analyses, and uncertainty propagation analysis. Each element is discussed from a theoretical 
viewpoint, and reference to the corresponding iTOUGH2 input and output will be made. A line-by-
line discussion of a typical iTOUGH2 output file is given in Chapter 3. Chapters 4 and 5 contain 
information about code architecture as well as instructions for installing and running iTOUGH2.  
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1.2  Motivation and Scope 
 

 Predicting multiphase fluid and heat flow in the subsurface by means of numerical simulation 
involves the following steps: 
 
1. Developing a conceptual model of the system and creating a numerical model; 
2. Assigning values to the numerical model input parameters; 
3. Predicting the system state by running the simulator; 
4. Interpreting the results and assessing the uncertainty of the predictions. 
 
 The first step is the most difficult and also most important task. The conceptual model 
developed for the system to be studied provides the basis for all subsequent steps. Errors in the 
conceptual model usually have the largest impact on the model predictions. In multiphase flow 
modeling, the second step (i.e., assigning parameter values) is likely to be tedious and challenging 
because of the relatively large number of parameters that need to be specified. Moreover, the 
physical interpretation of these parameters is often ambiguous, and they are difficult or even 
impossible to measure directly in the laboratory or the field. 
 
 Parameters can be estimated by automatically calibrating the multiphase flow model against 
measured data of the system response. Inferring model-related parameters from observations by 
means of a process model is termed inverse modeling. As elaborated in Section 1.4, iTOUGH2 
supports parameter estimation, sensitivity analysis, and uncertainty propagation analysis. It 
contributes to conceptual and numerical model development only in the sense that alternative model 
designs can be tested against one another in their ability to explain observed data. A failure to 
match certain data may point towards aspects of the model that need to be refined. 
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1.3  General Remarks About Inverse Modeling  
 
 Parameter estimation, history matching, model calibration, and inverse modeling are terms 
describing essentially the same technique with a slightly different objective in mind. The ultimate 
goal is to assess the best model and its parameters for predicting the behavior of a dynamic flow 
system. The reliability of these predictions depends on the appropriateness of the conceptual model 
and the model parameters. Note that it is the intended use of the model that determines the required 
degree of model sophistication, as well as the level of accuracy with which the parameters are to be 
estimated. In this overall scheme, parameter estimation as supported by iTOUGH2 is only one, 
albeit important step in the process of model development.  
 
 Inverse modeling consists of estimating model parameters from measurements of the system 
response made at discrete points in space and time. Automatic model calibration can be formulated 
as an optimization problem, which has to be solved in the presence of uncertainty because the 
available observations are incomplete and exhibit random measurement errors. The parameters to be 
estimated are selected coefficients in the governing flow equations. They may include 
hydrogeologic and thermophysical properties, initial and boundary conditions, and parameterized 
aspects of the conceptual model. The interpretation of these parameters depends on the model 
structure and the overall purpose of the specific model. In this sense, the parameters are strictly to 
be seen as model parameters (or model-related parameters) rather than parameters of the geologic 
formation (or aquifer parameters). Estimating parameter values from measurements relates the real 
multiphase flow system to its idealized representation.  
 
 Inverse modeling involves several interacting steps. Starting from a conceptual model of the 
physical system, the results of parameter estimation may indicate that the underlying model 
structure has to be modified. This process of iteratively updating the conceptual model and its 
parameters is sometimes referred to as model identification. iTOUGH2 focuses on the more narrow 
aspect of inverse modeling, namely parameter estimation by automatic model calibration. 
Nevertheless, the optimality criteria evaluated by iTOUGH2 make a valuable contribution towards 
the solution of the model identification problem. 
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1.4  iTOUGH2 Application Modes  
 

 iTOUGH2 is a computer program that provides inverse modeling capabilities for the TOUGH2 
code. TOUGH2 [Pruess, 1987, 1991a] is a numerical simulator for multidimensional, 
nonisothermal flows of multiphase, multicomponent fluids in porous and fractured media. While the 
main purpose of iTOUGH2 is to estimate model-related parameters by automatically calibrating 
TOUGH2 models to laboratory or field data, the information obtained by evaluating the sensitivity 
of the calculated system response with respect to certain input parameters can also be used to study 
the appropriateness of a proposed experimental design and to analyze the uncertainty of model 
predictions. 
 
 iTOUGH2 supports all three application modes, i.e., sensitivity analysis, parameter estimation, 
and uncertainty propagation analysis. 
 
(1) Sensitivity Analysis 
 The sensitivity of TOUGH2 output variables with respect to TOUGH2 input parameters is 

numerically evaluated by iTOUGH2. The resulting Jacobian matrix is rescaled to make the 
sensitivity coefficients comparable with each other. Summary sensitivity measures are 
calculated to identify the most sensitive parameters as well as the model output most affected 
by the selected parameters. From an inverse perspective, these values show the information 
content of individual data points, data sets, and observation types. Furthermore, correlation 
coefficients between the parameters are calculated, which can be used to detect parameter 
combinations that lead to a similar or very different system behavior. 

 
(2) Parameter Estimation  
 iTOUGH2 solves the inverse problem for determining TOUGH2 input parameters based on 

any type of data for which a corresponding TOUGH2 output variable can be calculated. 
Parameters are estimated by automatically matching the calculated to the observed system 
response. A number of different objective functions and minimization algorithms are 
available. An extensive residual and error analysis is performed. 

 
(3) Uncertainty Propagation Analysis 
 The impact of parameter uncertainties on model predictions can be studied by means of linear 

error propagation analysis or Monte Carlo simulations.  
 
 All three application modes are of practical significance. The sensitivity analysis supplies the 
measures needed for optimizing the design of a laboratory experiment or field test. Parameter 
estimation by inverse modeling overcomes the labor-intensive tedium of trial-and-error model 
calibration. More important, the error analysis provides insight into the uncertainty of the estimated 
parameters, and reveals parameter correlations. Predictability can be improved when relying on 
effective, model-related parameters estimated by inverse modeling. The quality of these predictions 
can be assessed, taking into account the uncertainty of the input parameters. 
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1 . 5 Inverse Modeling Procedure

iTOUGH2 estimates elements of a parameter vector p based on measured data of the
system response, which are summarized in vector z *.  The parameters are related to the data
by minimizing a measure of misfit, the objective function S , which depends on the residual
vector r  and a weighting matrix Czz

−1
.  The uncertainty of the estimated parameters, i.e., the

covariance matrix Cpp , is also calculated, along with the uncertainty of the model predic-
tions.

An overview of the inverse modeling concept as implemented in iTOUGH2 is given in
this section, followed by a detailed discussion of each element.  The major steps are visual-
ized in the flow chart of Figure 1.5.1, and are summarized in Table 1.5.1.

true
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measured
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Figure 1.5.1.  Inverse modeling flow chart.



   

iTOUGH2 USER’S GUIDE 6 INTRODUCTION 

Table 1.5.1. Inverse Modeling Procedure: Major Steps 

Step Description Issue 

1 Development of a numerical model, representing the 
hydrogeological system under test conditions. 

Model conceptualization 

2 Selection of parameters to be estimated. Parameter selection 

3 Selection of initial parameter values. Prior information/initial guess 

4 Selection of data; identification of points in space and 
time for calibration. 

Calibration points  

5 Assignment of weights to each calibration point. Stochastic model 

6 Calculation of system state. Forward simulation 

7 Comparison of calculated and observed system state. Objective function 

8 Updating parameters in order to decrease the objective 
function. 

Minimization algorithm 

9 Iteration of Steps 6 through 8 until no further 
improvement of the fit can be obtained. 

Convergence criteria 

10 Analysis of residuals and estimation uncertainties. Residual and error analyses 

 
 
The key elements as listed in Table 1.5.1 can be described as follows: 
 
(1) Inverse modeling starts with the formulation of the so-called forward or direct problem. A 

model must be developed that is capable of simulating the general features of the system 
behavior under measurement conditions. This step involves the mathematical and numerical 
description of the relevant physical processes, the definition of model geometry, the 
assignment of initial and boundary conditions, the discretization in space and time, the 
selection of zones over which the model parameters are believed to be constant, etc. All the 
parameters that are not subject to the estimation process are then fixed at their best known 
values. It is important to realize that the fixed parameters are part of the model structure to 
which the solution of the inverse problem refers. The forward problem is solved by the 
TOUGH2 simulator. 

 
(2) The next step is to define a vector ˜ p  of length n  containing the parameters to be estimated by 

inverse modeling. Since the true parameters cannot be known, we replace them with the 
corresponding model parameters p . If performing uncertainty propagation analyses, p  holds 
the parameters considered uncertain. The parameters must be TOUGH2 input parameters, and 
may include hydrogeologic characteristics, thermal properties, initial and boundary 
conditions, as well as all aspects of the model that can be parameterized. An element of p  
may represent a single TOUGH2 input parameter, multiple TOUGH2 input parameters, or a 
function of TOUGH2 input parameters. Furthermore, the parameter may be subjected to a 
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transformation (e.g., taking its logarithm) to make the inverse problem more linear or to 
change the distributional assumption about the parameter. 

 
(3) An initial guess has to be assigned to each element of p . The vector holding the initial 

guesses is denoted p0 . Note that p0  affects the initial sensitivity coefficients and the 
efficiency of the minimization algorithm. Multiple inversions with different initial guesses 
should be performed to detect potential local minima. While often identical, the vector of 
initial guesses, p0 , must be distinguished from the prior information vector, p *, which holds 
independently measured or estimated parameter values. These measured parameters can be 
used to constrain or regularize the inverse problem. Prior parameter information must be 
appropriately weighted (see discussion of matrix zzC  below) to be accounted for in the 
inversion. 

 
(4) Information about the model parameters is drawn from measurements of the system state. The 

availability of sufficient, sensitive data of high quality is the key requirement for reliably 
estimating model parameters. The measured and calculated system response must correspond 
in terms of character, location, time, and scale. Model output and measured data are compared 
only at discrete points in space and time, the so-called calibration points. Vector ˜ z  of length 
m  holds the true, unknown, observable variables at all measurement locations and all 
calibration times. The vector holding the data measured at or interpolated to the calibration 
points is denoted by z * : 

 
  *],*,*,,*,[* 11 mnn

T zzpp KK +=z  (1.5.1) 
 
 The corresponding model output, which is a function of space, time, and the model 

parameters p , are summarized in vector z : 
 
  ],,,,,[)( 11 mnn

T zzpp KK +=pz  (1.5.2) 
 
 Note that if prior information about the parameters is available, then the first n  elements of 

z *  are the measured parameter values, i.e.,  zi* = pi * (i = 1,K, n) , and the estimate p  is 
considered to be the corresponding model output. 

 
 The differences between the measured and calculated system response at the calibration 

points are summarized in the residual vector r  of length m  with elements 
 
  mizzr iii ,,1* K=−=  (1.5.3) 
 
(5) The observation vector includes data that are of different type, magnitude, and accuracy. This 

requires that each residual be appropriately weighted before an aggregate measure of misfit 
can be calculated. As will be discussed in Section 2.5.3, it is reasonable to use the inverse of 
the measurement covariance matrix Czz  as the weighting matrix, i.e., the expected variability 
of the final residuals has to be assessed based on the size of the measurement errors as well as 
the random modeling errors. 
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(6) A TOUGH2 simulation is performed with the current parameter vector p  to obtain the 
elements of vector z(p) . The simulation will be repeated with updated parameters as 
proposed by the minimization algorithm (see Steps 8 and 9). 

 
(7) The calculated and measured system response is compared by calculating an aggregate 

measure of misfit, which is termed objective function, S . The objective function is usually 
some norm of the weighted residuals. If a distributional assumption about the residuals is 
made, the objective function can be derived from maximum likelihood considerations. The 
weighted least-squares objective function is the most widely used misfit criterion. iTOUGH2 
offers additional objective functions to increase the robustness of an inversion. The objective 
function is discussed in detail in Section 2.6. 

 
(8) The purpose of the minimization algorithm is to find the minimum of the objective function 

by iteratively updating the model parameters. Since the model output z(p)  depends on the 
parameters to be estimated, the fit can be improved by changing the elements of parameter 
vector p . Consequently, the search for the minimum takes place in the n -dimensional 
parameter space. A number of strategies exist to find parameter combinations that iteratively 
yield smaller values of the objective function; they will be discussed in Section 2.7. 

 
(9) Once no further decrease in the objective function can be achieved, the iterative minimization 

procedure is terminated. Convergence criteria used in iTOUGH2 are discussed in Section 
2.7.8. Since the objective function is a global measure of the misfit between the data and the 
corresponding model output, the parameter vector p  that minimizes S  is considered the best-
estimate parameter set. 

 
(10) One of the key advantages of a formalized approach to parameter estimation is the possibility 

to assess the goodness-of-fit, the estimation error, and the uncertainty of the model 
predictions. Note that if the data are not properly reproduced by the model, i.e., if the final 
residuals are large or exhibit systematic errors, the resulting parameter set is likely to be 
inadequate or highly biased. Furthermore, a good match does not imply that the estimates are 
reasonable. They may be highly uncertain due to high parameter correlations. The residual, 
error, and uncertainty propagation analyses are discussed in Section 2.8. 
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1.6  Introductory Example 
 
 The process of parameter estimation by automatic model calibration is illustrated in the 
following example, which is described in detail in Finsterle and Persoff [1997]. The example is also 
part of the collection of iTOUGH2 sample problems [Finsterle, 2007c; Problem 2]. 
 
 A laboratory experiment was designed to estimate hydrogeologic parameters of very tight rock 
samples. A schematic of the experimental apparatus is shown in Figure 1.6.1. A rock sample is 
dried and placed in a sample holder, which is attached to two relatively small gas reservoirs. To 
conduct a test, the upstream reservoir is rapidly pressurized using nitrogen gas to a value about 300 
kPa above the initial pressure of the system. Gas starts to flow through the sample, and the change 
of pressure with time is monitored in both reservoirs. 
 
 

N2 calib. 
gauge

Whitey ball valve 
pressure transducer

pup

relief 
valve

manual 
vent

pdo

∆p

 
 
Figure 1.6.1. Schematic of gas-pressure-pulse-decay apparatus. 
 
 
 The steps listed in Table 1.5.1 and discussed in general terms in the previous section are 
followed here for the specific example. 
 
(1) As part of the model conceptualization, the relevant physical processes have to be identified, 

mathematically described, and implemented into the numerical simulator. In this example, it 
is sufficient to consider single-phase gas flow.  In porous media with very low permeability 
and porosity, the mass flux F  [kg s-1 m2] of gas may be enhanced as a result of slip flow 
known as the Klinkenberg effect. 
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  p
p

b
k ∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

µ
ρ

1F  (1.6.1) 

 Here, k  is the absolute permeability [m2], ρ  is the density [kg m-3], µ  is the dynamic 
viscosity [Pa s], and p  is the gas pressure [Pa]. The term in parentheses accounts for 
enhanced gas slip flow, which occurs when the mean free path of the molecules is large 
relative to the characteristic dimension of the pores. Slip flow is important at low pressures 
and in small pores, when a significant fraction of molecular collisions is with the pore wall 
rather than with other gas molecules. In Equation (1.6.1), b  [Pa] is the Klinkenberg slip 
factor, which is a characteristic of both the geometry of the pore space and the 
thermophysical properties of the gas. It is directly proportional to the mean free path of the 
molecules [Klinkenberg, 1941]. This flow equation and the appropriate equations-of-state 
enter the mass- and energy-balance equations solved by TOUGH2. Furthermore, the gas 
reservoirs and the core are discretized as a one-dimensional flow problem, and the initial 
pressure in the model is set to the first measured pressure value. 

(2) The parameters to be estimated are the porosity φ , the absolute permeability k  [m2], and the 
Klinkenberg factor b  [Pa]. Since both k  and b  are expected to vary over many orders of 
magnitude, we will estimate the logarithm of these two parameters. Further-more, logarithmic 
transformation makes the inverse problem more linear, and prevents the parameters from 
becoming negative. The parameter vector therefore is of length n = 3 and has the elements 

)]log(),log(,[ bkT φ=p . 

(3) The initial parameter values are chosen to be φ = 0.015, log(k) = −19.0 , and 
log(b) = 7.0 , defining the elements of vector p0 . These initial values are guesses that are 
not weighted as prior information. In this example, the inversion does not depend on the 
initial parameter set. 

(4) Observations available for model calibration are the pressure data in the upstream and 
downstream gas reservoir. It is obvious from Equation (1.6.1) that the absolute permeability 
and the Klinkenberg factor are strongly correlated if the average pressure in the sample 
remains constant. Therefore, three experiments performed on the same core but at three 
different pressure levels are inverted jointly to allow for an independent estimation of k  and 
b  (more details can be found in Finsterle and Persoff [1997]). We select 30 calibration points 
in time, logarithmically spaced between 100 and 68,600 seconds. Note that significantly more 
data points were measured through time, but calibration will occur only against interpolated 
pressures observed in the two reservoirs during each of the three experiments at 30 selected 
points in time. The total number of calibration points is therefore 

1803023 =××=⋅⋅= timesreservoirseriments mmmm exp . 

(5) We assume that the measurement errors of the pressure data are uncorrelated and on the order 
of 1000== zzi

σσ  Pa, mni ,,1 K+= . The covariance matrix Czz  is therefore a m × m  
matrix with σz

2
 on the diagonal (with the exception of the first three diagonal elements, 

which are zero to avoid inclusion of prior information about the parameters) and zeroes 
elsewhere. 

(6) The experiment is simulated using the forward model TOUGH2. The initial pressures in the 
upstream reservoirs of the three experiments are set to about 300 kPa above the respective 
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initial pressures in the core. The dash-dotted lines in Figure 1.6.2 show the pressure in the 
upstream and downstream reservoirs through time as calculated with the initial parameter set 

0p . 

(7) The difference between the model calculation and the data at the calibration points is 
measured by the objective function. The standard least-squares objective function chosen here 
is the sum of the squared weighted residuals, leading to maximum-likelihood estimates if the 
residuals are normally distributed: 

  ∑
=

− −
==

m

i z

ii
zz

T

i

zz
S

1
2

2
1 )*(

σ
rCr  (1.6.2) 

(8) The Levenberg-Marquardt minimization algorithm described in Section 2.7.4 is used to 
propose new parameter sets pk  that iteratively reduce the value of the objective function. The 
Levenberg-Marquardt algorithm requires evaluating the sensitivity of the calculated pressures 
zj  with respect to the parameters pi , providing the search direction in the n -dimensional 
parameter space. 

(9) If a certain convergence criterion is met (here, the maximum number of unsuccessful uphill 
steps was reached), go to Step 10, otherwise repeat Steps 6 through 8 with the updated 
parameter vector kp . The fit obtained after 7 iterations is shown in Figure 1.6.2 (solid lines), 
matching the observed data (symbols) reasonably well. 

(10) The error analysis reveals, however, that the standard mean error is larger than the expected 
mean residual of 1000 Pa. The reason for the unsatisfactory match is a systematic error (a 
leak in the measuring apparatus and inappropriate initial conditions), which becomes apparent 
when examining the residual plot shown in Figure 1.6.3. Given this result, the estimated 
parameters are likely to be biased despite a relatively small estimation uncertainty. These 
difficulties are resolved by parameterization of the systematic errors as discussed in Finsterle 
and Persoff [1997]. 

 
 The example illustrates the process and main elements of inverse modeling, which will be 
discussed in detail in the following chapter. The example also demonstrates the importance of a 
formalized approach and the error analysis, which identified weaknesses in the data and the 
conceptual model. 
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Figure 1.6.2. Comparison between measure and calculated pressure transients with the initial and 
final parameter sets. 
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Figure 1.6.3. Residuals as a function of time, showing systematic overprediction of pressures at late 
times for Experiments 2 and 3. 
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1.7 Typing Conventions and Variable Definitions 
 
 Table 1.7.1 summarizes the main variables. The typing conventions are as follows: 
 
• Scalars are represented by plain characters, e.g., rlk . 
• Vectors are lower-case bold characters, e.g., p . 
• Matrices are upper-case bold characters, e.g., J , Czz . 
• Elements of vectors and matrices are indexed scalars, e.g., Jij , zi . 
• Measured quantities are indicated with an asterisks (*), e.g., zi *; the true (usually unknown) 

values are indicated by a tilde, e.g., ˜ z i ; the calculated or estimated variables are shown as plain 
characters, e.g., zi ; best estimates are indicated with a carat, e.g., ˆ p . 

 
 
 Table 1.7.1. Main Variables and Their Definitions 

Variable Dimension Definition Equation 

α  

α  

scalar 

scalar 

Level of significance; (1 − α )  is confidence level 

Perturbation factor for calculating derivatives 

- 

- 

cij  scalar 
Covariance of estimated parameter  

(off-diagonal element of Cpp ) 
2.8.4.2 

Γ i  scalar Ratio of conditional and marginal standard deviation 2.8.4.4 

ppC  n × n  Covariance matrix of estimated parameters 2.8.4.2 

zzC  m × m  A priori covariance matrix of measurement errors 2.5.3.1 

zzˆˆC  m × m  A posteriori covariance matrix of predictions 2.8.5.7 

H  n × n  Hessian matrix 2.7.2.7 

J  m × n  Jacobian matrix with sensitivity coefficients 2.7.2.4 

K  

K  

scalar 

scalar 

Maximum number of iTOUGH2 iterations 

Number of observation types in an inversion 

- 

- 

k  scalar iTOUGH2 iteration index - 

λ  scalar Levenberg parameter 2.7.4.1 

m  scalar Number of calibration points 2.3.3 

ν  scalar Marquardt parameter - 

n  scalar Number of parameters - 

p  n  Parameter vector - 

p * n  Prior information - 
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Table 1.7.1. (cont.) Main Variables and Their Definitions 

Variable Dimension Definition Equation 

kp  n  Parameter vector at iteration k  2.7.1.1 
ˆ p  n  Best-estimate parameter set  

r  m  Residual 2.4.1 

ijr  scalar Correlation coefficient 2.8.4.3 

2
iσ  scalar 

A priori error variance (measurement error, 

diagonal element of zzC ) 
2.5.3.1 

2

ipσ  scalar 
A posteriori  error variance of estimated parameter 

(diagonal element of Cpp ) 
2.8.4.2 

2
0σ  scalar Dimensionless a priori error variance 2.5.3.2 

2
0s  scalar Dimensionless posteriori or estimated error variance 2.8.3.1 

S  scalar Objective function 2.6.4.4 

1−
zzV  m × m  Weighting matrix 2.5.3.2 

w  m  Normalized residual (a posteriori) 2.8.5.10 

y  

y  

m  

m  

Normalized residual (a priori) 

Local reliability 

2.6.5.2 

2.8.5.9 

z  m  Observable variables 2.3.2 

z *  m  Measurement vector, includes prior information 2.3.1 

˜ z  m  True system response - 

ˆ z  m  Predicted system response - 
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2. INVERSE MODELING THEORY 
 

2.1 Introduction 
 
 The basic concept of estimating parameters by matching the model to observations dates back 
to Carl Friedrich Gauss, who introduced the method of least squares for the analysis of 
astronomical and geodetic data during the last decade of the eighteenth century [Gauss, 1821]. 
Gauss made contributions to all aspects of parameter estimation, providing a detailed discussion of 
measurement errors, a probabilistic justification of the least-squares objective function, advances in 
computational methods (Gaussian elimination), and an analysis of estimation uncertainty. While the 
algorithms for identifying the minimum of the objective function have been continually refined, the 
basic idea as well as the difficulties associated with solving the inverse problem remain essentially 
the same. 
 
 The theory on inverse modeling is described in a variety of textbooks for applied mathematics 
and mathematical statistics (see, for example, Beck and Arnold [1977], Bickel and Doksum [1977], 
Gill et al. [1981], Scales [1985], Larsen and Marx [1986], Van Huffel and Vandewalle [1991], 
Stengel [1994], Björck [1996]). Many of these textbooks focus on a discussion of optimality 
conditions for specific types of functions and constraints. In groundwater and multiphase flow 
modeling, the model output is usually a highly nonlinear, complex function of the parameters, 
which are constrained by simple physical bounds. A theoretical analysis of the objective function’s 
convexity is not feasible for numerically calculated model output. Practical aspects of how to 
formulate the inverse problem, and how to identify the minimum of the objective function, are of 
primary interest to the hydrogeologist. Good introductions from a general, practical perspective are 
given by Beck and Arnold [1977], Gill et al. [1981] and Scales [1985]. A concise description of 
certain aspects of inverse modeling can also be found in Press et al. [1992]. 
 
 A large number of research papers and book articles discuss the concept of inverse modeling in 
the context of hydrogeology. They are summarized and reviewed by Neuman [1973], Yeh [1986], 
Kool et al. [1987], Carrera [1988], Ewing and Lin [1991], Sun [1994], and McLaughlin and 
Townley [1996]. The approach implemented in iTOUGH2 is best described in the classic series of 
papers by Carrera and Neuman [1986abc]. 
 
 This chapter is structured according to the outline given by Figure 1.5.1 and Table 1.5.1, and 
concludes with a discussion of selected inverse modeling issues. Theoretical considerations are 
complemented with examples specific to iTOUGH2, and references to related iTOUGH2 
commands as documented in the report “iTOUGH2 Command Reference” [Finsterle, 2007b] are 
made where appropriate. A description of the general command syntax is given in Section 3.2 of 
Finsterle [2007b]. 
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2.2 Parameters 
 
 The parameter vector p  of length n  contains the TOUGH2 input parameters (or functions 
thereof) to be estimated by inverse modeling. These parameters may represent hydrogeologic 
characteristics, thermal properties, initial or boundary conditions, and all aspects of the model that 
can be parameterized. Note that for a heterogeneous aquifer with properties continuously varying in 
space, the dimension of the parameter vector is theoretically infinite. In practice, however, the 
spatial variables as well as the continuous partial differential equations are discretized (e.g., using 
an integrated finite difference formulation), with constant properties for each gridblock. 
Furthermore, multiple gridblocks can be assigned to specific subregions of the model domain, 
which are characterized by constant parameter values, further reducing the number of parameters to 
be estimated. This process is referred to as zonation. Finally, heterogeneity can be described by 
geostatistical methods, in which the spatial variability is characterized by a relatively small number 
of geostatistical parameters (e.g., parameters of a variogram, values at pilot points, attractor 
parameters; for a review of geostatistically based inverse methods, see Zimmerman et al. [1998]). 
 
 The reduction of the number of parameters from infinity to a finite dimension n  is called 
parameterization [Yeh, 1986]. This definition includes the description of data points by means of a 
function and its coefficients. Physical processes such as leaks in an experimental apparatus or time-
varying boundary conditions can also be subjected to parameterization by describing them with a 
coefficient or a function, making these processes accessible for estimation. 
 
 It is important to realize that the parameters of vector p  are only a subset of the  parameters 
specified in the TOUGH2 input file. Vector p  contains only those parameters that will be subjected 
to the estimation process. All the other parameters specified in the TOUGH2 input file are fixed and 
become part of the conceptual model. Due to inherent correlations between the fixed and the 
variable parameters, the best-estimate parameter set depends on the chosen values of the fixed 
parameters and the conceptual model in general, i.e., the parameters estimated by inverse modeling 
are always model-related. 
 
 If one is performing uncertainty propagation analyses, p  holds the parameters considered 
uncertain. A probability density function is assigned to these parameters, and the effect on the 
uncertainty of the model predictions is then evaluated either by means of linear error propagation 
analysis or Monte Carlo simulations (see Section 2.8.7). 
 
 An element of p  may represent a single TOUGH2 input parameter, multiple TOUGH2 input 
parameters, or a function of TOUGH2 input parameters (see examples below). Furthermore, the 
parameter may be transformed to reduce the nonlinearity of the inverse problem, to eliminate 
constraints, or to reflect a certain distributional assumption about the parameter. The most 
frequently applied transformation is taking the logarithm of a parameter, which can make the 
inverse problem more linear (for a discussion, see Carrera and Neuman [1986c]), prevents the 
parameter from becoming negative, and reflects a log-normal distribution of the parameter’s 
uncertainty. Note that all statistical measures calculated by iTOUGH2 refer to the transformed 
parameter rather than the parameter used in TOUGH2. 
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 While the elements of vector p  are the unknown parameters to be estimated by inverse 
modeling, there is often some independent prior information available about these parameters. Prior 
information such as measured parameter values can be included in the analysis to regularize the 
inverse problem and to constrain the estimates [Carrera and Neuman, 1986a; Chavent, 1991;Vasco 
et al., 1997; Neumaier, 1998]. Differences between measured parameter values and the 
corresponding estimates are treated in the same manner as the differences between the observed and 
calculated system state. Consequently, the elements of the prior information vector p * are included 
in the observation vector z *  (see Section 2.3), i.e., the first n  elements of z *  are identical with 
the elements of p *, and the first n  elements of vector z  are identical with the estimates p . Prior 
information about a parameter is only considered if a finite standard deviation is specified for this 
parameter. 
 
 The use of prior information as a means to regularize the inverse problem is convenient. 
However, it may also be misleading. The data used for calibration contain a finite amount of 
information about the parameters to be estimated. If an ill-posed inverse problem is formulated 
using these data, it can be turned into a well-posed problem by regularization. This means, however, 
that new information must be added, such as a smoothing criterion (see, for example, Vasco et al 
[1997]), an arbitrary conditioning matrix (see, for example, Kuczera and Mroczkowski [1998]) or 
prior parameter information (see, for example, Carrera and Neuman [1986a]). While each of these 
regularization approaches may lead to a solution of the inverse problem, they sometimes mask the 
fact that the original data do not contain enough information for parameter estimation. Furthermore, 
the prior information value must be conceptually consistent with the value determined from the 
observations of the system response to avoid biased estimation. For example, if the permeability 
measured on a laboratory core is used as prior information in an inversion of a regional flow model, 
the difference in scale may compromise the solution. The use of prior information is only 
reasonable if it is an integral, well-understood part of the overall calibration strategy. 
 
 An initial guess has to be assigned to each element of p . The vector holding the initial guesses 
is denoted p0  . Note that the p0  affects the initial sensitivity coefficients and the efficiency of the 
minimization algorithm. Multiple inversions with different initial guesses should be performed to 
detect potential local minima. While often identical, the vector of initial guesses, p0 , can be 
different from the prior information vector, p *, which holds independently measured or estimated 
parameter values. 
 
 Obtaining meaningful estimates of all the parameters in p  is only possible if enough data of 
good quality are available, and if the model output at the calibration points is sufficiently sensitive 
to changes in the parameters. Furthermore, the parameters must not be strongly correlated. 
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SUMMARY    
 
 The parameter vector p  holds a subset of TOUGH2 input parameters or functions thereof. 
These are the n  unknown or uncertain parameters subjected to parameter estimation, sensitivity, or 
uncertainty propagation analysis. An initial guess has to be provided, which is the starting point for 
the optimization, the base-case parameter set for sensitivity analysis, or the mean for uncertainty 
propagation analysis. Prior information can be included if appropriately weighted against the 
observations of the system state. 
 
EXAMPLES 
 
 The following examples describe individual elements of a hypothetical iTOUGH2 parameter 
vector p  of length n = 10 . 
 

p1 Porosity of material domain LOAM1. 

p2  Logarithm of the absolute permeability along the third (vertical) principal axis of all elements 
belonging to material domain SAND1. 

p3  Logarithm of the second parameter of the default capillary pressure function (e.g., 
representing the van Genuchten parameter α/1  if ICP=11). 

p4  Initial gas saturation in all elements belonging to material domains LOAM1, LOAM2, and 
LOAM3. 

p5  A factor multiplying the injection rates specified for sources SOU_1 through SOU10. 

p6  An unknown offset of the pressure sensor at observation Set 3. 

p7  Fracture spacing, which is a parameter of the MINC preprocessor. 

p8  The time at which a spill occurred from element INJ99. 

p9  The pressure in all (boundary) elements belonging to material domain BOUND. 

p10  A user-specified parameter, which can be any combination of TOUGH2 variables. 
 
RELATED iTOUGH2 COMMANDS 
 
 The elements of parameter vector p  are defined through a combination of iTOUGH2 
commands in block > PARAMETER. 
 
 Simple parameter transformations are performed using commands >>>> FACTOR, >>>> 
LOGARITHM, or >>>> LOG(F). 
 
 The initial guess and/or prior information values are taken directly from the TOUGH2 input 
file; they can be overwritten by using commands >>>> GUESS, >>>> PRIOR, and 
>> GUESS.  
 
 In order to consider prior information, a standard deviation must be specified using command 
>>>> DEVIATION (p) or a related command. Potential parameter variability for sensitivity 
analyses is indicated with command >>>> VARIATION. 
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2.3 Observations 
 
 The observation vector z  of length m  contains the calibration points. Calibration points consist 
of observable variables at discrete points in space and time, at which measured data are available. 
While the true system response is continuous in space and time and would be described by an 
infinite number of variables, measurements are sparse, limiting the amount of information available 
for inverse modeling. Because the dimension of vector z  is finite, it is necessary to select a subset 
of the output variables and pick discrete points in space and time as the points at which the 
measured and calculated system response will be compared (see Section 2.4). The type of variable 
used for calibration is obviously given by the type of measurements available, and the location of 
measurement stations usually determines the points in space at which calibration should occur. The 
selection of calibration points in time, however, is somewhat subjective and may also depend on the 
time-stepping algorithm of the model or other factors. Note that calibration points do not have to 
coincide with the exact observation time of actual data points. In iTOUGH2, linear interpolation is 
applied to obtain a data point at the selected calibration time. Spatial interpolation from observation 
points to model gridblocks, however, must be performed as part of data preprocessing outside 
iTOUGH2.  
 
 It is important to realize that the spatial and temporal distribution of calibration points has an 
impact on the inverse modeling results. For example, selecting logarithmically spaced calibration 
times to match data from a transient test puts more weight on the early-time data relative to the late-
time data, possibly affecting the support scale and thus the nature of the parameter to be estimated. 
Similarly, a high data density in one area of the model emphasizes the corresponding subsystem, 
potentially compromising the match to data from an adjacent, less densely sampled region. 
 
 Complementary to the observed values at the calibration points (i.e., the actual, transformed, or 
interpolated data) are the simulation results. Simulation results are represented by TOUGH2 output 
variables (or functions thereof); they depend on the input parameters to be estimated.  
 
 An observable variable qualifies as a calibration point only if it is sufficiently sensitive to 
changes in the parameters to be estimated. The higher the absolute value of the sensitivity 
coefficient |/| pz ∂∂ , the more information  regarding the parameters of interest is contained in the 
corresponding data point. High sensitivity is a necessary, albeit not sufficient requirement for 
accurate parameter estimation (for a detailed discussion, see Finsterle and Persoff [1997], as well as 
Section 2.8.2).  
 
 The vector of observable variables may also contain parameters. For example, if permeability 
was measured on cores in the laboratory, this information can be considered as an additional data 
point, and treated along with the direct observations of the system response. Such measured 
parameter values are referred to as prior information. 
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SUMMARY 
 
 The vector holding the data measured at or interpolated to the calibration points is denoted by 
z * . 
 *],*,*,,*,[* 11 mnn

T zzpp KK +=z  (2.3.1) 
 
z *  differs from the vector of the true system response ˜ z  by the unknown measurement errors (see 
discussion in Section 2.5.2). The corresponding model output, which is a function of space, time, 
and the model parameters p , is summarized in vector z : 
 
 ],,,,,[)( 11 mnn

T zzpp KK +=pz  (2.3.2) 
 
If prior information about the parameters is available, the first n  elements of z *  are the measured 
parameter values, i.e.,  zi* = pi * (i = 1,K, n) , and the current estimate p  is considered to be the 
corresponding model output. 
 
 
EXAMPLES 
 
 The following examples describe individual elements of a hypothetical iTOUGH2 observation 
vector z  and the corresponding measurement vector z * . The example also illustrates the structure 
of these vectors as stored in iTOUGH2, with the first n  elements reserved for prior information, 
followed by all observations at time T1, then all observations at T2 , etc. If no time windows are 
specified, the total length of vector z  is given by  
 
 MAXMnnnm timesdatasets ≤⋅+=  (2.3.3) 
 
where ndatasets ≤ MAXO is the number of data sets (i.e., measurement sensors), and 
ntimes ≤ MAXTIM  is the number of calibration times. The parameters MAXM , MAXO, and 
MAXTIM  are the maximum array dimensions as specified in file maxsize.inc (see Section 5.2). If 
time windows are specified, the number of elements in z  is less than that of Equation (2.3.3). 
 

*1z  Independently measured porosity of material domain LOAM1, included as prior 
information. 

1z  Porosity of material domain LOAM1, currently estimated based on information contained 
in z * . 

*2z  Measured pressure at Sensor 1X  and at time 1T  

2z  Calculated pressure at gridblock SEN 1 (representing Sensor 1X ), at time 1T . 

*3z  Measured TCE concentration in liquid phase at Sensor 2X  and at time 1T . 

3z  Calculated TCE concentration in liquid phase at gridblock SEN 2 (representing Sensor 

2X ), at time 1T . 

*4z  Measured cumulative liquid flow rate into opening 3X  at time 1T . 
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4z  Calculated change of total liquid mass in all gridblocks associated with material domain 
DRIFT (representing opening 3X ), at time 1T . 

*3 niz +  Same measurement types as before, at times 1+iT . 

niz +3  Same model output as before, at times 1+iT . 
 
 
RELATED iTOUGH2 COMMANDS 
 
 The elements of observation vector z  are defined through a combination of iTOUGH2 
commands in block > OBSERVATION. The second-level commands indicate the observation 
type; the third-level commands define the location.  
 
 The calibration times are specified using command >> TIMES. If a specific data set does not 
cover the entire simulation time, command >>>> WINDOW should be used.  
 
 The measurement values are submitted using command >>>> DATA. One might want to 
calibrate against the logarithm of the data rather than their values (command >>>> LOGARITHM). 
This data transformation may be useful to make nonsymmetric residual distributions more 
symmetric, better complying with the distributional assumptions underlying maximum-likelihood 
estimation.  
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2.4 Residuals 
 
 The residual vector r  of length m  contains the differences between the measured and 
calculated system response with elements 
 
 mizzr iii ,,1* K=−=  (2.4.1) 
 
For example, 2r  is the difference between the measured and calculated pressure at time 1T  (see 
example in Section 2.3). A special type of residuals consists of the differences between the 
measured parameters (prior information) and the estimated parameter values. These differences—
appropriately weighted (see Section 2.5)—can be used to regularize the inverse problem, making it 
more stable and well-posed [Carrera and Neuman, 1986a; Neumaier, 1998]. The residuals obtained 
with the best-estimate parameter set p̂  at the end of an inversion are termed the final residuals. 
 
 In inverse modeling, parameters are estimated by minimizing some measure of misfit, the 
objective function (see Section 2.6), which is a function of the residuals. Since the residuals 
determine the misfit criterion, it is crucial that the measurements z *  and the corresponding model 
output z  represent the same physical entity. Any conceptual difference between the measured value 
and its representation in the numerical model necessarily leads to a bias in the estimated parameters. 
There are many reasons for a potential inconsistency between the measured and calculated values. 
For example, the support scale or averaging volume of a certain measurement may be significantly 
smaller than the size of the gridblock used in the numerical model. Drawdown measurements in a 
pumping well can only be directly compared with gridblock pressures if the well is fully discretized 
in the model. Downhole pressures or fractional flows at the head of a geothermal well may be 
different from the vertically averaged values calculated in a two-dimensional model of the reservoir. 
Relative pressure measurements may be influenced by atmospheric pressure fluctuations. If these 
effects are not properly accounted for, the parameters are perturbed from their most likely estimates 
in an attempt to partly compensate for the error.  
 
 Consistency between the measured and simulated quantities must be assured. If the two 
variables are conceptually different, appropriate compensation or correction can be made either in 
the numerical model (e.g., by discretizing the well or even the measuring device, or by accurate 
simulation of all factors that affect the measurements) or by preprocessing the data accordingly 
(e.g., appropriate averaging, interpolation, compensation for temperature effects, removal of shifts 
and trends in the data). In many cases, both the model output and the measurements must be 
adjusted to ensure consistency between the two. 
 
SUMMARY 
 
 Parameter estimation by inverse modeling is based on a comparison between measured values 
and the corresponding model output. The residual is defined as the difference between the measured 
and calculated system response at a given calibration point. Measured and calculated variables must 
be consistent.  
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2.5 The Stochastic Model 
 
2.5.1 Introduction 
 
 Inverse modeling can be formulated in the framework of mathematical statistics, which may 
provide a probabilistic justification for using a specific estimator (such as least squares). The 
maximum likelihood approach will be discussed in Section 2.6. From a more practical point of 
view, the stochastic model as summarized in the observation covariance matrix zzC  (see Section 
2.5.3) simply provides the weighting factors to scale observations of different type, magnitude, and 
accuracy. Besides these practical considerations, one should realize that inverse modeling makes the 
implicit statistical assumption that the final residuals )ˆ(pr  (where p̂  is the best-estimate parameter 
set) are error terms, i.e., they are random variables following a certain distribution. The stochastic 
model is therefore defined here as the a priori description of the distributional assumption about the 
residuals. 
 
 The sources and nature of the error term will be discussed in Section 2.5.2; the observation 
covariance matrix, the weighting matrix, and the a priori error variance are introduced in 
Section 2.5.3. 
 
 
2.5.2 Systematic and random errors 
 
 The residuals  can be represented by a statistical model of the form 
 
 iddimmidimiii bbeezzr )()()ˆ(* εε +++=+=−= p  (2.5.2.1) 
 
According to this equation, residual i  is the sum of the error in the model, )ˆ(~ piiim zze −= , and 
the error in the data, iiid zze ~* −= , where iz~  is the true value. Both modeling error and data error 
have a systematic component bi  and a random component ε i . 
 
 Consider a data set that is drawn from a true, but unknown system response (see Figure 2.5.2.1). 
The individual measurement error is defined as the difference between the measured and the true 
value. The modeling error is defined as the difference between the true and the calculated value. 
Since the true system response is unknown, neither the measurement error nor the modeling error is 
known—only the residual 
 
 )ˆ(*))ˆ(~()~*( pzzpzzzzeer −=−−−=+= md  (2.5.2.2) 
 
can be calculated. However, the errors may be described in statistical terms, implying that they are 
random following a certain distribution. Recall that estimating parameters by history matching is 
based on the assumption that the calculated system response is as close to the true system response 
as possible, the latter being represented by a set of noisy data points. If the true values are identified, 
the residuals are by definition equal to the measurement errors. In other words, the statistical 
characteristics of the residuals should be identical or at least similar to those of the measurement 
errors. This interpretation assumes that only random errors are present, which can be described 



   

iTOUGH2 USER’S GUIDE 24 THEORY 

using statistical concepts. The impact of systematic errors as indicated in Equation (2.5.2.1) will be 
discussed next. 
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Figure 2.5.2.1. True, measured, and calculated system response, and definition of residual, 
measurement and modeling error. 
 
 
  It is very important to appreciate the difference between systematic and random components. 
Because it is usually not possible or relevant to identify whether a deviation between the simulation 
result and the data is attributable to an error in the data or a modeling error, we disregard the source 
of an error and only distinguish between its systematic and random components. The systematic 
error in the residuals is denoted by md bbb +≡ , and the random part is termed ε ≡ εd + εm . Note 
that in most cases, systematic errors from an incomplete model description outweigh the systematic 
measurement errors, i.e., dm bb >> , whereas random modeling errors such as round-off errors or 
numerical oscillations are usually small compared with the random errors in the data, i.e., 

dm εε << . 
 
 Systematic and random components and their relation to the functional and stochastic model, 
respectively, are illustrated for the ideal case (i.e., no systematic errors) in Table 2.5.2.1, and for the 
nonideal case in Table 2.5.2.2. 
 
 Under ideal conditions, systematic errors are absent, i.e., 0b = . As mentioned above, the 
systematic component of the observed system behavior is identical with the true system behavior, 
which is presumably identified by accurate modeling of the physics of the flow problem. The 
systematic component is then represented by the functional model, which includes the conceptual 
model and its application to the conditions under which the data have been collected. In the absence 
of systematic modeling or measurement errors, the true system response is asymptotically 
identified, and the distribution of the final residuals is consistent with that of the measurement 
errors as described by the stochastic model. Note that since only one, finite set of noisy data is 
available for calibration, the estimated parameters remain uncertain. Nevertheless, this uncertainty 
can be estimated (see Section 2.7.4). 



   

iTOUGH2 USER’S GUIDE 25 THEORY 

Table 2.5.2.1. Systematic and Random Components Under Ideal Conditions 

data 

z *  

 

= 

true response 

˜ z  

 

+ 

measurement error 

ed  

  identified part 

systematic component 

smooth 

conceptual 

functional model 

TOUGH2 result 

 unidentified part 

random component 

rough 

distributional 

stochastic model 

Czz = σ0
2

⋅ Vzz  

calibration point 

z *  

 

= 

calculated response 

z(ˆ p )  

 

+ 

residual 

r(ˆ p )  

 
 
Table 2.5.2.2. Systematic and Random Components Under Non-Ideal Conditions 

calibration point 

z *  

 

= 

calculated response 

z(ˆ p )  

|| 

˜ z + Xb
f

⋅ b + Xε
f
⋅ ε  

true behavior + systematic errors + 
random errors 

 

+ 

 

+ 

residual 

r(ˆ p )  

|| 

Xb
s
⋅ b + Xε

s
⋅ε  

systematic error + random error 

Xb
f

 : Systematic error explained by functional model 

Xb
s

= (1− Xb
f
)  : Systematic error to be explained by statistical model  

Xε
s
 : Random error to be explained by statistical model 

Xε
f

= (1− Xε
s
)  : Random error explained by functional model 

 
 Table 2.5.2.2 shows the nonideal case. Systematic measurement errors, inconsistencies between 
the observed and modeled variables (see discussion in Section 2.4), and modeling errors almost 
always lead to a sizable systematic error component. In these cases, our hope is that f

bX  is small, 
pushing the systematic errors into the residuals, where they can be readily identified. Unfortunately, 
the size of f

bX  is not known. It depends on the nature of the systematic error as compared to that of 
the observed system behavior. Large random errors (e.g., outliers) may also bias the inversion. 
Again, we hope that sX ε  is small and the outliers can be identified in the residual analysis and 
eliminated. The Fisher model test (see Section 2.8.3) is a global check to see whether the 
distribution of the final residuals is consistent with the distributional assumption of the stochastic 
model, potentially identifying flaws in either the stochastic or the functional model.  
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 The critical point to realize is that the observed system response is not separated into a true 
component and an error component, but into a systematic part (modeled by the process simulator 
TOUGH2), and a random part (described by the stochastic model). The functional model will try to 
explain not only the (true) systematic component of the system behavior, but also any systematic 
error in the data or the model; the remaining difference—the final residual—is considered a random 
component to be analyzed statistically. As a result, the estimated parameter set ˆ p  may not be an 
unbiased estimate of the true parameter set ˜ p , and the model prediction will not closely reproduce 
the true system behavior ˜ z . Furthermore, the assumption of randomness in the final residuals, 
which underlies the a posteriori error analysis, is violated, leading to problematic uncertainty 
estimates. A careful residual analysis as discussed in Section 2.8.5 may help identify systematic 
components in the final residuals as well as outliers that do not conform with the distributional 
assumption. 
 
 We conclude that systematic errors must be removed from both the data and the model, so that 
the final residuals only contain random components that can be described by the stochastic model. 
The calculated system response, )ˆ(pz , is close to the true system behavior only if f

bX , sX ε , and b  
are sufficiently small, making p̂  a good estimate of the true parameter set. 
 
 
SUMMARY 
 
 The stochastic model describes the random component of the system response, which is not 
identified by the functional model. 
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2.5.3 Observation covariance matrix 
 
 In the previous section we saw that the unexplained parts of the system response cannot be 
described individually, but must be treated by means of a stochastic model, assuming that the 
residuals are random and follow a certain distribution. Furthermore, the distribution of the final 
residuals is supposed to be consistent with the distribution of the measurement errors, assuming that 
the true system response is correctly identified by the model. 
 
 A reasonable assumption about the measurement errors is that they are uncorrelated, normally 
distributed random variables with zero mean. The a posteriori residual analysis will have to show 
that this assumption is justified. The a priori distributional assumption about the residuals can 
therefore be summarized in a covariance matrix zzC . zzC  is an mm ×  diagonal matrix. The j th 
diagonal element is the variance that represents the measurement error of observation *jz : 
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 The purposes and interpretations of the elements of zzC  are manifold: 
 
• They scale data of different quality, i.e., an accurate measurement obtains a higher weight in the 

inversion than a poor or highly uncertain measurement. 
 
• They scale observations of different types. For example, flow rates and pressures have different 

units and their values differ by many orders of magnitude. They need to be scaled appropriately 
to be comparable in a formalized parameter estimation procedure. 

 
• They weigh the fitting error. 
 
• Czz  is the stochastic model for maximum-likelihood estimation for normally distributed 

residuals. 
 
 One should realize that only the ratios 22

ji zz σσ  are important for parameter estimation, i.e., the 
estimated parameter set ˆ p  is not affected by a linear scaling of the covariance matrix. We can 
therefore introduce a factor 2

0σ  and write 
 
 zzzz VC ⋅= 2

0σ  (2.5.3.2) 
 
where Vzz  is a positive definite matrix. The scalar 2

0σ  is termed the a priori error variance. It can 
be interpreted as the variance of a dimensionless error of size one. In iTOUGH2, a different scalar is 
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internally used for each observation type, which allows iterative updating of their relative weights 
(see Section 2.8.3). However, since 2

0σ  can assume any positive value, it is convenient to set it to 
1.0 and work with the actual covariance matrix zzC  rather than zzV . After an inversion, the 
a posteriori or estimated error variance s0

2
 is calculated. If the assumption about the overall size of 

the measurement errors was correct, and if the true system behavior is correctly identified, then the 
ratio 2

0
2
0 σs  should not significantly deviate from 1.0 (for details about the Fisher model test, see 

Section 2.8.3). 
 
SUMMARY 
 
 The observation covariance matrix zzC  contains the a priori  assumption about the variances of 
the final residuals. The elements of zzC  should be based on the assumed size of the measurement 
errors. Matrix 1−

zzV  will be used to weigh each residual during the inversion. The estimated error 
variance 2

0s  should be consistent with the a priori error variance 2
0σ . 

 
EXAMPLES 
 
 The accuracy of a certain pressure transducer may be given to be 5000 Pa. The square of this 
value could be directly used in zzC  to reflect the assumed measurement error. However, there are 
likely to be other random components in the residuals, as a result, for example, of unmodeled 
variabilities in the formation properties, which affect the measured pressures, but are not 
represented in the model. The standard deviation of the final residuals is therefore expected to be 
larger. 
 
 The standard deviation assigned to an individual data point reflects its variability, assuming the 
same observations were repeated many times. In most cases, however, only one measurement is 
available for each calibration point, i.e., it is usually not possible to estimate the standard deviation 
from a statistical analysis of a large number of measurements made at that point. Instead of looking 
at the variability of many realizations at a single calibration point, one is often forced to estimate the 
standard deviation based on the variability of one realization (the measured data) at many 
calibration points. In practice, one draws a fitting line through the data points (similar to the one 
shown in Figure 2.5.2.1) and estimates the standard deviation from the scattering of the data about 
this line. Keep in mind that the standard deviation may depend on the magnitude of the observed 
value itself, in which case it should be specified as a percentage of the measured value.  
 
 Prior information as well as the weighting of certain data points (e.g., integrated measures or 
steady-state data points used in combination with transient data points) require special 
considerations. The relative weight given to prior information or a single steady-state data point 
depends on the number of calibration points assigned to other observations. It is therefore best to 
think of the purpose of 1−

zzC  as a weighting matrix. If a single steady-state data point should receive 
a weight comparable to that of, for example, one hundred transient data points, then the standard 
deviation of the steady-state data point should be taken to be 1% of the actual measurement 
uncertainty (see also Finsterle [2007c; Problem 5]).  
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RELATED iTOUGH2 COMMANDS 
 
 The diagonal elements of matrix zzC  are specified using one of the following commands in 
block > OBSERVATIONS: 
>>>> DEVIATION, >>>> VARIANCE, >>>> WEIGHT, >>>> RELATIVE, and 
>>>> AUTO. The units of the standard deviations specified in iTOUGH2 must be identical to those 
of the corresponding data set, i.e., the standard deviations are internally multiplied by the factor 
specified using command >>>> FACTOR (o), which converts the units of the data to standard 
TOUGH2 units. If calibration occurs against the logarithm of the observed data (see command 
>>>> LOGARITHM (o)), the standard deviations must also refer to the logarithm. 
 
 The first n  diagonal elements are used to weigh prior information about the parameters, and are 
specified through one of the following commands in block > PARAMETERS:  
>>>> DEVIATION, >>>> VARIANCE, or >>>> WEIGHT. If prior information shall not be 
weighted in the inversion, command >>>> VARIATION should be used instead to describe a 
typical parameter variation. 
 
 Command >>> TAU allows iterative adjustment of the relative weights between observations 
of different types by updating the internally generated a priori error variances (see Section 2.8.3). 
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2.6 Objective Function 

 

2.6.1 The norm as a measure of misfit 
 
 The purpose of the objective function is to provide an integral measure of misfit between the 
model and the data, i.e., a parameter set that reduces the value of the objective function is 
considered superior to those with higher values because it improves the fit according to the 
criterion embedded in the objective function. The best-estimate parameter set is the one that 
minimizes the objective function. It is the topology of the objective function near the minimum that 
determines the uncertainty of the estimates and the correlation structure. The objective function may 
be convex or exhibit multiple local minima; it may be close to quadratic or highly nonlinear in 
nature; it may be continuous, differentiable, and smooth, or discontinuous, not differentiable, and 
rough. All these properties affect the choice and efficiency of the minimization algorithm, and—
more importantly—the quality of the solution, its stability, and the degree to which the inverse 
problem is well posed. 
 
 The objective function is also termed performance measure, penalty function, energy function, 
cost function, misfit criterion, etc. 
 
 The question of how to identify the minimum of the objective function is addressed in Section 
2.7, where various minimization algorithms will be discussed. Note that even if the global minimum 
of the objective function is identified, this does not necessarily mean that the fit is acceptable. This 
question is discussed in Section 2.8. 
 
 There are many ways to measure the difference between the observed and calculated system 
response. In the standard procedure of trial and error calibration, the simulation results and data are 
plotted, and a rather subjective judgment is made as to how well the model output matches the data. 
A more objective way is to calculate a norm of the residual vector: 
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 The most commonly used norms are the 1L -norm, the 2L - or Euclidean norm, and the L∞ -
norm, corresponding to the 1L -estimator, the Least Squares estimator, and the Minmax estimator, 
respectively. The choice of an appropriate objective function should be based on the properties of 
the residuals themselves. The maximum likelihood approach discussed in Section 2.6.3 takes the 
distributional assumption about the measurement errors as a basis for choosing the objective 
function. The central limit theorem leads to the assumption that the residuals are normally 
distributed, making least squares—discussed in Section 2.6.4—a reasonable choice. The normality 
assumption is also made to facilitate statistical analysis of results. Least squares is used almost 
exclusively in groundwater inverse modeling [McLaughlin and Townley, 1996] and many other 
fields. However, the distribution of the residuals often deviates from being Gaussian. For example, 
the presence of outliers in the data or systematic modeling errors lead to non-symmetric distri-
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butions, which often exhibit stronger tails than those predicted by the normal distribution. For these 
cases, alternative objective functions may be more appropriate to avoid biased estimates. These so-
called robust estimators are discussed in Section 2.6.5 
 
 
2.6.2 Properties of the objective function 
 
 The objective function is a hypersurface in the n -dimensional parameter space. The global 
minimum represents the best-estimate parameter set. Figure 2.6.2.1 is a visualization of the 
objective function for 2=n . For a nonlinear model, the topography of the objective function may 
exhibit a global minimum, multiple local minima, inflection points, stationary points, ridge lines, 
ledges, etc. However,  since the standard objective function is a sum of squares (see Section 2.6.4), 
the objective function near the global minimum is close to parabolic with elliptical contour lines. 
The second-order methods for identifying the minimum (see Section 2.7) take advantage of this 
specific property of the objective function. A linear model yields a parabolic objective function, the 
minimum of which is easy to identify. In the nonlinear case, the topography away from the 
minimum becomes intricate, making it difficult for the optimization algorithm to iteratively proceed 
towards the minimum. Moreover, an ill-posed inverse problem leads to level plains, long narrow 
valleys, or ridge lines, at which the minimum is poorly defined, if at all. In fact, it is the topology of 
the objective function that indicates whether an inverse problem is well-posed or ill-posed. For 
example, multiple parameter combinations with S  values close to that obtained at the global 
minimum indicate nonuniqueness. (The presence of local minima does not constitute 
nonuniqueness.)  Furthermore, the estimation uncertainty is related to the convexity of the objective 
function near the minimum. (This will be discussed in detail in Section 2.8.)  Assuming a 
continuous objective function that is twice differentiable, the gradient is zero at the minimum and 
the Hessian matrix is positive definite.  
 

S

p1

p2

  
Figure 2.6.2.1. Objective function in two-dimensional parameter space. 
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2.6.3 Maximum likelihood 
 
 Let p  be the parameter vector of length n . More precisely, p  is a hypothesis regarding the 
values of the deterministic, albeit uncertain model parameters. As before, z  is the observation 
vector of length m . The probability density function (PDF), Φ(z;p) , is defined as the probability 
(Pr) of observing the data z *  if p  were true: ( )pzzpz *Pr);( ==Φ . Note that p  is unknown, 
nevertheless deterministic. If the observations are independent random variables, the joint PDF is 
given by the product of the probabilities of the individual observations: 
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 From a different perspective, this equation may be seen as describing the likelihood of p  when 
zi * is fixed. This is termed the likelihood function: 
 
 Φ(z;p) ⇔ L(p;z*)  (2.6.3.2) 
 
 For each parameter set p , the likelihood function L(p; z*) gives the probability of observing 
z * . Thus we can think of L(p; z*) as a measure of how likely p  is to have produced the observed 
data z * . In other words, the likelihood function quantifies the degree to which the data support a 
given hypothesis regarding the model parameters. The method of maximum likelihood consists of 
finding the parameter set that is most likely to have produced the data.  
 
 The maximum likelihood approach is discussed for the normal distribution in the following 
section, leading to the least squares estimator. Other estimators, such as the L1- or Cauchy 
estimators presented in Section 2.6.5, may also be derived from maximum likelihood considerations 
(see also Larsen and Marx [1986]). 
 
 
2.6.4 Least squares 
 
 Under certain circumstances it is reasonable to assume that the measurement errors (z * −˜ z )  are 
normally distributed with mean 0)]~*[( =−zzE  and covariance matrix 

zz
TE Czzzz =−− ])~*)(~*[( . This assumption is only valid if sufficient data points exist, in which 

case the maximum likelihood estimator becomes consistent and asymptotically efficient, leading to 
unbiased and normally distributed estimates. Deviations from these assumptions are discussed in 
Section 2.6.5. The likelihood function for normally distributed errors can be written in its 
multivariate form as 
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 In order to determine the maximum of Equation (2.6.4.1), it is generally easier to minimize the 
negative log-likelihood or support criterion: 
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 *)];(ln[2 zpL−=Γ  (2.6.4.2) 
 
The log-likelihood criteria from independent data sets can simply be summed up to obtain the log-
likelihood of all the data used in an inversion. The negative log-likelihood function for normally 
distributed errors is given by   
 
 [ ])~*()~*(ln)2ln( 1 zzCzzC −−++⋅=Γ −

zz
T

zzm π  (2.6.4.3) 
 
where the second term on the right-hand side could be expanded to include separate terms for the 
error variance 2

0σ  and matrix zzV , and the last term could be written as a sum of the contributions 
from different, independent data sets, such as pressures, flow rates, prior information, etc. The first 
term is a constant. 
 
 If the stochastic model—the covariance matrix zzC —is assumed to be known and fixed, 
minimizing Equation (2.6.4.3) is equivalent to minimizing the Gauss-Markov objective function 
 
 ))(*())(*( 1 pzzCpzz −−= −

zz
TS  (2.6.4.4a) 

 
Note that the vector of the true system behavior, z~ , was replaced with the vector holding the model 
results, )(pz , which depend on the parameter vector p . Since rpzz =− ))(*( , and zzC  is a 
diagonal matrix, the objective function S  is the sum of the squared residuals, weighted by the 
inverse of the prior variances 2

iσ : 
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SUMMARY 
 
 If the residuals are normally distributed, minimizing the weighted least squares objective 
function leads to maximum likelihood estimates. 
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2.6.5 Robust estimators 
 
 Using the definitions introduced in Section 2.5.2, the classical assumption underlying least-
squares estimation can be described as follows: (1) the random errors ε  are independent, (2) they 
are normally distributed with mean zero and variance 2

zσ , and (3) there are no systematic errors, 
i.e., 0=b . In many hydrogeologic applications, these assumptions are unlikely to be satisfied. The 
consequences of making inappropriate assumptions about the residuals are discussed in this section, 
and the concept of robust estimation is introduced and critically reviewed. 
 
 There are two types of violations of the standard assumption. The first considers random errors 
that do not follow a Gaussian distribution. This might occur if the error distribution is contaminated 
by a few large outliers. Since the number of data points used in an inversion is finite, even a small 
number of deviate points causes the least-squares fit to be distorted, leading to parameter estimates 
with low precision. A similar effect occurs if the error distribution is heavy-tailed, for example, if a 
Gaussian distribution is contaminated by a large number of relatively small outliers. 
 
 The second type of violation occurs in the presence of systematic errors that usually lead to an 
asymmetric distribution of the residuals. If certain portions of the data exhibit a systematic error, the 
corresponding residuals are likely to become deviate points. If a certain systematic error affects a 
single point used for calibration, it cannot be determined whether the large residual stems from a 
systematic error or is an outlier as a result of a random process; such a distinction is also 
insignificant. If multiple calibration points are affected by the same systematic error source, the 
corresponding residuals are strongly correlated and tend to have the same sign over a certain 
interval in space and time. The ensemble of residuals contaminated with systematic errors, however, 
can be viewed as one or several outlier points. The interpretation of systematic errors as equivalent, 
usually large outliers is the main reasoning for subjecting them to robust estimation methods. But it 
is obvious that if the entire data set or model is flawed, such errors cannot be mitigated by using 
robust estimators. 
 
 Systematic errors may be local both in time and space. For example, inconsistent initial or 
boundary conditions often result in systematic deviations between the data and the model prediction 
at early or late times during a transient experiment, leading to errors in a specific time segment. 
Similarly, a data set from a sensor that is either defective or placed in a unit that is poorly 
represented in the model leads to erroneous residuals at a specific point in space, again corrupting 
the inversion. Note that these types of systematic errors may not appear as obvious outliers and are 
therefore difficult to identify. 
 
 Before we introduce the robust estimators, we would like to emphasize that the main effort in 
estimating parameters by inverse modeling should be placed on avoiding systematic errors and 
minimizing random errors. The robust estimators presented here do not exempt the experimentalist 
and/or modeler from a comprehensive test design, careful execution of the experiment, accurate 
model development, and conscientious analysis of the inverse modeling results. However, 
systematic errors in the conceptual model and non-Gaussian random errors in the data are inherent 
in inverse modeling, and the problems associated with systematic errors seem to be accentuated 
rather than alleviated by the use of the standard least-squares estimator. 
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 An overview of robust statistical procedures with mathematically rigorous definitions of their 
underlying concepts can be found in Huber [1981, 1996]. Here, we follow a more intuitive 
approach and introduce the robust estimators by discussing their common property of reducing the 
weight of deviate points. 
 
 As a generalization of Equation (2.6.4.4), fitting a model to data for parameter estimation can 
be formulated as a minimization problem of the form [Haining, 1990] 
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Here, ω  is an arbitrary loss function, which is a function of the weighted residuals 
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 is the measurement error. At the minimum of S , the derivatives of the objective function 
(2.6.5.1) with respect to the parameters pj  vanish 
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where the function ψ  is defined as the derivative of the loss function, y∂∂ωψ /≡ . 
 
 The choice of the arbitrary loss function ω  can be based on probabilistic considerations (as 
discussed in Section 2.6.3), with ω  being the negative logarithm of the probability density 
function. When adopting this viewpoint, the parameters pp ˆ=  of a model )(py  that minimize 
Equation (2.6.5.1) are the maximum-likelihood estimates for p . As outlined in Section 2.6.4 for 
normally distributed errors, the loss function can be directly derived from the Gaussian distribution 
to be 2)2/1()( yy =ω  and yy =)(ψ . Note that the ψ  function serves as a weighting function in 
Equation (2.6.5.3). For example, least squares assigns greater weights to increasingly deviant 
points, reflecting the assumption that outliers are very unlikely according to the normal distribution. 
Consequently, if we suppose that the weighted residuals follow a distribution with a longer tail, that 
is, with a somewhat larger probability of encountering points removed from the central region, we 
should choose a ψ  function that yields decreasing relative weights for deviant points. It is expected 
that reducing the weight of outliers makes the estimator more robust. 
 
 Many functions with the desired properties have been proposed in the literature (see Andrews et 
al. [1972], Press et al. [1992]). Some are maximum-likelihood estimators for known error 
distributions, whereas others do not correspond to a standard probability density function. Five 
estimators are implemented into iTOUGH2. They include (1) Least Squares (LS), (2) Least 
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Absolute Residual (LAR) or 1L -estimator, (3) the maximum-likelihood estimator for measurement 
errors following a Cauchy distribution, (4) one of the robust estimators proposed by Huber, and (5) 
the Andrews estimator. Their functional forms— c  is a user-specified parameter—are summarized 
in Table 2.6.5.1. The loss function )(yω  of the five estimators is shown in Figure 2.6.5.1. 
 
 Note that for the Andrews estimator, observations with weighted residuals larger than πc  are 
considered to be true outliers and are not counted at all in the estimation of the parameters. This 
property may lead to difficulties when using the Andrews estimator in a nonlinear optimization 
problem where the initial guess 0p  is far away from the best estimate, in which case the initial 
residuals are too large. As a consequence, the gradient of the objective function becomes unstable, 
making it difficult for the minimization algorithm to converge. It is therefore suggested to first 
perform a standard least-squares fit before switching to the Andrews estimator. The five estimators 
are compared in a study by Finsterle and Najita [1998]. 
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Figure 2.6.5.1. Loss functionω  of five estimators as a function of the weighted residual. 
 
 
SUMMARY 
 
 Errors in either the data or the numerical model used for the inversion usually exhibit a non-
Gaussian distribution. While the standard error of the residuals is by definition smallest when using 
least squares, robust estimators are less affected by the presence of random errors following a 
heavy-tailed distribution or by systematic modeling errors, leading to more consistent and less 
biased estimates. The robust estimators only perform better for a specific type of systematic errors, 
and the errors must be contained within a limited portion of the data. Systematic errors and outliers 
should be eliminated whenever possible. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 The following commands can be used to select the objective function: 
>>> LEAST-SQUARES (default), >>> ANDREWS, >>> CAUCHY,  
>>> L1ESTIMATOR, and >>> QUADRATIC-LINEAR. 
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2.7 Minimization Algorithm 
 
2.7.1 Classification 
 

 The purpose of the minimization algorithm is to find the minimum of the objective function by 
iteratively updating the parameters of the model. The objective function is a global measure of 
misfit between the data and the corresponding model output. Since the model output )(pz  depends 
on the parameters, the fit can be improved by changing the elements of the parameter vector p . The 
search for the minimum occurs in the n -dimensional parameter space. A number of strategies were 
developed to find parameter combinations that reduce the value of the objective function. The 
available methods are often classified based on criteria such as the mathematical form of the 
constraints imposed, the method of regularization, the solution method for obtaining orthogonal 
matrices, etc. [Jacoby et al., 1972; Gill et al., 1981; Björck, 1996]. We classify the methods 
according to whether they are based on a sequence of forward simulations only, or whether they 
require calculation of the gradient or second-order derivatives. With the exception of Simulated 
Annealing, all methods described below identify only a local minimum near the starting point. 
 
Non-Derivative Methods: In these methods, the model is evaluated for different parameter 
combinations, mapping out the objective function in the n -dimensional parameter space. They are 
also referred to as Function Comparison Methods.  Because no derivatives of the objective function 
with respect to the parameters must be calculated, these methods are not restricted to smooth 
models. However, they usually require many trial simulations and are therefore inefficient. 
Examples of such direct search methods include: 
 
• Trial and error 
• Grid search 
• Downhill Simplex 
• Simulated Annealing 
• Genetic algorithms 
 
Gradient-Based Methods: These methods require calculating the gradient of the objective 
function with respect to the parameter vector. Updating the parameter vector in small steps along 
the search direction determined by the gradient is a robust, albeit inefficient, procedure. Various 
modifications of this basic scheme have been proposed. Their main difference lies in the choice of 
an appropriate step length. Efficient ways of calculating the gradient have been described in the 
literature [Carrera and Neuman, 1986b; Sun and Yeh, 1990; Vasco and Datta-Gupta, 1999]. 
Examples of gradient-based methods include: 
 
• Steepest descent 
• Quasi-Newton methods 
• Conjugate gradient methods 
 - Method of Fletcher-Reeves 
 - Method of Broyden 
 - Method of Fletcher-Powell-Davidon 
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Second Derivative Methods: These methods are based on the Hessian matrix or various 
approximations thereof (quasi-linearization). They perform well for nearly linear least-squares 
problems. The computational cost for calculating the second derivatives is usually compensated by 
an efficient stepping in the parameter space. Examples of second-order methods include: 
 
• Newton method 
• Gauss-Newton method 
• Levenberg-Marquardt 
 
 Each of these methods has its advantages and disadvantages. The choice of an appropriate 
method largely depends on the presumed properties of the objective function. The following 
algorithms are implemented into iTOUGH2: 
 
• Gauss-Newton 
• Levenberg-Marquardt 
• Downhill Simplex 
• Simulated Annealing 
• Grid Search 
 
 The Levenberg-Marquardt minimization algorithm (see Section 2.7.3) was found to perform 
well for most iTOUGH2 applications. It is a modification of the Gauss-Newton algorithm for 
nonlinear least-squares optimization, which will be described first in Section 2.7.2. The Downhill 
Simplex method (Section 2.7.4) does not require the calculation of derivatives; its convergence rate, 
however, is usually slow. Simulated Annealing, described in Section 2.7.5, has the advantage of 
being able to escape local minima, but requires many solutions of the forward problem. Simply 
evaluating parameter combinations over the entire range of possible values (Grid Search, see 
Section 2.7.6) provides the database for a complete mapping of the objective function in the 
parameter space. However, this method is computationally prohibitive for most applications, and is 
used mostly for illustrative purposes (see, for example, Finsterle and Faybishenko [1999]). A 
comparison of all minimization algorithms can be found in Section 2.7.9 as well as Finsterle 
[2007c; Problem 4]. 
 
 All methods presented here are iterative, i.e., they start with an initial parameter set, and an 
update vector is calculated at each iteration. A step is successful if the new parameter set at iteration 

)1( +k , 
 kkk ppp ∆+=+1  (2.7.1.1) 
 
leads to a reduction in the objective function, i.e., 
 
 ( ) ( )kk SS pp <+1  (2.7.1.2) 
 
 The algorithms discussed in Sections 2.7.3 through 2.7.6 differ in the way they calculate kp∆ . 
We first introduce in Section 2.7.2 the gradient, Jacobian, and Hessian matrices as basic elements of 
Newton’s method, before we discuss the Gauss-Newton and Levenberg-Marquardt algorithms, 
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which are both specific cases of the Newton method. The Downhill Simplex method and Simulated 
Annealing are described in Sections 2.7.5 and 2.7.6, respectively. 
 
 
2.7.2 Gradient, Jacobian, and Hessian matrix 
 
 The Gauss-Newton and Levenberg-Marquardt algorithms belong to a class of methods that are 
based on a quadratic approximation of the objective function, in contrast to the linear assumption in 
steepest-descent methods. If first and second derivatives of S  are available, a quadratic model of 
the objective function can be obtained from the first three terms of the Taylor-series expansion: 
 

 ( ) ( ) kk
T
kk

T
kkk SS pHppgpp ∆∆+∆+≈+ 2

1
1  (2.7.2.1) 

 
The minimum of the right-hand side of (2.7.2.1) is achieved if kp∆  minimizes the quadratic 
function 

 ( ) pHppgp ∆∆+∆=∆Φ k
TT

k 2

1
 (2.7.2.2) 

 
Here, kg  is the gradient vector and kH  is the Hessian matrix. For the least-squares objective 
function (2.6.4.4) or approximations thereof, the gradient vector has elements 
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Defining the Jacobian matrix as 
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the gradient vector at iteration k  can be written as 
 
 kzz

T
kk rCJg 12 −−=  (2.7.2.5) 

 
The Hessian H  is an nn ×  matrix with the second partial derivatives of the objective function. For 
least squares, the Hessian can be written as 
 

 ⎟
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⎞
⎜
⎝

⎛ += ∑
=

−
m

i
iikzz

T
kk r

1

12 GJCJH  (2.7.2.6) 
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where 
izii r σ2∇=G  is the Hessian of the weighted residuals. Denoting the sum in Equation 

(2.7.2.6) with B , it becomes obvious that the Hessian of a least-squares objective function consists 
of a special combination of first- and second-order information: 
 
 ( )BJCJH += −

kzz
T
kk

12  (2.7.2.7) 
 
Note that B  is zero if the model is linear, and becomes significant only for highly nonlinear models 
and if the residuals are large, as is the case far away from the minimum and with noisy data. Also 
note that the positive and negative residuals in B  do not cancel one another, i.e., the Hessian is not 
necessarily a positive-definite matrix. 
 
 At the minimum of Equation (2.7.2.2), kp∆  satisfies the linear system 
 
 kk gpH k −=∆  (2.7.2.8) 
 
Combining Equations (2.7.2.5), (2.7.2.7) and (2.7.2.8) yields Newton’s method: 
 
 ( ) kzz

T
kkzz

T
kk rCJBJCJp 111 −−− +=∆  (2.7.2.9) 

 
 The various iterative solutions to the nonlinear least-squares problem are based on different 
approximations to the Hessian, as discussed in the following two sections. 
 
 There are several methods for calculating the elements of the Jacobian matrix, i.e., the 
sensitivity coefficients, including (1) the Influence Coefficient or Perturbation Method, (2) the 
Sensitivity Equation or Direct Derivative Method, and (3) the Variational Method [Yeh, 1986; 
Carrera, 1988]. In iTOUGH2, the Jacobian matrix (2.7.2.4) is evaluated numerically using the 
Perturbation Method with either forward or centered finite differences: 

 forward 
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zppz
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 (2.7.2.10b) 

 
Here, jpδ  is a small perturbation of parameter j , usually given as a fraction α  of the parameter 
value, jj pp ⋅= αδ . Note that calculating a forward finite-difference approximation of the 
Jacobian requires )1( +n  TOUGH2 simulations. Centered finite differences are more accurate, but 
require )12( +n  forward runs. High accuracy is usually not required by the minimization 
algorithm, but may be desirable for the error analysis. 
 
RELATED iTOUGH2 COMMANDS 
 
 The evaluation of the Jacobian matrix is governed by the subcommands of command 
>> JACOBIAN. 
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2.7.3 The Gauss-Newton method 
 
 The Gauss-Newton method is based on the premise that the first-order term )( 1JCJ −

zz
T  of the 

Hessian dominates relative to the second-order term B . This assumption is justified for linear and 
mildly nonlinear problems and for nonlinear problems near the solution, where the residuals are 
expected to be small, i.e., when the objective function is sufficiently smaller than the eigenvalues of 

)( 1JCJ −
zz

T . 
 
 In the Gauss-Newton method, the Hessian is approximated by setting B  to zero, which ensures 
that matrix H  in Equation (2.7.2.8) is positive definite. This is equivalent to approximating the 
actual objective function by a quadratic function as illustrated for one and two parameters in Figure 
2.7.3.1. The Gauss-Newton direction is given by 
 
 ( ) kzz

T
kkzz

T
kk rCJJCJp 111 −−−=∆  (2.7.3.1) 

 
which is the solution of the linear least-squares problem. For nonlinear models, the parameter vector 
is updated, and a new Gauss-Newton direction is calculated. The procedure is summarized in Table 
2.7.3.1. 
 
 
 
Table 2.7.3.1. Gauss-Newton Minimization Algorithm 

 Step 1: Initialization:  
 - Set iteration index 0=k . 
 - Define initial parameter set 00 pp ==k  (usually *0 pp = ). 
 

 Step 2: Run simulation model with parameter vector kp . 
 

 Step 3: Evaluate )( kpr , )( kS p , and )( kpJ . 
 

 Step 4: Calculate parameter update:  ( ) kzz
T
kkzz

T
kk rCJJCJp 111 −−−=∆ . 

 

 Step 5: Update parameter vector:  kkk ppp ∆+=+1 . 
 

 Step 6: Perform simulation and evaluate )( 1+kS p . 
 

 Step 7: Evaluate convergence criteria (see Section 2.7.8). 
 If converged, go to Step 8, else set 1+= kk  and go to Step 2. 
 

 Step 8: Minimization terminated. Proceed with residual and uncertainty analysis.  
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Figure 2.7.3.1. Objective function of a linearized least-squares problem as a function of one 
parameter (top), and two parameters (bottom). 
 
 
 The Gauss-Newton method is efficient if the initial guess is close to the minimum and/or the 
model is nearly linear, i.e., if )( 1JCJ −

zz
T  is a good approximation of the Hessian. However, if the 

model is highly nonlinear, the parameter update calculated by Equation (2.7.3.1) can be too large, 
leading to an inefficient or even unsuccessful step in which the value of the objective function is 
increased rather than decreased. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 The Gauss-Newton algorithm is invoked by command >>> GAUSS-NEWTON. This sets the 
Levenberg parameter (see Section 2.7.4) to zero and skips the control runs and updating of the 
Levenberg parameter. 
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2.7.4 The Levenberg-Marquardt method 
 
 For strongly nonlinear models, if the parameter vector kp  is far away from the optimum 
parameter set, the Hessian is not necessarily a positive-definite matrix, and the approximation 

)( 1JCJ −
zz

T  used by the Gauss-Newton method may not lead to an efficient or successful step. In the 
Levenberg-Marquardt method, the approximation to the Hessian is made positive definite by 
replacing B  in Equation (2.7.2.7) with an n × n  diagonal matrix kk Dλ : 
 
 ( ) kzz

T
kkkkzz

T
kk rCJDJCJp 111 −−− +=∆ λ  (2.7.4.1) 

 
The scalar λ  is the so-called Levenberg parameter [Levenberg, 1944], and the elements of matrix 

kD  are given by jjkzz
T
kjjD )( 1JCJ −= , nj ,,1 K= . If kλ  is zero, kp∆  is identical with the Gauss-

Newton step; as ∞→kλ , the approximation of the Hessian becomes diagonally dominant. 
Consequently, kp∆  becomes parallel to the steepest-descent direction, and the step length 
approaches zero. After each iteration, the Levenberg parameter is either increased or decreased 
following a scheme proposed by Marquardt [1963] (see Table 2.7.4.1). Far away from the 
minimum, i.e., during the first few iterations, a relatively large value of kλ  is chosen, leading to 
small steps along the gradient of the objective function. Stepping along the steepest-descent 
direction is a robust strategy, ensuring that )()( 1 kk SS pp <+  for sufficiently large kλ . However, 
the step length 

2kp∆  may be very small and minimization becomes inefficient. Therefore, kλ  is 
decreased by a factor of ν/1  after each successful step, where 1>ν  is the so-called Marquardt 
parameter. With decreasing kλ , kp∆  approaches the Gauss-Newton step with its quadratic 
convergence rate. If an unsuccessful step is proposed, i.e., the objective function is increased, kλ  is 
increased by ν. 
 
 Figure 2.7.4.1 shows the contours of )( 1

kzz
T
k JCJ − , which is the quadratic approximation of S  at 

iteration k . The curved line connecting p * with the center of the ellipse indicates the possible end 
points of Levenberg-Marquardt steps )(λkp∆  as a function of λ . 
 
 The Levenberg-Marquardt method can be viewed as a flexible combination of the robustness of 
a steepest-descent method and the efficiency of a second-order Gauss-Newton method. While 
standard first-derivative methods require a strategy to estimate the length of the step to be taken 
along the gradient, the Levenberg-Marquardt algorithm takes this information from the curvature 
matrix )( 1

kzz
T
k JCJ − , and uses it to increase the efficiency as the minimum is approached. The 

Marquardt scheme of adapting the search direction and step length provides the flexibility needed 
for the minimization of objective functions with a complex topography. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 The Levenberg-Marquardt method is the default minimization algorithm in iTOUGH2; it can be 
explicitly selected using command >>> LEVENBERG-MARQUARDT. The initial value of the 
Levenberg parameter (default: 3

0 10−=λ ) and the Marquardt parameter (default: 10=ν ) are 
selected using commands >>> LEVENBERG and >>> MARQUARDT. 
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Table 2.7.4.1. Levenberg-Marquardt Minimization Algorithm 

 Step 1: Initialization:  
 - Set iteration index 0=k . 
 - Define initial Levenberg parameter (default: `10 3

0
−=λ ). 

 - Define Marquardt parameter (default: 10=ν ). 
 - Define initial parameter set 00 pp ==k . 

 Step 2: Run simulation model with parameter vector kp . 
 

 Step 3: Evaluate )( kpr , )( kS p , and )( kpJ . 
 

 Step 4: Calculate parameter update:  ( ) kzz
T
kkkkzz

T
kk rCJDJCJp 111 −−− +=∆ λ  

 where kD  is an nn ×  matrix with elements jjkzz
T
kjjD )( 1JCJ −= , nj ,,1 K= . 

 

 Step 5: Update parameter vector:  kkk ppp ∆+=+1 . 
 

 Step 6: Perform simulation and evaluate )( 1+kS p . 
 

 Step 7: If )()( 1 kk SS pp <+ , multiply λ  by factor ν/1  and go to Step 8. 

  If )()( 1 kk SS pp >+ , multiply λ  by factor ν  and go to Step 4. 
 

 Step 8: Evaluate convergence criteria (see Section 2.7.8). 
 If converged, go to Step 9, else set 1+= kk  and go to Step 2. 

Step 9: Minimization terminated. Proceed with residual and uncertainty analysis.  
 

p1

p2

p1*

p2*

Gauss-Newton step 
λ = 0

Steepest descent 
λ large

Proposed steps 
for intermediate λ

quadratic 
approximation of S

 
Figure 2.7.4.1. Steps proposed by the Levenberg-Marquardt method as a function of the Levenberg 
parameter λ . 
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2.7.5 The Downhill Simplex method 
 
 The Downhill Simplex method [Press et al., 1992] does not make any assumptions about the 
topography of the objective function and does not require derivatives. It is a robust, albeit rather 
inefficient method. 
 
 A simplex is a geometrical figure defined by n +1 vertices in the n -dimensional parameter 
space. In iTOUGH2, the initial simplex consists of the initial guess 0p  defining the origin, and n  
additional points, each of which lies on one of the parameter axes at a distance 

jpσ  from the origin, 
where 

jpσ  is the prior standard deviation or expected variation of parameter j . The Downhill 
Simplex method takes one of the following steps (see Figure 2.7.5.1): 
 
Reflection  The point of the simplex with the largest objective function is moved through the 
opposite face of the simplex. 
 
Reflection and Expansion  If the reflected point is lower than the lowest point of the original 
simplex, the simplex is expanded in that direction. 
 
One-dimensional Contraction  If the reflected point is higher than the second-highest point of the 
original simplex, the simplex is contracted in that direction to find an intermediate point. 
 
Overall Contraction  If one-dimensional contraction is unsuccessful, an overall contraction around 
the lowest point is performed. 
 
 After convergence (see Section 2.7.8), iTOUGH2 evaluates the Jacobian matrix for the 
subsequent error analysis. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 The Downhill Simplex algorithm is invoked by using command >>> SIMPLEX. The size of 
the initial simplex is defined by commands >>>> DEVIATION (p) or >>>> VARIATION. 
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Figure 2.7.5.1. Possible outcomes for a step in the Downhill Simplex method (after Press et al. 
[1992]). The simplex for n = 3 is a tetrahedron; (a) shows it at the beginning of a step. The simplex 
after a step can be (b) a reflection away from the high point, (c) a reflection and expansion away 
from the high point, (d) a contraction along one dimension from the high point, or (e) a contraction 
along all dimensions towards the low point.  
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2.7.6 Simulated Annealing 
 
 Simulated Annealing [Metropolis et al., 1953] is a technique suitable for solving large 
optimization problems, where the objective function is likely to exhibit many local minima. 
Moreover, no derivatives are required, and the objective function may even be discontinuous.  
 
 The basic idea behind the algorithm is an analogy with thermodynamics, specifically with the 
way metals cool and anneal (see, for example, Press et al. [1992]). Simulated Annealing takes 
random steps ik ,p∆ , which are based on the expected variability of the parameter. In iTOUGH2, 
the variability decreases during the optimization process. A new parameter set ikjkik ,,, ppp ∆+=  
is accepted with probability  
 
 kS

k e τφ ∆−=  (2.7.6.1) 
 
where )()( ,, jkik SSS pp −=∆  and τk  is a controlling parameter analog to the current temperature 
during the cooling and annealing process;  index j  counts the number of successful steps at a given 
temperature level k . The initial temperature τ0  should be a fraction of the initial objective function 

)( 0pS . If S∆  is negative, i.e., the objective function is decreased, Equation (2.7.6.1) yields a 
probability greater than one and the corresponding step p∆  is always accepted as a successful 
downhill move. An uphill move (∆S  is positive) may also be accepted, albeit only with probability 
φk . This scheme of always taking a downhill step and sometimes accepting an uphill step with a 
certain probability, which depends on the temperature kτ , has come to be known as the Metropolis 
algorithm. The so-called annealing schedule describes the reduction of the control parameter kτ . 
There are two different annealing schedules available in iTOUGH2: 
 
 0τατ k

k =  (2.7.6.2a) 
 
 βττ )/1(0 Kkk −=  (2.7.6.2b) 
 
 
where 10 << α  and 1>β  are constants, and K  is the total number of iterations. Furthermore, the 
standard deviation of the random steps decreases as follows: 
 

 ( ) ( )
011

10
ii p

k

kp K

K
∆∆ ⎟

⎠
⎞

⎜
⎝
⎛

+
+= σσ  (2.7.6.3) 

 
Here, ( )

0ip∆σ  is the standard deviation of the random parameter steps during the first iteration. Both 
the temperature kτ  and the average step size p∆  start large and decrease during the course of the 
optimization. Thus, strongly varying parameter sets are tested early in the inversion, and uphill 
steps are more likely to be accepted, allowing the minimization algorithm to escape local minima. 
Later in the inversion, subtle changes in the parameter set are tested, and only successful downhill 
steps are likely to be accepted. The method of Simulated Annealing is summarized in Table 2.7.6.1. 
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Table 2.7.6.1. Minimization by Simulated Annealing 

 Step 1: Initialization:  
 - Set iteration index k = 0 . 
 - Set trial index i =1. 
 - Set counter of successful steps j = 0 . 
 - Define total number of iterations K . 
 - Define maximum number of trials maxi  at each temperature (default: ni 10max = ). 
 - Define initial parameter set  00,0 pp === jk . 
 - Define initial control parameter (temperature) 0τ  (default: )(05.0 00 pS⋅=τ ). 
 

 Step 2: Generate random perturbation ik ,p∆ . 
 The probability density function of ik ,p∆  is either uniform or Gaussian. 
 The average step size decreases during the optimization (see Step 6). 
 

 Step 3: Perform simulation with ikjkik ,,, ppp ∆+=  and evaluate )()( ,, jkik SSS pp −=∆ . 
 

 Step 4: If 0<∆S , accept step, i.e., set ikjkjk ,,1, ppp ∆+=+ ; 

 If 0>∆S , accept step with probability kS
k e τφ ∆−= . 

 If step accepted, set 1+= jj . 
 

 Step 5: If maxii <  and 5maxmax ijj =< , set 1+= ii  and go to Step 2 

 

 Step 6: Reduce control parameter kτ  according to the annealing schedule (2.7.6.2);  

 Reduce average size of random steps (Equation 2.7.6.3); 

 Set 0=i ; set 0=j ; set 1+= kk . 

 
 Step 7: If Kk < , go to Step 2. 
 

 Step 8: Minimization terminated. Proceed with residual analysis.  
 
 
 An advantage of Simulated Annealing is its ability to escape local minima. However, the 
method is inefficient because of the randomness of the trials ik ,p∆ , which almost always propose 
an uphill step, especially near the minimum or in narrow valleys of the objective function. It is 
therefore suggested to use Simulated Annealing in combination with the other minimization 
algorithms discussed above. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 See subcommands of command >>> ANNEAL. 
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2.7.7 Grid Search 
 
 Grid search refers to the systematic evaluation of the objective function in the n -dimensional 
parameter space. Parameter sets are either generated on a regular grid in the parameter space, or can 
be supplied by the user to examine certain regions using any search pattern deemed reasonable. 
 
 While inefficient and often prohibitive for large numbers of parameters, grid search provides 
the complete topography of the objective function, revealing the presence of local minima, 
nonuniqueness, instabilities, etc. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 See command >>> GRID SEARCH. 
 
 
2.7.8 Stopping criteria 
 
 All minimization algorithms presented in Sections 2.7.3 through 2.7.6 are iterative methods, in 
which the minimum is approached by proposing new parameter sets that lead to reduced values of 
the objective function. Convergence or stopping criteria must be specified to decide whether the 
minimum is identified. Theoretically, the minimum is detected if all elements of the gradient vector 

kS p∂∂  are zero. In practice, however, one of the following convergence criteria is used to stop 
optimization: 
 
• The number of iterations (steps), k , exceeds a specified number, K ; 
• The number of forward runs exceeds a specified number; 
• The number of unsuccessful uphill steps exceeds a specified number; 
• The normalized step size is smaller than a specified tolerance; 
• The norm of the gradient vector is smaller than a specified tolerance; 
• The objective function is smaller than a specified tolerance. 
 
 Only the Gauss-Newton and Levenberg-Marquardt algorithms can make use of the criteria 
related to the gradient. The objective function is usually substantially reduced during the first few 
steps. Limiting the number of iterations based on experience is thus a reasonable stopping strategy. 
 
 An iTOUGH2 simulation may also stop due to an error or convergence failure in the forward 
run, interrupting the optimization process.  
 
 
RELATED iTOUGH2 COMMANDS 
 
 See subcommands of command >> CONVERGE/STOP.  
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2.7.9 Step size limitation and parameter selection 
 
 It is sometimes useful to limit the size of the step kp∆  taken during any one iteration. Large 
steps are usually proposed by the second-order methods whenever the sensitivity of a parameter is 
small and the parameter is strongly correlated to a parameter with high sensitivity. Step-size 
limitation may also prevent the algorithm from moving too far beyond the region in which the 
linearity assumption is justified. 
 
 Several strategies for limiting the step size are implemented into iTOUGH2. They include: 
 
• Limitation of the step size of an individual parameter; 
• Limitation of the total step length; 
• Limitation of the scaled total step length; 
• Automatic parameter selection. 
 
 Limitation of the step size of an individual parameter. A maximum step length can be specified 
individually for each parameter. Figure 2.7.9.1 illustrates that reducing the step size of parameter i  
from ∆p' i  to ∆pi,max  also changes the direction of the step taken. Nevertheless, this approach was 
found to be superior to one that maintains the original search direction. 
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Figure 2.7.9.1. Step-size limitation of a single parameter. 
 
 
 Limitation of the total step size. The size of the scaled or unscaled update vector ∆pk  can be 
limited. The step length of the scaled ( fi = pi , default) or unscaled ( fi =1) parameter update 
vector is defined as follows:   
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This is a global step-size limitation as opposed to the one specified for individual parameters. The 
scaling is necessary if the concurrently estimated parameters vary considerably in size. 
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Figure 2.7.9.2 illustrates that limiting the step size maintains the direction of the step taken in the 
parameter space. 
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Figure 2.7.9.2. Global step-size limitation. 
 
 
 
 Automatic parameter selection. If a parameter is not sensitive enough to be estimated from the 
available data at a given iteration, it should be removed from the set of parameters being updated. 
Parameters that are (temporarily) removed from the parameter set remain at their current value, 
which is equivalent to setting the maximum step size for these parameters to zero. 
 
 The parameter set is screened according to two selection criteria. Only the most sensitive and/or 
most independent parameters are subjected to the optimization process. The sensitivity criterion 
examines the potential of parameter j  to reduce the objective function. It is defined as follows: 
 
 Sj ∆=δ  (2.7.9.2) 
 
Here, S∆  is the change of the objective function if the parameter is perturbed by a small value. 
Normalizing to the maximum value )max(max jδδ =  yields the selection criterion ω : 
 

 10
max

≤<= j
j

j ω
δ
δ

ω  (2.7.9.3) 

 
Those parameters with ω  larger than a predefined value minω , i.e., the most sensitive parameters, 
are selected. Parameters that are unable to significantly reduce the objective function are 
(temporarily) excluded from the optimization process. As an option, the selection criterion minω  can 
be relaxed with each iteration k :  
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Equation (2.7.9.4) reaches zero for the last iteration K , i.e., all parameters are selected for the final 
step. 
 
 The second selection criterion examines the ratio between the apparent conditional standard 
deviation pσ ′  and the marginal standard deviation pσ  as a measure of overall parameter 
correlation: 

 10 ≤Γ<
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j

j

j

σ
σ

 (2.7.9.5) 

The calculation of σ p  and ′ σ p  is described in Section 2.8.4. Those parameters with a ratio larger 
than minΓ , i.e., the most independent parameters, are selected. Strongly correlated parameters are 
(temporarily) excluded from the optimization process. As an option, the selection criterion minΓ  can 
be relaxed with each iteration k :  
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K

k
k 1minmin,  (2.7.9.6) 

Equation (2.7.9.6) reaches zero for the last iteration K , i.e., all parameters are selected for the final 
step. The standard deviations used in Equation (2.7.9.5) cannot be interpreted as actual estimation 
uncertainties because they are not evaluated at the minimum. 
 
 Due to the nonlinearity of the inverse problem at hand, sensitivity coefficients and parameter 
correlations change during the optimization. Therefore, the selection criteria must be reevaluated 
from time to time, i.e., parameters may be deactivated and reactivated during the course of an 
inversion. 
 
 Automatic parameter selection makes the inversion faster because fewer parameters must be 
perturbed for calculating the Jacobian matrix (the full Jacobian is only calculated every few 
iterations when the selection criteria are reevaluated). The inversion is usually also more stable. 
Parameters that are not sensitive or highly correlated tend to be changed drastically during an 
iTOUGH2 iteration, causing unnecessary numerical difficulties. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 Steps of individual parameters are limited using command >>>> STEP in the parameter 
definition block. Global step limitation is invoked using command >>> STEP in block 
> COMPUTATION, with the keyword UNSCALED indicating that scaling should be omitted. 
Command >>> SELECT implements automatic parameter selection, and its subcommands define 
the selection criteria. 
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2.7.10  Example 
 
 Figure 2.7.10.1 shows the contours of the objective function—the byproduct of a grid search—
and the solution paths for the four minimization algorithms described in Sections 2.7.3 through 
2.7.6. The inverse problem solved in the example is described in Finsterle [2007c; Problem 1]. The 
search area was confined to the region shown in the figure. With the exception of the Gauss-Newton 
algorithm, which is misguided by its linearity assumption, the global minimum is accurately 
identified by all algorithms. The Levenberg-Marquardt algorithm is the most efficient method for 
this problem. Notice that the strategy underlying each method is clearly revealed by the solution 
path taken. 
 
 

X

log(permeability [m2])

P
or

os
ity

-12.5 -12.25 -12 -11.75 -11.5
0.1

0.2

0.3

0.4

0.5

0.6

Gauss Newton

X

log(permeability [m2])

P
or

os
ity

-12.5 -12.25 -12 -11.75 -11.5
0.1

0.2

0.3

0.4

0.5

0.6

Levenberg-Marquardt

 
 (a) (b) 

X

log(permeability [m2])

P
or

os
ity

-12.5 -12.25 -12 -11.75 -11.5
0.1

0.2

0.3

0.4

0.5

0.6

Downhill Simplex

X

log(permeability [m2])

P
or

os
ity

-12.5 -12.25 -12 -11.75 -11.5
0.1

0.2

0.3

0.4

0.5

0.6

Simulated Annealing

  (c) (d) 

Figure 2.7.10.1. Solution paths of (a) Gauss-Newton, (b) Levenberg-Marquardt, (c) Downhill 
Simplex, and (d) Simulated Annealing minimization algorithms in the two-dimensional parameter 
space porosity–log(permeability). The square, circle, and cross indicate, respectively, the starting 
point, endpoint, and global minimum. 
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2.8 Sensitivity and Error Analysis 
 
2.8.1 Introduction 
 
 One of the key advantages of a formalized approach to parameter estimation is the possibility to 
perform an a posteriori error analysis. The sensitivity matrix evaluated at the minimum of the 
objective function contains much information regarding the impact of the parameters on the system 
behavior, and how valuable certain data were for the solution of the inverse problem at hand. The 
residual analysis provides some measure of the overall goodness-of-fit, and identifies systematic 
errors, trends in the model, or outliers in the data. Next, we can determine the uncertainty of the 
estimated parameters. Note that a good match does not necessarily mean that the estimates are 
reasonable. They may be highly uncertain due to high parameter correlation, which is usually an 
indication of overparameterization. The covariance matrix of the estimated parameters can be 
further analyzed to obtain correlation coefficients and parameter combinations that lead to similar 
matches. Model identification criteria provide a measure to compare the performance of alternative 
models with a different model structure. Finally, the uncertainty of model predictions can be 
calculated using either linear error propagation analysis or Monte Carlo simulations. 
 
 
2.8.2 Sensitivity analysis 
 
 The sensitivity coefficients Equation (2.7.2.4) show the impact of a small parameter change on 
the calculated system behavior at the calibration point. They can also be interpreted as a measure of 
the relative contribution of the corresponding data point to the solution of the inverse problem. As 
Equation (2.8.4.2) below reveals, the higher the absolute value of the sensitivity coefficient, the 
lower the estimation uncertainty of the corresponding parameter. High sensitivity is, however, a 
necessary but not sufficient condition for meaningful parameter estimation (see Finsterle and 
Persoff [1997]). 
 
 In order to make sensitivity coefficients comparable with one another, it is suggested to scale 
them by the a priori standard deviation of the observation, zσ , and the expected parameter 
variation, pσ : 
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 (2.8.2.1) 

 
where ijJ  is an element of the Jacobian matrix, Equation (2.7.2.4). The scaling is necessary 
because the parameters concurrently estimated by inverse modeling may have different units and 
vary by orders of magnitude. The same is true for the different observation types used for 
calibration. Unlike ijJ , the scaled sensitivity coefficients ijJ

~
 are dimensionless. 

 
 The scaling of the sensitivity coefficients allows one to directly compare the contribution of 
each data point to the estimation of each parameter, and to evaluate a number of composite 
sensitivity measures. Equation (2.8.2.1) indicates that the more accurate a measurement is, the 
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higher its contribution to the solution of the inverse problem. A data point is also considered more 
valuable if the parameter to be estimated is expected or allowed to be uncertain.  
 
 Four sums of absolute, scaled sensitivity coefficients are calculated in iTOUGH2. The first sum 
consists of the absolute values of the elements within each row of the scaled Jacobian matrix: 
 

 ∑
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j
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1

~
 (2.8.2.2) 

 
The quantity ia  is a relative measure of how important data point i  is for the estimation of all 
parameters of interest. Comparing the ia  values enables identification of those data points in space 
and time that are most valuable. 
 
 By adding all the coefficients belonging to the same data set (e.g., a time series of pressure 
measurements at a certain location), the contribution of this data set mKk ≤= ,,1 K  to the 
estimation of parameter j  can be quantified as follows: 
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 The overall contribution of a certain data set to the solution of the inverse problem at hand is 
given by 
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A comparison of kc  values shows whether a certain data set was worth collecting, or whether the 
position of measurement points should be changed (in space and/or time), or whether the accuracy 
of the corresponding sensor must be improved to make it a valuable source of information, 
comparable with the contribution from other observations. 
 
 Finally, building the sum of each column provides a relative measure of parameter sensitivity, 
taking all available observations into account: 
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 (2.8.2.5) 

 
A parameter with a high jd  value is more likely to reach an estimation uncertainty of 

jpσ  than a 
parameter with a lower jd  value. Again, this neglects the impact of parameter correlations on the 
estimation uncertainty, which cannot be assessed by a simple sensitivity analysis, but must be 
evaluated by actually inverting the data and calculating the estimation covariance matrix, Equation 
(2.8.4.2). If the sensitivity analysis is performed to assess the impact of a parameter on the model 
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predictions, the parameter with the highest jd  value is the most important one, i.e., one should try 
to determine it as accurately as possible. 
 
 The sensitivity measure jd  must be distinguished from jδ  (Equation 2.7.9.2), which examines 
the sensitivity of the objective function (not the model output) to a change of the parameter: 
 
 Sj ∆=δ  (2.8.2.6) 
 
Here, S∆  is the change of the objective function if the parameter is perturbed by a small value. The 
objective function can be best reduced by updating parameters with a large jδ  value. 
 
 The sensitivity coefficients, the scaled sensitivity coefficients, and the composite sensitivity 
measures—Equations (2.8.2.2) through (2.8.2.5)—are useful to design an experiment, to analyze 
inverse modeling results, and to study the impact of parameters on selected model predictions. The 
interpretation of these measures changes depending on the purpose of the sensitivity analysis. If 
evaluated prior to data collection, they help optimize the design of an experiment by identifying the 
most appropriate observation types and the necessary measurement accuracy. Furthermore, 
measurement locations with large sensitivities data can be selected as well as time windows that 
contain valuable data. Since the sensitivity coefficients depend on the (unknown) parameter set 
itself, the analysis must be repeated with different assumptions about the system properties. An 
example is described in Finsterle and Faybishenko [1999]. 
 
 The scaled sensitivity matrix and the various composite sensitivity measures—rows and 
columns labeled with “∑ ”—are shown in Figure 2.8.2.1. 
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Figure 2.8.2.1. (a) Scaled sensitivity matrix and (b) composite sensitivity measures. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 By default, iTOUGH2 prints the dimensionless, scaled sensitivity matrix with elements given 
by Equation (2.8.2.1) along with the composite sensitivity measures (2.8.2.2) through (2.8.2.6). In 
order to also print the (unscaled) sensitivity matrix, command >>> SENSITIVITY (o) must be 
used. 
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2.8.3 Estimated error variance and Fisher Model Test 
 
 The a posteriori or estimated error variance represents the variance of the mean weighted 
residual and is thus a measure of goodness-of-fit [Larsen and Marx, 1986]: 
 

 
nm

s zz
T

−
=

− rCr 1
2
0  (2.8.3.1) 

 
 If the model does not match the data sufficiently well, i.e., 2

0s  is too large, then the estimated 
parameters are meaningless, because the underlying model is erroneous. On the other hand, 
obtaining a good match does not guarantee that the inverse problem is solved in a reasonable way; 
the results must be subjected to a critical residual analysis. The model identification criteria 
discussed in Section 2.8.6 therefore not only contain a goodness-of-fit measure such as the 
estimated error variance, but also additional terms to prevent overparameterization. A more detailed 
discussion of these points can be found in Finsterle and Persoff [1997]. 
 
 If the residuals are consistent with the distributional assumption about the measurement error, 
which is expressed through covariance matrix zzC , then the estimated error variance assumes a 
value close to one. The a posteriori error variance 2

0s  can be considered an estimate of the a priori 
error variance 2

0σ  (see Equation 2.5.3.2) with a degree of freedom of )( nm − . It can be shown 
[Larsen and Marx, 1986] that the ratio 2

0
2
0 σs  follows an F -distribution with the two degrees of 

freedom nmf −=1  and ∞=2f . We can therefore statistically test whether the average match 
deviates significantly from the modeler’s expectations.  
 
 Table 2.8.3.1 shows the Fisher Model Test, in which the significance of a deviation from 2

0σ  is 
tested. If the estimated error variance is significantly larger than 2

0σ , there is likely to be an error in 
the functional model, or the assumption about the measurement errors were too optimistic. The 
Fisher Model Test is only indicative of modeling errors if the stochastic model is well defined. 
Otherwise, 2

0s  can only be considered a relative measure of goodness-of-fit. The second column in 
Table 2.8.3.1 is the value to be used for scaling the covariance matrix of the estimated parameters 
(see Section 2.8.4). 
 
 
Table 2.8.3.1. Fisher Model Test 

Fisher Model Test Error Variance Comment 

2
0

2
01,, σα sF nm <−∞−  2

0s  Error in functional and/or stochastic model 

ασ −∞−≤≤ 1,,
2
0

2
01 nmFs  

2
0s  Model test passed 

12
0

2
0 <σs  

2
0σ  Error in stochastic model 
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Equation (2.8.3.1) can also be used to iteratively adjust the relative contributions of different data 
types (pressures, temperatures, saturations, flow rates, prior information, etc.) to the objective 
function. The relative weight assigned to each observation type is given by the ratio lkkl ττλ = , 
where τ  is a scalar analog to 2

0σ  such that kzzkkzz ,, VC τ=  (see also Equation 2.5.3.2). Here, 

kzz ,C —a submatrix of zzC —is the covariance matrix of all observations of type k , and kzz ,V  is a 
positive-definite matrix. By default, kτ  is fixed at 1. If relative weights are not well known, klλ  can 
be updated in an iterative process, where kτ  is recalculated every few iterations according to 
 

 
nmk

kkzz
T
k

k −
=

− rCr 1
,τ  (2.8.3.2) 

 
 This procedure is similar to that referred to as iterated re-weighted least squares [Haining, 
1990]. The process assigns weights such that the relative contribution of each observation type to 
the objective function approaches K/1 , where K  is the number of observation types used in the 
inversion. The Fisher Model Test becomes meaningless if λ  is updated during the inversion 
because the test will be fulfilled by definition. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 The multiplication factor shown in the second column of Table 2.8.3.1 can either be specified 
using commands >>> A PRIORI and >>> A POSTERIORI, or automatically selected by 
using command >>> FISHER. The confidence level is specified using command >>> ALPHA. 
Command >>> TAU invokes the iterative reweighting of different observation types according to 
Equation (2.8.3.2). 
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2.8.4 Covariance matrix of estimated parameters 
 
 The best-estimate parameter set p̂  was determined by matching the model to a specific data set. 
Because the data have a random component—the measurement errors (see Section 2.5.2)—the 
actually observed data set can be considered to be one realization of a universe of potentially 
observed data sets. Consequently, the estimated parameter vector p̂  represents only one point of a 
probability distribution in the n -dimensional parameter space of all possible parameter vectors 
determined by matching the hypothetical data sets. The goal is to find an approximation of this 
probability distribution despite the fact that the true parameter vector p~  is unknown, and that only 
one data set is available for inversion.  
 
 The covariance matrix of the estimated parameters, ppC , contains the standard errors or 
uncertainties of the estimates p̂ , as well as the covariances, which describe the statistical 
correlations between pairs of parameters. ppC  is an approximation of the probability distribution of 

pp ~ˆ − . Given a best-estimate parameter set p̂  and the corresponding covariance matrix ppC , one 
can determine the confidence region around p̂ , which should contain the true parameter set with a 
certain level of confidence. 
 
 We first present the statistical concept that provides the basis of the interpretation of estimation 
covariance matrices. This discussion uses a thought experiment with multiple realizations of the 
data to arrive at the distribution of the parameter estimates, for which arbitrary confidence regions 
can be derived using simple statistics. In the second part of this section, we look at the more 
realistic situation, where there is only one data set available for parameter estimation, yielding only 
one best-estimate parameter set. Consequently, the covariance matrix is in itself an estimate, which 
needs to be based on a linearity and normality assumption, leading to ellipsoidal confidence 
regions. Note that the calculation of the confidence region is fundamentally different in the two 
cases, the first providing a theoretical justification for using the second. The interpretation of the 
covariance matrix ppC  and its relation to a confidence region will be discussed in detail, followed 
by some thoughts about the underlying linearity assumption. 
 
 Figure 2.8.4.1 illustrates the situation for a case described in Finsterle and Najita [1998]. 200 
synthetic data sets were generated with different random measurement errors. These data sets were 
then inverted individually, yielding 200 estimates of porosity φ  and initial gas saturation giS . The 
individual estimates are shown as triangles in the two-dimensional parameter space. The mean of 
the estimates p , shown as a square, is very close to the true parameter set of 35.0=φ  and 

30.0=giS . The covariance matrix of the cloud of triangles is visualized as a dash-dotted ellipse 
with the center point at p . In practice, only one data set is available, yielding a single estimate p̂ , 
shown as a circle. The solid ellipse with center at p̂  represents the 95% confidence region around 
p̂ , as inferred from ppC  (see Equation (2.8.4.2) below). It is similar in size and orientation to that 
representing the probability distribution of pp ~ˆ − , and it contains the true parameter set on the 95% 
confidence level. 
 
 In Figure 2.8.4.1, the full probability distribution—the cloud of triangles—was assumed to be 
accurately represented by an elliptical confidence region, and an ellipse was drawn around the best 
estimate p̂ . The choice of an elliptical confidence region is based on a normality and linearity 
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assumption, which will be critically reviewed later in this section. A quantitative relationship 
among the value of the objective function at the minimum, minS , the covariance matrix ppC , and 
the confidence level can only be accurate if (1) the measurement errors are normally distributed, 
and (2) the estimation uncertainty is small enough so that the nonlinear model can be replaced by a 
suitable linearized model within the confidence region. 
 

 
Figure 2.8.4.1. Probability distribution of estimates in a two-dimensional parameter space. 
Triangles represent solutions from 200 least-squares fits to hypothetical data sets. The square 
indicates the mean of all solutions. The solid ellipse is an approximation of the estimation 
uncertainty of a single best-estimate parameter set, shown as a circle. 
 
 
 We now discuss the case of estimating ppC  if only one data set is available for inversion. 
Under the assumption of normality and linearity, the )1(100 α− % confidence region contains 
those values p  for which [Donaldson and Schnabel, 1987] 
 
 α−−⋅⋅≤− 1,,

2
0)ˆ()( nmnFnsSS pp  (2.8.4.1) 

 
where p̂  is the vector holding the optimum parameter set, 2

0s  is the estimated error variance, 
Equation (2.8.3.1), and α−− 1,, nmnF  is a quantile of the F -distribution. Here, α  is the probability 
that the hypothesis stated above is rejected even though it is true. In the general case, this 
confidence region is of arbitrary shape; it is reasonable, however, to bound it by the points of 
constant likelihood, i.e., a contour of the objective function for maximum likelihood estimates. Near 
the minimum, where the linearity assumption holds, the confidence region is ellipsoidal, which 
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makes it inexpensive to construct and easy to report. For a maximum likelihood estimator, the 
covariance matrix of the estimated parameters is asymptotically given by the inverse of the 
curvature or Fisher information matrix )( 1JCJ −

zz
T , multiplied by the estimated error variance 2

0s : 
 

 ( ) 112
0

−−= JCJC zz
T

pp s  (2.8.4.2) 

 
Equation (2.8.4.2) can be derived by inserting Equation (2.7.3.1) into the definition of a covariance 
matrix, ]])[E])([E[(E T

pp ppppC −−= , where E[]  denotes the expected value. 
 
 The interpretation of the covariance matrix ppC  provides the key criteria for evaluating inverse 
modeling results. The diagonal elements of ppC  contain the variances of the estimated parameters, 

2
pσ . They are a measure of how uncertain the estimate is given the uncertainty of all the other, 

concurrently estimated parameters. Note that they are directly proportional to the overall goodness-
of-fit expressed by 2

0s . The higher the quality of the data and the better the fit, the more accurate 
the estimates. Furthermore, estimation uncertainty is inversely proportional to the absolute size of 
the sensitivity coefficients. The more sensitive the calculated system response at the calibration 
point, the more information contained in the data regarding the parameters of interest. Since the 
sensitivity coefficients can be evaluated without actually collecting data, the design of an 
experiment can be optimized a priori by looking for observation types as well as measurement 
points in space and time that yield large sensitivity coefficients. 
 
 The off-diagonal elements of ppC  are the covariances ijc . Correlations among the parameters 
are a result of a conjoint impact of parameter changes on the system behavior. The correlation 
coefficient is given by 
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 (2.8.4.3) 

Correlation coefficients assume values between -1 and 1; a value of zero indicates no statistical 
correlation between parameter i  and j ; a value close to -1 or 1 indicates a strong correlation, i.e., 
the two parameters cannot be determined independently. For example, if two parameters are 
negatively correlated, a similar system response is obtained by concurrently increasing one and 
decreasing the other parameter. In an inversion involving three or more parameters, the correlation 
coefficients are usually difficult to interpret from a physical point of view because of indirect 
parameter dependencies. Two parameters may exhibit a statistical correlation even though they are 
not physically related. The non-zero correlation coefficient is a result of the fact that both 
parameters are correlated to a third parameter. Such a case is described in Finsterle [2007c; 
Problem 2].  
 
 iTOUGH2 also prints a matrix of “direct” correlations between pairs of parameters. Direct 
correlation coefficients are calculated by taking the nn ×  curvature matrix )( 1JCJ −

zz
T , copying the 

intersections of the two rows and columns corresponding to the two parameters of interest into a 
22×  matrix, inverting this matrix, and applying Equation (2.8.4.3). This procedure is repeated for 

all 2/)1( −nn  parameter pairs. The resulting direct correlation coefficient matrix is easier to 
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interpret on the basis of a physical understanding of the system, i.e., it indicates to which degree a 
change in one parameter can be compensated by a change in the other parameter. 
 
 Even though certain pairs of parameters may exhibit preferential correlation structures, 
correlations are not intrinsic features of parameter combinations. They obviously depend on the data 
available and also on the number of simultaneously estimated parameters, because indirect 
correlations may overwhelm the direct correlations.  
 
 If correlations exist, the uncertainty of one parameter does affect the uncertainty of the other 
parameter. The diagonal elements of ppC  account for this fact. The standard deviation from the 
joint probability density function, pσ , is also termed marginal standard deviation as it measures the 
uncertainty of a parameter without regard to the value of the other parameters. It must be 
distinguished from the conditional standard deviation, 'pσ , which measures the uncertainty of a 
parameter assuming that all the other parameters are either precisely known or uncorrelated. The 
conditional standard deviation of parameter i  is the reciprocal of the i th diagonal element of the 
scaled curvature matrix )( 12

0 JCJF −−= zz
Ts . The conditional standard deviation is always smaller 

than the marginal standard deviation (see Figure 2.8.4.2 below). Note that each joint confidence 
region can be interpreted as a conditional confidence region of a higher-order parameter set, i.e., the 
uncertainty estimates are always optimistic because they neglect the influence of all the parameters 
that are fixed despite being uncertain. The ratio 
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i
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σ
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 (2.8.4.4) 

 
can be interpreted as an overall measure of how independently parameter i  can be estimated. Small 
values of Γ  usually indicate that the uncertainty pσ  of a parameter could be reduced by lowering 
its correlation to other parameters. Test design should aim at obtaining high Γ  values. 
 
 Figure 2.8.4.2 illustrates the elliptical (or hyperellipsoidal if 2>n ) region that represents the 
covariance matrix. It can be constructed from the eigenvalues and eigenvectors of ppC . The lengths 
of the semiaxes are the square roots of the eigenvalues, and their orientations are given by the 
corresponding eigenvectors. Parameter combinations along the eigenvector with the largest 
eigenvalue lead to a similar system response and are thus difficult to identify. Additional measures 
of the overall size of the ellipsoid are given in Section 2.8.6. 
 
 The linearization approach assumes that the nonlinear model can be adequately approximated 
by linear functions at the solution. Thus, the actual, nonellipsoidal confidence region (see Equation 
2.8.4.1) can be approximated by a region consisting of those values p  for which 
 

 α−−
− ⋅≤−− 1,,

1 )ˆ()ˆ( nmnpp
T FnppCpp  (2.8.4.5) 

 
 The approximation of the actual confidence region, which is the contour of the objective 
function on level α−−+ 1,,

2
0)ˆ( nmnFnsS p , by an ellipsoidal confidence region is visualized in Figure 

2.8.4.3a. In this case, the linearization leads to a slight overprediction of the size of the confidence 
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region along its longest axis. The probability that all parameters are within the standard ellipsoid 
(i.e., the joint probability) is much less than 68.3% (the probability for a single parameter); it gets 
smaller with increasing n  and decreasing m . 
 

 
Figure 2.8.4.2. Visualization of estimation covariance matrix as an elliptical confidence region, 
indicating marginal and conditional standard deviations. 
 

 
 (a) (b) 

Figure 2.8.4.3. Original (a) and corrected (b) approximation of the confidence region. The ellipses 
approximate the contours of the objective function (dashed) at the minimum. The solid contour 
represents the actual confidence region. The arrow indicates the solution path taken by the 
minimization algorithm. 
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 A )1(100 α− % confidence interval for ip~  contains those values ip  for which 
 
 2/1,ˆ ασ −−⋅≤− nmpii tpp

i
 (2.8.4.6) 

 
where 2/1, α−−nmt  is the quantile of the Student t -distribution. The confidence regions and 
confidence intervals introduced here are only exact for normally distributed errors and linear 
models. If the errors are not normally distributed, the covariance matrix has no clear quantitative 
interpretation. Furthermore, if the model is nonlinear, the coverage of the confidence region by the 
ellipsoidal approximation may be poor. Reparameterization, such as logarithmic transformation of 
some of the parameters, is a possibility to reduce nonlinearity effects. 
 
 Carrera [1984] proposed a procedure that adjusts the size of the hyperellipsoid to account for 
nonlinearities, assuming that the orientation is accurately obtained from the linear error analysis. 
The result of the correction procedure is still a covariance matrix, i.e., it can be interpreted in the 
usual manner and is easy to report. The method is based on a comparison of the actual objective 
function with the results from the linear approximation at discrete points in the parameter space. 
These test points p

(
 are located at the end of the main axis of the hyperellipsoid, i.e. [Finsterle and 

Pruess, 1995]: 
 

 niaFn iinmni ,,1)(ˆ 2/1
1,, L

( =⋅±= −−± upp α  (2.8.4.7) 

 
Here, ±ip

(
 are two test parameter sets on the i th axis, the direction of which is given by the 

eigenvector iu  of covariance matrix ppC . The distance from the optimal parameter set p̂  is 
selected as a multiple of the corresponding eigenvalue 2

ia  and the quantile of the F -distribution. 
This means that the correction is tailored to approximate the confidence region on a certain 
confidence level α−1 . The eigenvalues 2

ia , which determine the length of the semiaxes, are 
corrected as follows: 
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α  (2.8.4.9) 

 
Finally, the new covariance matrix, '

ppC , is calculated from the original eigenvectors iu  and the 
updated eigenvalues 2'ia : 
 

 UDUC '' T
pp =  (2.8.4.10) 

 
where 'D  is a diagonal matrix consisting of the corrected eigenvalues, and U  is the modal matrix, 
formed by the n  eigenvectors as its columns. This correction procedure requires n2  additional 
solutions of the direct problem and is thus relatively inexpensive. While the resulting confidence 
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region is ellipsoidal by definition, the differences between )( +iS p
(

 and )( −iS p
(

 provide—as a 
byproduct of the correction procedure—some insight into the asymmetry of the true confidence 
region. The corrected covariance matrix is rendered in Figure 2.8.4.3b. The endpoints of the 
semiaxes match the actual confidence region on the 95% confidence level reasonably well. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 The covariance matrix of the estimated parameters, Equation (2.8.4.2), is evaluated by default. 
Command >>> LINEARITY checks the linearity assumption of the error analysis using 
Equations (2.8.4.7) through (2.8.4.10). 
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2.8.5 Residual analysis 
 
 Minimizing the objective function leads to the best-estimate parameter set for a given 
functional and stochastic model. However, this does not imply that the real system is properly 
represented by the model. If the conceptual model fails to reproduce the salient features of the 
system, the calibrated model may not be able to match the observed data as expected, where the 
expectation regarding the attainable fit is reflected in the a priori covariance matrix zzC . A first 
and rather crude assessment of the match is the Fisher Model Test described in Section 2.8.3. 
However, a more detailed analysis is required to reveal potential trends in the residuals, indicating 
that there is a systematic error in the model or the data. In general, an inspection and detailed 
analysis of the residuals are used in pointing towards aspects of the model that need to be modified. 
In addition, large residuals (outliers) may be detected by visual inspection, or by use of a more 
rigorous approach based on mathematical statistics. Note that if the statistics of the residuals 
significantly deviate from normal, the estimates are likely to be biased, and the formal error 
analysis (which establishes quantitative relationships among the objective function, the covariance 
matrix, and the confidence level) is not valid. 
 
 A trend in the residuals is usually immediately identified by visual inspection of a scatter plot 
of the residuals, which is printed to the iTOUGH2 output file. A moment analysis is performed on 
the residuals of each data set, each observation type, and all scaled residuals. First, the mean and 
variance are calculated: 
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Here, ir  is the residual from a certain data set or certain observation type, respectively, and 

mM ≤  is the number of such residuals. The mean of the residuals is expected to be close to zero, 
and the variance should be consistent with that specified by the prior covariance matrix. A large 
positive (negative) mean indicates that the mode systematically underpredicted (overpredicted) the 
data. Notice that the variance (2.8.5.2) is not the variance of the residuals themselves, but the 
variance of the residuals about the mean residual r . A large variance either indicates that the data 
were noisier than expected, or that there is a trend in the residuals. Taking the ratio of the mean 
(bias) and the standard deviation VARSDEV =  of the residuals provides a measure of whether 
the bias is acceptable; the ratio SDEVr  should be close to zero. 
 
 The third moment or skewness characterizes the degree of asymmetry of the distribution: 
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A positive (negative) skewness signifies an asymmetric tail extending to more positive (negative) 
residuals.  
 
 The fourth moment or kurtosis measures the peakedness or flatness of the distribution relative 
to the Gaussian distribution: 
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where the -3 term makes the value zero for a normal distribution. A distribution with positive 
(negative) kurtosis is relatively peaked (flat). 
 
 The mean and especially the higher moments are statistics that are not robust in the sense 
discussed in Section 2.6.5. A more robust estimator of the center of the distribution is the median, 
which is defined as the quantity for which larger and smaller values are equally probable.  
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 An estimator of the width of the distribution around the median is given by the mean absolute 
deviation: 
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A large difference between the mean and the median or the standard deviation and the mean 
absolute deviation is indicative of a robustness problem, i.e., the distribution is likely to be heavy-
tailed and asymmetric, or the residuals contain outliers. The mean used in Equation (2.8.5.2) 
minimizes the variance, whereas the median used in Equation (2.8.5.6) minimizes the mean 
absolute deviation. 
 
 Note that the moment analysis is performed on the residuals themselves, i.e., not the residuals 
weighted by the measurement error. This fact may affect the conclusions if largely different 
standard deviations are assigned to data belonging to the same data set or same observation type. 
iTOUGH2 also performs a moment analysis on all weighted residuals. This analysis should yield a 
mean close to zero and a variance close to 2

0s  (see Equation 2.8.3.1). 
 
 A plot of the calculated versus the observed system response should show points distributed 
closely around the diagonal line. In iTOUGH2, a linear regression analysis is conducted on the 
scatter plots, individually for each data set. An intercept of zero and a slope of one are expected. 
Note that the linear regression analysis does not properly account for differences in measurement 
quality within a data set. Furthermore, the smaller values have a higher influence on the intercept 
estimate, and small and large values determine the slope more strongly than intermediate values. 
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Consequently, the results of this analysis should be interpreted with care. An example of the linear 
regression analysis is discussed in Finsterle [2007c; Problem 6]. 
 
 In order to further analyze the residuals, it is necessary to estimate the uncertainty of the 
calculated system response. As will be discussed in Section 2.8.7, the covariance matrix of the 
model prediction is given by 
 

 T
ppzz JJCC =ˆˆ  (2.8.5.7) 

 
The square-root of the diagonal element of zzˆˆC  is the standard deviation of the model prediction. 
Note that the standard deviation of the calculated system response is always smaller than that of the 
corresponding measurement (i.e., 

ii zz σσ <ˆ ). This is because the model prediction at a given point 
is inferred not only from the corresponding data point, but also from all the other observations. 
 
 The covariance matrix of the residuals is given by [Weisberg, 1980] 
 
 zzzzrr ˆˆCCC −=  (2.8.5.8) 

 
The elements of rrC  depend on the number and location (i.e., correlation) of the observation points 
and their sensitivities to the model parameters; they do not depend on the actually measured value. 
 
 Next, we calculate a measure termed local reliability or partial redundancy [IGP, 1990]: 
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The local reliability realizes values between zero and one. It is a measure of how much a data point 
is controlled by redundant observations. If iy  is close to zero, even a large error in the 
corresponding data point *iz  cannot be detected. A iy  value close to one indicates a well-
controlled observation. Adding more observation points in the vicinity of this measurement may 
improve the accuracy, but does not improve the reliability of the inverse modeling system. In other 
words, iy  can also be considered a measure of the degree of redundancy.  
 
 Observations with iy  values smaller than about 0.25 are considered poorly controlled; values 
greater than 0.75 indicate a high degree of redundancy. For a given configuration, a relatively 
uncertain measurement is better controlled than an accurate measurement. Note that iy  can be 
evaluated a priori and can therefore be used to improve the design of an experiment. 
 
 The normalized or Studentized residual [Weisberg, 1980] 
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is a normally distributed random variable with zero mean and a variance of one. Hence, the size of a 
residual can be statistically tested to see whether it is acceptable or a potential outlier. If α−> 1uwi , 
where α−1u  is the quantile of the standard normal distribution on the α−1  confidence level, then 
the corresponding residual is likely to be an outlier and should be discarded; the risk of discarding a 
correct data point is α . The assumption that the normalized residuals follow a normal distribution 
is an approximation considered acceptable. This test is based on the assumption that multiple large 
errors do not cancel each another. Note that the iw -test checks each observation individually, 
whereas the Fisher Model Test described in Section 2.8.3 is based on the ensemble of all 
measurements. 
 
 The probable size of the error depends on the local reliability and is given by 
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For a poorly controlled observation, the size of the actual error can be significantly larger than the 
residual.  
 
 The following two equations can be used to check the numerical accuracy of the residual 
analysis [Weisberg, 1980]: 
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 Finally, the relative contribution of each data point, each data set, and each observation type to 
the objective function may be used to identify errors in portions of the data or the model. Since the 
objective function is built using the weighted residuals, an imbalance in these contributions may 
also signify an error in the stochastic model. 
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2.8.6 Optimality and model identification criteria 
 
 The previous sections dealt with statistical measures that assess the results of a single inversion. 
In this section, a number of additional criteria are given, which allow comparison of different 
inversions—for example, calibrating against different data sets, estimating different parameters, or 
using a different conceptual model. If competing models have been developed and matched to the 
data, a criterion is needed to decide which of the alternatives is preferable. A number of tests for 
model discrimination have been developed as described by Steinberg and Hunter [1984], Carrera 
and Neuman [1986a], and Russo [1988], Russo et al. [1991]. 
 
 One of the most widely used criteria is the estimated error variance as a measure of goodness-
of-fit (see Section 2.8.3). The model that best matches the data is considered to be the best. 
However, since the match can always be improved by adding more fitting parameters, the 
goodness-of-fit is an inappropriate basis for model selection because it almost always leads to 
overparameterization. Overparameterization means that an improvement of the fit comes at the 
expense of a reduction in model reliability. Increasing the number of parameters also increases the 
correlations among the parameters, which results in higher estimation uncertainties if the match is 
not significantly improved. Consequently, model identification and optimality criteria should 
include some aggregate measure of overall estimation uncertainty to guard against 
overparameterization. 
 
 The first group of criteria includes quantities that measure the overall size of the estimation 
covariance matrix ppC . A key objective of parameter estimation by inverse modeling is to reduce 
the uncertainty of a set of parameters considered important for the subsequent model prediction. 
Therefore, a measure of overall parameter uncertainty can serve as a criterion to compare the 
performance of competing test designs or alternative inversions. The inversion realizing the 
smallest value is considered superior. There are three scalar measures of ppC  one might use as 
design evaluation or optimality criteria [Steinberg and Hunter, 1984]: 
 
 ( )ppoptimalityA Ctrace=−  (2.8.6.1) 

 
 ( )ppoptimalityE Ceigenvaluemax =−  (2.8.6.2) 

 
 ( )ppoptimalityD Cdet=−  (2.8.6.3) 

 
 A-optimality consists of minimizing the trace of ppC , i.e., it minimizes the sum of all parameter 
uncertainties. E-optimality seeks minimization of the maximum eigenvalue of ppC . As discussed in 
Section 2.8.4, the maximum eigenvalue represents the largest axis of the hyper-ellipsoid, i.e., the 
length of the vector in the parameter space that is associated with the largest estimation uncertainty. 
Taking the determinant of ppC  yields the so-called D-optimality objective for design evaluation. 
The design with the smallest value minimizes the area of the joint confidence region around the 
parameter estimates. 
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 If vector p contains parameters of different types and orders of magnitude, matrix ppC  should 
be appropriately scaled before evaluating the optimality criteria. The elements of the scaled 
covariance matrix are defined as follows: 
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Recall that ppC  is directly proportional to the overall goodness-of-fit expressed by 2

0s  or—in the 
case of design calculations—the expectation thereof. 
 
Carrera and Neuman [1986a] have introduced the Akaike Information Criterion (AIC) and the 
Kashyap criterion [Kashyap, 1982]. For normally distributed residuals, AIC can be written as: 
 

 nmsnmAIC zz 2)2ln(ln)( 2
0 +⋅++−= πC  (2.8.6.5) 

 
where •  indicates the determinant of the corresponding matrix. The AIC takes into account both 
goodness-of-fit and parsimony of the model. The first term is the objective function, the second and 
third terms measure the uncertainty of the data, and the last term penalizes overparameterization. 
The Kashyap criterion is given by [Carrera, 1984]: 
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with *kd  proportional to the negative logarithm of the posterior probability that model k  is 
correct, given the available data [Kashyap, 1982]. 
 
 All criteria discussed in this section are based on a linearity and normality assumption. If this 
assumption is violated, the criteria should be applied with care. As a safeguard against 
misinterpretation, it is suggested to consider a model superior to its competitors only if that model 
realizes significantly lower values for most or all criteria. 
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2.8.7 Uncertainty propagation analysis 
 
 Model predictions are inherently uncertain and may significantly deviate from the true system 
behavior. There are many reasons for the inconsistency between model predictions and the actual or 
observed behavior. The main sources for modeling errors include: 
 
 Inconsistencies and Errors in the Conceptual Model:  As repeatedly mentioned in the previous 
sections, the conceptual model is by far the most important element in numerical modeling. 
Considerable effort should be spent on carefully developing the conceptual model because errors in 
the model structure are difficult to identify and to correct, and they usually have the greatest impact 
on the model predictions. 
 
 Uncertainty in the Input Parameters:  Another source of prediction errors is insufficient 
knowledge about the model parameters. Errors or uncertainties in the input parameters lead to 
errors or uncertainties in the model predictions. The purpose of inverse modeling is to estimate the 
best parameter set for a given model structure, and to reduce parameter uncertainty. There is a need 
to quantify the uncertainty in the model predictions as a result of parameter uncertainty, which will 
be discussed in this section. 
 
 Discretization Errors:  The numerical solution of the governing equations has only finite 
precision and may suffer from discretization errors such as numerical dispersion or oscillations. 
While care must be taken when choosing the numerical scheme to solve a specific problem, errors 
from the numerical implementation of the model are usually smaller than those made by using 
wrong parameter values, which in turn are small compared with the errors from using an 
inappropriate conceptual model. 
 
 When assessing modeling errors, one should consider the fact that modeling involves an 
abstraction process, i.e., no exact solution is sought, but an approximation that is reasonable and 
capable of reproducing the salient features of the system to be studied. 
 
 This section presents two methods to assess prediction uncertainties as a result of parameter 
uncertainty: 
 
• Linear uncertainty propagation analysis; 
• Monte Carlo simulations. 
 
 Linear or First-Order-Second-Moment (FOSM) uncertainty propagation analysis quantifies the 
uncertainty in model predictions by linearization. As the name indicates, FOSM is the analysis of 
the mean and covariance of a random function (the model prediction) based on its first-order Taylor 
series expansion. The covariance of the input parameters is translated into the covariance of the 
system response. This presumes that the mean and covariance are sufficient to characterize the 
distribution of the dependent variables, i.e., the model results are assumed to be normally or log-
normally distributed. This assumption is valid whenever parameter uncertainties are sufficiently 
small, or when the model is linear and the distribution of the input parameters is normal. The 
validity of the normality and linearity assumption must be tested before applying FOSM. 
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 We first develop expressions for the mean and covariance matrix of the model prediction. Let 
p̂  be the vector of length n  holding the best-estimate values of the input parameters that are 
considered uncertain. The uncertainty is described by the covariance matrix ppC . Furthermore, z  
is a vector of length m  containing the simulation results at certain points in space and time. These 
model predictions are a nonlinear function of the parameter vector p . Finally, let J  be the nm ×  
Jacobian matrix holding sensitivity coefficients jiij pzJ ∂∂ )ˆ(p= . The model prediction )(pz  can 
be approximated using first-order Taylor series expansion about p̂  as follows: 
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The first-order approximation of the expected values of the dependent variables is the vector of the 
model prediction obtained using the mean parameters. The mean parameters are approximated by 
the estimates p̂ . 
 
 The covariance matrix of the simulated system response is derived using the following 
definition, with )ˆ(ˆ pzz = : 
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Equation (2.8.7.4) was also used in Section 2.8.5. Here, it describes the prediction uncertainty for 
any set of uncertain input parameters, whereas in Section 2.8.5 it was used to evaluate the 
uncertainty of the calculated system response during an inversion, as a result of the uncertainty of 
the best-estimate parameter set. 
 
 Linear uncertainty analysis has the following advantages and disadvantages: 
 

Advantages: 

• The uncertainties in the model predictions can be described in a compact way by means of the 
covariance matrix zzˆˆC , i.e., results are easy to understand and convenient to report; 

• Correlations among the parameters are taken into account; 

• The output covariance matrix zzˆˆC  contains correlations among model predictions; 

• FOSM is computationally inexpensive, requiring 1+n  forward simulations. 
 
Disadvantages: 

• The uncertainty in the input parameters are expected to be accurately described by a covariance 
matrix ppC ; 

• If parameters are highly uncertain, the linearity assumption may be violated; 

• FOSM assigns probabilities to physically unreasonable system responses, i.e., FOSM should 
not be used to analyze extreme events in the tail of the distribution. 

 
 An alternative to FOSM uncertainty propagation analysis is to perform Monte Carlo simu-
lations. Monte Carlo (MC) requires repetitive solution of the simulation model, with the parameters 
randomly sampled from their suspected probability distributions. The output from MC runs is then 
used to analyze the statistical properties of the resulting distribution, which represents the 
uncertainty of the model predictions. The procedure is summarized in Table 2.8.7.1. 
 
 
Table 2.8.7.1. Monte Carlo Simulations 

 Step 1: Define probability distribution for all uncertain input parameters. 

 Step 2: Randomly sample parameter values from the defined distributions. 

 Step 3: Combine sampled parameter values randomly to obtain a parameter vector. 

 Step 4: Run simulation and store the results. 

 Step 5: Repeat Steps (2) through (4) MCn  times. 

 Step 6: Perform statistical analyses (histogram, moments) of ensemble of model output. 
 
 
To consider correlations among the parameters, the random combination of parameter values in 
Step 3 must be modified such the covariance function is correctly reproduced (see, for example, 
Kitterød and Gottschalk [1997] and keyword >>> EMPIRICAL ORTHOGONAL FUNCTIONS). 
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How many Monte Carlo runs should be performed?  The number of Monte Carlo simulations MCn  
can be considered sufficient if: 
 
(1) The selected probability density function of the input parameters is reasonably well 

approximated by the histogram of the randomly generated parameter values. 
 
(2) The histogram of the model predictions allows for a statistical analysis. That means that a 

sufficient number of realizations (simulation results) should fall within each interval used to 
calculate probabilities. For example: The probability that the model prediction iz  falls within 
the interval ],[ ba  is approximated by: 

 
 

MC

ba
iba n

nba
bza ],[

],[ ssimulation Carlo Monte ofnumber  total

],[ intervalin  nsrealizatio ofnumber 
)Pr( =≈≤≤=Γ  

 
 Therefore, the minimum number of Monte Carlo simulations, min,MCn , should be large 

enough so that ],[ baΓ  remains constant, i.e., independent of MCn . This condition is fulfilled 
for relatively small values of MCn  in the case of intervals around the mean, where ],[ ban  is 
usually large due to the high probability density. However, if one is interested in the tail of 
the distribution, then the number of Monte Carlo simulations required is much higher. 

 
(3) The minimum number of Monte Carlo simulations must be increased if the number of 

uncertain parameter increases because more parameter combinations are possible. 
 
(4) From experience, the number of Monte Carlo simulations can be as low as 50 and as high as 

2000 or greater. 
 
 Uncertainty propagation analysis by means of Monte Carlo simulations has the following 
advantages and disadvantages: 
 

 Advantages: 

• Any distribution (uniform, normal, log-normal, exponential, any arbitrary histogram) can be 
chosen to describe parameter uncertainty; 

• No assumption is made about the distributional form of the model output, i.e., a full distribution 
of the predictions is obtained; Monte Carlo is termed a full distribution analysis; 

• Nonlinearities are inherently taken into account; 

• Results from Monte Carlo simulations are always in the physically feasible range. 
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Disadvantages: 

• Results from Monte Carlo simulations are difficult to report because they usually do not follow 
a normal distribution; 

• Since the combination of parameter values in Step 3 (see Table 2.8.7.1) is random, no 
correlations between parameters are included; 

• Monte Carlo simulations are computationally expensive. 
 
 
EXAMPLE 
 
 A short example illustrates the differences between the linear FOSM uncertainty propagation 
analysis and Monte Carlo simulations. As indicated above, for small standard deviations of the 
input parameters, and for model output that can be well approximated by a linear function of the 
parameters within the range of the error band, FOSM is a fast method to calculate a measure of 
prediction uncertainty that is easy to report. If the model is highly nonlinear, and the uncertainties 
of the input parameters are large, Monte Carlo simulations have to be performed to examine many 
parameter combinations according to their probabilities. Monte Carlo simulations provide the full 
distribution of the model output at the selected points in space and time. The Monte Carlo method 
is very flexible in handling non-Gaussian distributions of both input parameters and output 
variables, but it is computationally expensive and the results are difficult to report. 
 
 Both approaches are compared using a synthetic laboratory experiment consisting of three 
parts: (1) injection of water into a partially saturated sand column under constant pressure for 300 
seconds; (2) injection of gas for 150 seconds, followed by (3) a 150-second shut-in recovery period. 
The experiment is described in Finsterle [2007c; Problem 1]. 
 
 The standard deviations of three uncorrelated input parameters—the logarithm of the absolute 
permeability, porosity, and the initial gas saturation in the soil column—are assumed to be 0.1, 
0.05, and 0.05, respectively. As a result of parameter uncertainty, the prediction of the pressure at 
the center of the column will also be uncertain. 
 
 The results from both the FOSM and Monte Carlo uncertainty analyses are visualized in Figure 
2.8.7.1. While the linear FOSM analysis gives a reasonable estimate of prediction uncertainty for 
most parts of the experiment, the Monte Carlo simulations reveal an asymmetry of the output 
distribution in the period where nonlinear effects prevail. Note that FOSM analysis assigns a certain 
probability to pressure responses that are below 1 bar, which is physically not possible in this 
experiment. The Monte Carlo simulations naturally stay away from this lower bound. The highest 
pressures were achieved with a parameter combination of low permeability, high porosity, and low 
initial gas saturation. 
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Figure 2.8.7.1. Comparison between FOSM and Monte Carlo uncertainty propagation analyses. 
 
 
RELATED iTOUGH2 COMMANDS 
 
 Linear error propagation analysis is invoked by command >>> FOSM, where the standard 
deviations of the input parameters are provided either through the appropriate fourth-level 
commands in block > PARAMETER, or—if correlations among the parameters are to be 
specified—as a full covariance/correlation matrix (see keyword MATRIX). The Jacobian matrix 
can be calculated using either >>> FORWARD or >>> CENTERED finite differences. 
 
 Monte Carlo simulations are invoked using command >>> MONTE CARLO and its keywords. 
By default, the input parameters are sampled from a normal distribution in the range indicated by 
command >>> RANGE, with the initial parameter guess as the mean, and with the standard 
deviation provided through the appropriate fourth-level commands in block > PARAMETER. 
Adding command >>>> LOGARITHM makes iTOUGH2 sample from a log-normal distribution, 
and command >>>> UNIFORM chooses a uniform distribution for the corresponding input 
parameter. The total number of Monte Carlo simulations, MCn , is given through command 
>>> SIMULATIONS. A special plot file is created for convenient plotting of Monte Carlo runs; 
the corresponding file name contains the label “_mc”. 
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3. iTOUGH2 OUTPUT 
 
3.1 Introduction 
 

 The inverse modeling capabilities outlined in Section 2, which include sensitivity analysis, 
parameter estimation, and uncertainty propagation analysis, are implemented into iTOUGH2. 
iTOUGH2 requires the user to supply a standard TOUGH2 input file, which describes the forward 
problem, and an iTOUGH2 input file, which identifies the parameters to be estimated, the 
observations against which to calibrate the model, as well as various program options. The report 
“iTOUGH2 Command Reference” [Finsterle, 2007b] as well as the web site http://www-
esd.lbl.gov/iTOUGH2 contain descriptions of all iTOUGH2 commands. Full iTOUGH2 
applications are discussed in Finsterle [2007c]. 
 
 An iTOUGH2 run produces a standard TOUGH2 output file and a number of iTOUGH2 output 
files. In this section, the main iTOUGH2 output file is described, mainly by making reference to 
equations discussed in Section 2. The contents of an iTOUGH2 output file change depending on the 
selected options. The one shown in this section is a typical output file produced by running an 
inversion for parameter estimation. The related inverse problem is described in Finsterle [2007c; 
Problem 3]. Line numbers have been added to the output file to facilitate easy referencing in the 
text. While an iTOUGH2 output file should be viewed and printed with a width of 132 columns, it 
was reformatted here to fit the width of the page. Omissions are indicated with “(...)”. 
Information not to be found in the output file but added for clarification (e.g., column numbers, 
comments) is printed in italics. Also note that the contents of an iTOUGH2 output file are 
frequently modified as the code is improved. 
 
 
3.2 Header 
 
 Figure 3.2.1 shows the iTOUGH2 header information. It identifies the version of the code with 
version number, date, and computer architecture for which the program was compiled (Line 11). 
Line 15 indicates the time when the run was started, followed by the iTOUGH2 and TOUGH2 input 
file names and the working directory. The temporary directory is usually deleted at the end of a run, 
but may be saved using command option -no_delete (see Section 6.2). Note that additional 
input files may have been provided (e.g., TOUGH2 input files MESH, INCON, and GENER, or 
iTOUGH2 data files). The names of these files must be provided on the Unix command line (see 
Section 6.2), which is reproduced later in the output (see Figure 3.3.4, Line 136). The number of the 
equation-of-state (EOS) module is given along with a list of valid component and phase names. 
These are the names to be used in conjunction with commands and keywords COMPONENT and 
PHASE, respectively. Lines 27 and 31 indicate that portions of the iTOUGH2 input file were 
commented out using “/*” and “*/”. Line 29 indicates that Line 717 of the iTOUGH2 input file 
was ignored because of a “#” sign in the first column. 
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    1                     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
    2                     @                                             @ 
    3                     @   @  @@@@@   @@   @  @   @@@  @  @   @@@@   @ 
    4                     @        @    @  @  @  @  @     @  @  @    @  @ 
    5                     @   @    @    @  @  @  @  @ @@  @@@@     @@   @ 
    6                     @   @    @    @  @  @  @  @  @  @  @    @@    @ 
    7                     @   @    @     @@    @@    @@@  @  @  @@@@@@  @ 
    8                     @                                             @ 
    9                     @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
   10 
   11                iTOUGH2 V6.0 (JANUARY, 2007) FOR LINUX/INTEL, S. FINSTERLE  
   12               COPYRIGHT 1999, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA 
   13 
   14 ===================================================================================== 
   15                      >>>>>>>>>>>>> 01-Jan-07  00:00 <<<<<<<<<<<<< 
   16 ===================================================================================== 
   17 iTOUGH2 INPUT FILE            :  sam3p1i 
   18 TOUGH2 INPUT FILE             :  sam3 
   19 WORKING DIRECTORY             :  /home/finster/itough2/samples/sample3 
   20 TEMPORARY DIRECTORY           :  /home/finster/it2_32052 
   21 EQUATION OF STATE MODULE NO.  :  1 - Pure and traced water in liquid, vapor, and (...) 
   22 COMPONENTS                    :  WATER     TRACER    HEAT                                     
   23 PHASES                        :  VAPOR     LIQUID               
   24 TOUGH2 TITLE                  :  sam3: Five spot injection/production in (...) 
   25 ===================================================================================== 
   26 
   27 --- Lines  703 to  706 skipped. 
   28 
   29 --- Line   720 ignored. 
   30 
   31 --- Lines  725 to  733 skipped. 
 

Figure 3.2.1. iTOUGH2 header information. 
 
 

3.3 Printout of iTOUGH2 Input 
  
 This section of the output file reiterates the information specified in the iTOUGH2 input file. 
The output follows the main structure of the iTOUGH2 input file, with three sections describing (1) 
the parameters to be estimated, (2) the observations used for calibration, and (3) the program 
options. In addition, some information is given regarding the computer system used. 
 
 Figure 3.3.1 shows the list of parameters to be estimated. The first column indicates the order of 
the parameters as given in the iTOUGH2 input file. The second column contains an internal 
parameter identifier. The annotation given in the third column is either specified by the user (see 
command >>>> ANNOTATION) or internally generated. The parameter type is shown in the 
fourth column, followed by a flag indicating whether the parameter value, its logarithm, or a 
multiplication factor is estimated. Most parameters refer to a rock type. If more than one rock type 
is given, the material name is followed by a “+” sign and the number of additional rock types 
specified. The actual list of rock types is provided below (see Lines 55–60). The prior parameter 
value is given in the seventh column. A “@” sign indicates that the initial guess is different from the 
prior information value. The initial guess is not reiterated here, but can be seen later as the first 
parameter set starting minimization (see Figure 3.4.1, Line 160). The eighth column contains the 
standard deviations that weigh prior information, i.e., the square roots of the first n  diagonal 
elements of covariance matrix zzC , Equation (2.5.3.1). In this example, prior information is not 
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weighted. Lower and upper bounds are indicated in Columns 9 and 10. The step size taken at each 
iteration during the minimization process can be limited for each parameter individually (see 
Section 2.7.9). No such maximum step size is given for parameters No. 2 and 5. This does not 
mean, however, that their step sizes are not restricted by the global step-size criterion, Equation 
(2.7.9.1), if such a criterion were specified. Finally, certain parameters are further categorized by 
one or more indices, as indicated in the last column. For example, the parameter representing the 
logarithm of the absolute permeability refers to one or multiple flow directions, indicated by one or 
multiple numbers between 1 and 3 in Column 12. 
 
   32 
   33 ================================================================================= 
   34                                       INPUT 
   35 ================================================================================= 
   36 
   37 
   38 PARAMETERS 
   39 ========== 
   40 
      1  2     3              4        5    6        7     8      9       10      11 12 
   41 --------------------------------------------------------------------------------- 
   42 # ID ANNOTATION     PARAMETER   VLF ROCKS    PRIOR  SDEV L-BOUND U-BOUND M-STEP P 
   43 --------------------------------------------------------------------------------- 
   44 1  2 PERMEABILITY   ABS. PERM.  L  FRACT  -.130E+2  N/W -.18E+2 -.12E+2 .10E+1  3 
   45 2  6 POROSITY FRACT POROSITY    V  FRACT   .500E+0@ 0.2  .50E-1  .90E+0  UNLIM  1 
   46 3 16 SPECIFIC HEAT  SPEC. HEAT  V  FRACT+1 .800E+3  N/W  .10E+3  .90E+4 .10E+3  1 
   47 4 15 HEAT COND.     HEAT COND.  V  FRACT+1 .250E+1  N/W  .10E+1  .50E+1 .50E+0  1 
   48 5  9 FRACT. SPACING MINC PAR.   V  -----   .200E+2  N/W  .10E+2  .50E+3  UNLIM  2 
   49 6  7 RESERVOIR TEMP INIT. COND. V  DEFAU   .250E+3  N/W  .20E+3  .40E+3 .40E+2  1 
   50 --------------------------------------------------------------------------------- 
   51 @ indicates that initial guess is different from prior information 
   52 --------------------------------------------------------------------------------- 
   53 
   54 
   55 --------------------------------------------------------------------------------- 
   56  #  DEFINITION OF MULTIPLE MATERIALS/SOURCES 
   57 --------------------------------------------------------------------------------- 
   58  3  FRACT+1   =   FRACT + MATRX 
   59  4  FRACT+1   =   FRACT + MATRX 
   60 --------------------------------------------------------------------------------- 
   61 

Figure 3.3.1. Parameters selected for estimation; N/W stands for “NOT WEIGHTED” and indicates 
that prior information is not included. 
 
 
 Figure 3.3.2 shows the output that provides information about the calibration points at which 
the observed and calculated system response is compared. First comes a list of calibration times as 
specified in block >> TIMES. These points are usually not identical with the actual times at which 
data were collected; these are the times at which model output is provided for comparison against 
measured or interpolated data. 
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   62 
   63 OBSERVATIONS 
   64 ============ 
   65 
   66 TIMES  [a] 
   67 ----------- 
   68  0.1000000E+00  0.2000000E+00  0.3000000E+00  0.4000000E+00  0.5000000E+00 
   69  0.6000000E+00  0.7000000E+00  0.8000000E+00  0.9000000E+00  0.1000000E+01 
   70  0.1100000E+01  0.1200000E+01  0.1300000E+01  0.1400000E+01  0.1500000E+01 
   71  0.1600000E+01  0.1700000E+01  0.1800000E+01  0.1900000E+01  0.2000000E+01 
   72  0.2100000E+01  0.2200000E+01  0.2300000E+01  0.2400000E+01  0.2500000E+01 
   73  0.2600000E+01  0.2700000E+01  0.2800000E+01  0.2900000E+01  0.3000000E+01 
   74  0.3100000E+01  0.3200000E+01  0.3300000E+01  0.3400000E+01  0.3500000E+01 
   75  0.3600000E+01  0.3700000E+01  0.3800000E+01  0.3900000E+01  0.4000000E+01 
   76  0.4100000E+01  0.4200000E+01  0.4300000E+01  0.4400000E+01  0.4500000E+01 
   77  0.4600000E+01  0.4700000E+01  0.4800000E+01  0.4900000E+01  0.5000000E+01 
   78 
   79   1       2       3         4       5      6      7    8      9        10    11 
   80 --------------------------------------------------------------------------------- 
   81 SET ANNOTATION  TYPE   ELEM/CONN   SDEV  MIN/MAX TIME LVMS DATAPOINTS FACTOR IOBS 
   82 --------------------------------------------------------------------------------- 
   83  1  P. INJECT. PRES.   AA 1      .20E+6 .10E+0 .60E+1  V   DATA: 60  .10E+6  1 
   84  2  P. PRODUCT. PRES.  KA 1      .20E+6 .10E+0 .60E+1  V   DATA: 60  .10E+6  1 
   85  3  P. OBS. 1   PRES.  DB 1      .20E+6 .10E+0 .60E+1  V   DATA: 60  .10E+6  1 
   86  4  P. OBS. 2   PRES.  GC 1      .20E+6 .10E+0 .60E+1  V   DATA: 60  .10E+6  1 
   87  5  T. PRODUCT. TEMP.  KA 1      .50E+1 .10E+0 .60E+1  V   DATA: 60  .10E+1 
   88  6  T. OBS. 1   TEMP.  DB 1      .50E+1 .10E+0 .60E+1  V   DATA: 60  .10E+1 
   89  7  T. OBS. 2   TEMP.  GC 1      .50E+1 .10E+0 .60E+1  V   DATA: 60  .10E+1 
   90  8  WATER PROD. Q-LIQ. JA 1 KA 1 .20E+0 .10E+0 .60E+1  V   DATA: 60 -.10E+1 
   91  9  VAPOR PROD. Q-VAP. JA 1 KA 1 .10E-1 .10E+0 .60E+1  V   DATA: 60 -.10E+1 
   92 --------------------------------------------------------------------------------- 
   93 
   94 
   95 ------------------------------------------------- 
   96 Number of datasets                    :   9 
   97 Number of calibration times           :  50 
   98 Number of parameters                  :   6 
   99 Number of parameters with prior info. :         1 
  100 Number of PRESSURE                    :       200 
  101 Number of FLOW RATE                   :       100 
  102 Number of TEMPERATURE                 :       150 
  103                                              ---- 
  104 Total number of observations          :       451 
  105                                              ==== 
  106 Degree of freedom                     : 445 
  107 ------------------------------------------------- 
  108 

Figure 3.3.2. Observations available for calibration. 
 
 

 Lines 83–91 list the data sets, with their user-specified annotations (Column 2), and their data 
type. The fourth column contains one or multiple gridblock names, identifying the element or 
connection representing the location to which the data refer. The standard deviation shown in the 
fifth column is the square root of a constant variance that is assigned to all diagonal elements of 
matrix zzC , referring to the corresponding data set. Note that constant measurement errors are 
specified using commands >>>> VARIANCE, >>>> DEVIATION, >>>> WEIGHT and 
>>>> AUTO. If a measurement error is specified as a fraction of the observed value, this will also 
be indicated in Column 5. Any diagonal element of zzC  can also be provided individually either 
through the data file (see command >>>> COLUMNS) or using command >> COVARIANCE. 
These latter two cases are, however, not reflected in Column 5. Columns 6 and 7 contain the 
minimum and maximum time, respectively, at which data are available. These time limits are given 
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either by the data themselves, or when a time window is specified. They are affected by the time 
units specified for each data set, and by command >>>> SHIFT TIME. Column 8 indicates 
whether the calculated value itself or its logarithm will be used for comparison to the data (see 
command >>>> LOGARITHM (o)). Furthermore, if multiple elements or connections are 
provided, either the sum (see command >>>> SUM) or the mean (see command 
>>>> AVERAGE) of the variables calculated at these locations will be used for calibration. Column 
9 shows the data definition. In most cases, the data are given as a time series, i.e., a list of times 
versus observed values. The number of data points read is indicated in Column 9. It is affected by 
command >>>> PICK. Column 10 shows the factor specified to convert the observed data to the 
standard units used in TOUGH2. The last column is used for further specification of an observation, 
identifying, for example, whether the observed pressure refers to the gas or capillary pressure. 
 
 Lines 96–104 summarize the calibration points available. The total number of data sets given on 
Line 96 is usually identical with the number of points in space, i.e., each data set provides a time 
series of observations at a certain location. As mentioned above, the total number of calibration 
times solely refers to the number of times specified in the iTOUGH2 input file, and may be 
different from the number of times at which data were collected. The total number of parameters is 
reported here since they may serve as additional data points (prior information). Because no 
standard deviations are provided for the parameters, they are not included as prior information. 
Here, the model will be calibrated simultaneously against pressure, flow rate, and temperature 
measurements. The 150 temperature measurements, for example, consist of data at 3 locations, each 
calibrated at 50 points in time. The degree of freedom (Line 106) is the difference between the total 
number of observations and the number of parameters to be estimated. 
 
 Figure 3.3.3 shows a summary of the computational parameters and the selected program 
options. Line 136 contains the arguments submitted to the Unix script file named on Line 135. It 
would indicate all the additional file names provided for a specific run; no such files were specified 
in this case. The information about the computer system (see Figure 3.3.4) varies depending on the 
system calls made from subroutines in file mdep$COMP.f, where $COMP is the name of a 
computer platform. 
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  109 
  110 COMPUTATIONAL PARAMETERS 
  111 ======================== 
  112 
  113 Application                                      :      Levenberg-Marquardt 
  114 Maximum number of iTOUGH2 iterations             :                       13 
  115 Maximum number of TOUGH2 simulations             :                     9999 
  116 Maximum number of uphill steps                   :                       10 
  117 Maximum size of scaled parameter step            :              0.10000E+01 
  118 Initial Levenberg parameter                      :              0.10000E-01 
  119 Marquardt parameter                              :              0.10000E+02 
  120 Finite difference quotient for Jacobian          :   6  forward -> centered 
  121 Increment factor for computing derivatives       :              0.10000E-01 
  122 Variance for error analysis                      :        Fisher Model Test 
  123 Format of plotfile                               :                  Tecplot 
  124 Objective Function                               :            Least-Squares 
  125 Automatically select parameter if: 
  126 - relative sensitivity is greater than           :                 -0.05000 
  127 - independence measure is greater than           :                  0.00000 
  128 Revisit selection criteria every  3 iterations 
  129 

Figure 3.3.3. Summary of computational parameters and selected program options. 
 
 
  130 
  131 COMPUTER SYSTEM 
  132 =============== 
  133 
  134 Machine type                                     : Linux 
  135 Unix script file name                            : /home/username/bin/itough2 
  136 Unix command line arguments                      : sam3p1i sam3 1 
  137 Host name                                        : hostname 
  138 User name                                        : username 
  139 Executable                                       : (...)/itough2/itough2_1.(hostname) 
  140 Computer is faster than a SUN ULTRA 1 by a factor:                      7.7 
  141 
  142 
  143 --- End of iTOUGH2 input job:  736 lines read,    0.08 CPU-seconds used 
  144 

Figure 3.3.4. Information about the computer system used. 
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3.4 Printout From Minimization Algorithm 
  
 The next section of the output file contains printout from the minimization algorithm. The 
messages depend on the minimization method chosen, the solution path taken, and the constraints 
imposed. Figure 3.4.1 shows an example from the Levenberg-Marquardt minimization algorithm, 
with the parameters automatically being chosen using the sensitivity criterion (see Equations 
(2.7.9.2) through (2.7.9.4), and Figure 3.3.3, Lines 125–128).  
 
 The value of the objective function obtained with the initial parameter set is shown on Lines 
160–161. The 394th element of the residual vector yielded the maximum squared weighted residual. 
This element is related to the injection pressure after 4.4 years, as can be seen from the list of 
residuals discussed below (see Figure 3.7.1). The parameters shown on Lines 160–161 are identical 
to the prior information values previously reported (see Figure 3.3.1, Lines 44–49). An exception is 
the second parameter, porosity, which was marked on Line 45 (see Figure 3.3.1) as a parameter 
with an initial guess different from its prior information value (see also Line 51, Figure 3.3.1). 
 
 Next, the gradient of the objective function, Equation (2.7.2.3), is calculated using forward 
finite differences, Equation (2.7.2.10a). Automatic parameter selection was invoked (Lines 164–
174). According to the sensitivity criterion (2.7.9.3), the initial reservoir temperature is the only 
sensitive parameter worth updating; all the other parameters are temporarily deactivated. The 
Levenberg-Marquardt algorithm proposes to increase the initial reservoir temperature by 62 °C. 
However, the user has limited the step to a maximum of 40 °C, as previously noted (see Figure 
3.3.1, Line 49). As a consequence of automatic parameter selection and step size limitation, only the 
sixth element of the parameter vector is updated by 40, as indicated on Line 179. The new 
parameter set (Lines 180–181) leads to a rather significant reduction of the objective function from 
the initial value shown on Line 160 to the value given on Line 180. This concludes the first 
iteration. Similar output is generated for each additional iteration (not shown).  
 
 Lines 294–320 show a sequence of unsuccessful attempts to reduce the objective function. After 
each unsuccessful step, the Levenberg parameter is increased by a factor of 10, which is the 
Marquardt parameter given on Line 119 of Figure 3.3.3. Increasing the Levenberg parameter 
effectively reduces the length of the step and changes its orientation (see Table 2.7.4.1). After seven 
unsuccessful steps, the objective function was finally reduced, completing the seventh iteration 
(Line 325).  
 
 For iterations six and higher (see Figure 3.3.3, Line 120), centered finite differences were used 
to more accurately calculate the Jacobian matrix and to provide a better basis for the subsequent 
error analysis (see Line 411). Lines 413–423 show how parameters are deactivated, kept inactive or 
active, or are activated during the inversion according to their changing relative sensitivity and the 
decreasing selection criterion. Since the parameter selection criterion is relaxed with each iteration 
according to Equation (2.7.9.4), all parameters are updated for the last iteration. A final step in the 
parameter space is performed, leading to the best-estimate parameter set. This inversion was 
terminated by reaching the maximum number of iterations (Line 456), as specified by the user (see 
Figure 3.3.3, Line 114). 
 



   

iTOUGH2 USER’S GUIDE 87 OUTPUT 

  150 
  151 LEVENBERG-MARQUARDT ALGORITHM 
  152 
  153 I  = NEW ITERATION        J  = JACOBIAN           S  = STEP    U  = UNSUCC. STEP 
  154 PS = PARAMETER SELECTION  PU = PARAMETER UPDATE   B  = BOUNDS  M  = MESSAGE 
  155 
  156 --------------------------------------------------------------------------------- 
  157 ITER TOUGH2 OBJ FUNC. MAX. RES. EQU. PERMEABILITY  POROSITY FRACT   SPECIFIC HEAT 
  158                                        HEAT COND. FRACT. SPACING RESERVOIR TEMP. 
  159 --------------------------------------------------------------------------------- 
  160>I  0    1 0.14301E+06 0.105E+4  394 -0.130000E+02    0.250000E+00    0.800000E+03 
  161                                      0.250000E+01    0.200000E+02    0.250000E+03 
  162 J  1 Gradient     =   0.92853E+04 (forward) 
  163 -------------------------------------------------------------------- 
  164                   Automatic Parameter Selection 
  165 -------------------------------------------------------------------- 
  166     Parameter       Rel. Sensitivity     Independence         Status 
  167     Critical Value          0.0500           0.0000 
  168 -------------------------------------------------------------------- 
  169   1 PERMEABILITY            0.0043 -         0.7488      deactivated 
  170   2 POROSITY FRACT          0.0000 -         0.9028      deactivated 
  171   3 SPECIFIC HEAT           0.0010 -         0.6456      deactivated 
  172   4 HEAT COND.              0.0001 -         0.1434      deactivated 
  173   5 FRACT. SPACING          0.0001 -         0.1356      deactivated 
  174   6 RESERVOIR TEMP.         1.0000 +         0.9856           active 
  175 -------------------------------------------------------------------- 
  176 MS   Param. No. 6: RESER. TEMP. Step = 0.618E+2 exceeds max. step size = 0.400E+2 
  177 S    Step size = 0.40E+2 Scaled step size = 0.16E+0 Levenberg parameter = 0.10E-1 
  178 PU   Log(LP)= -2. Parameter update:  0.000000E+00    0.000000E+00    0.000000E+00 
  179                                      0.000000E+00    0.000000E+00    0.400000E+02 
  180>I  1  9 0.38055E+05 0.77297E+03  15 -0.130000E+02    0.250000E+00    0.800000E+03 
  181                                      0.250000E+01    0.200000E+02    0.290580E+03 
  ... (...) 
  294 MS   Param. No. 4: HEAT COND. Step = -0.619E+1 exceeds max. step size = -0.500E+0 
  295 S    Step size = 0.20001E+02 Scaled step size = 0.983003E+00 
  296 BL   Lower bound hit by parameter No. 5: FRACT. SPACING Lower bound = 0.10000E+02 
  297 U       1. unsuccessful step!              F(k+1)/F(k) =  0.154056E+01 
  297 MS   Param. No. 4: HEAT COND. Step = -0.618E+1 exceeds max. step size = -0.500E+0 
  287 S    Step size = 0.19998E+02 Scaled step size = 0.982878E+00 
  299 BL   Lower bound hit by parameter No. 5: FRACT. SPACING Lower bound = 0.10000E+02 
  300 U       2. unsuccessful step!              F(k+1)/F(k) =  0.154056E+01 
  ... (...) 
  320 U       7. unsuccessful step!              F(k+1)/F(k) =  0.101871E+01 
  321 MS   Param. No. 4: HEAT COND. Step = -0.616E+0 exceeds max. step size = -0.500E+0 
  322 S    Step size = 0.13407+02 Scaled step size = 0.203392E+00 
  323 PU   Log(LP)= -1. Parameter update: -0.186033E-03    0.000000E+00    0.133819E+02 
  324                                     -0.500000E+00    0.659820E+00   -0.160115E-01 
  325>I  7 49 0.21208E+04 0.12147E+03 78  -0.142300E+02    0.300000E+00    0.777499E+03  
  326                                      0.200000E+01    0.174682E+02    0.300318E+03 
  ... (...) 
  411 J 12 Gradient     =   0.11783E+03 (centered) 
  412 -------------------------------------------------------------------- 
  413                 Automatic Parameter Selection 
  414 -------------------------------------------------------------------- 
  415     Parameter       Rel. Sensitivity     Independence         Status 
  416     Critical Value          0.0042           0.0000 
  417 -------------------------------------------------------------------- 
  418   1 PERMEABILITY            0.0064 +         0.9261           active 
  419   2 POROSITY FRACT          0.0012 -         0.8688         inactive 
  420   3 SPECIFIC HEAT           0.0036 -         0.1847      deactivated 
  421   4 HEAT COND.              0.0026 -         0.0432      deactivated 
  422   5 FRACT. SPACING          0.0107 +         0.0404           active 
  423   6 RESERVOIR TEMP.         1.0000 +         0.8501           active 
  424 -------------------------------------------------------------------- 
  ... (...) 
  453>I    Best fit parameter set:         -0.142206E+02    0.472575E+00    0.962080E+03     
  454                                       0.180862E+01    0.448932E+02    0.300219E+03 
   

Figure 3.4.1. Output from Levenberg-Marquardt minimization algorithm. 



   

iTOUGH2 USER’S GUIDE 88 OUTPUT 

3.5 Printout From Sensitivity Analysis 
  
 The next section of the output file contains the scaled sensitivity matrix and the aggregate 
sensitivity measures discussed in Section 2.8.2. Figure 3.5.1 shows an excerpt from the scaled 
sensitivity matrix, with elements given by Equation (2.8.2.1). Each column refers to a parameter, 
and each row represents an observation, with prior information occupying the first n  rows. Since 
prior information is not weighted, the corresponding sensitivity coefficients are zero. The elements 
of the Jacobian matrix (Equation 2.7.2.4) are obtained by multiplying the scaled sensitivity 
coefficient with the standard deviation of the corresponding observation (see Figure 3.3.2, Lines 
83–91, Column 5), and by dividing it by the expected parameter variation (see Figure 3.5.3, Column 
3). Alternatively, command >>> SENSITIVITY can be used to print the unscaled sensitivity 
matrix. The last column in Figure 3.5.1 contains the sum of the absolute values of the scaled 
sensitivity coefficients over all columns of a row, i.e., it is the aggregate sensitivity measure ia  
(Equation 2.8.2.2), indicating the potential contribution of each calibration point to the inverse 
problem. 
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  458 
  459 Sensitivity Analysis 
  460 -------------------- 
  461 
  462 Element Sij of the scaled sensitivity matrix is the partial derivative of the  
      calculated system response zi with respect to parameter pj,  
  463 scaled by inverses of the respective standard deviations: 
  464 
  465       dz  * sigma(p ) 
  466         i          j 
  467 S   = --------------- 
  468  ij   dp  * sigma(z ) 
  469         j          i 
  470 
  471 
  472     obervation     time              1             2    3 - 6             7 
  473                           PERMEABILITY      POROSITY    (...)          Total 
  474   1 PERMEABILITY           0.00000E+00   0.00000E+00    (...)    0.00000E+00 
  475   2 POROSITY FRACT         0.00000E+00   0.00000E+00    (...)    0.00000E+00 
  476   3 SPECIFIC HEAT          0.00000E+00   0.00000E+00    (...)    0.00000E+00 
  477   4 HEAT COND.             0.00000E+00   0.00000E+00    (...)    0.00000E+00 
  478   5 FRACT. SPACING         0.00000E+00   0.00000E+00    (...)    0.00000E+00 
  479   6 RESERVOIR TEMP.        0.00000E+00   0.00000E+00    (...)    0.00000E+00 
  480   7 P. INJECT       0.1   -0.43111E+01  -0.69074E-01    (...)    0.56138E+01      
  481   8 P. INJECT       0.2   -0.44118E+01  -0.49790E-01    (...)    0.56909E+01 
  482   9 P. INJECT       0.3   -0.44900E+01  -0.38937E-01    (...)    0.57126E+01 
  483  10 P. INJECT       0.4   -0.44093E+01  -0.24032E-01    (...)    0.57810E+01 
  484  11 P. INJECT       0.5   -0.44523E+01  -0.27111E-01    (...)    0.58550E+01 
  485  12 P. INJECT       0.6   -0.45003E+01  -0.28133E-01    (...)    0.59163E+01 
  486  13 P. INJECT       0.7   -0.45493E+01  -0.26129E-01    (...)    0.59593E+01 
  487  14 P. INJECT       0.8   -0.45917E+01  -0.24780E-01    (...)    0.59970E+01 
  488  15 P. INJECT       0.9   -0.46301E+01  -0.23873E-01    (...)    0.60298E+01 
(...) 
  530  57 P. PRODUC       0.1    0.10396E+02  -0.12583E+00    (...)    0.11792E+02 
  531  58 P. PRODUC       0.2    0.10363E+02  -0.11193E-01    (...)    0.11881E+02 
  532  59 P. PRODUC       0.3    0.10550E+02   0.19919E-01    (...)    0.12400E+02 
  533  60 P. PRODUC       0.4    0.13155E+02   0.14270E+00    (...)    0.17542E+02 
  534  61 P. PRODUC       0.5    0.11232E+02  -0.24962E+00    (...)    0.14730E+02 
  535  62 P. PRODUC       0.6    0.95338E+01  -0.78858E-01    (...)    0.11099E+02 
  536  63 P. PRODUC       0.7    0.95903E+01  -0.74366E-02    (...)    0.11099E+02 
  537  64 P. PRODUC       0.8    0.96893E+01  -0.55274E-02    (...)    0.11164E+02 
  538  65 P. PRODUC       0.9    0.97243E+01  -0.79028E-02    (...)    0.11235E+02 
  539  66 P. PRODUC       1.0    0.97378E+01  -0.69521E-02    (...)    0.11313E+02 
 (...) 
  919 446 VAPOR PRO       4.0    0.11175E+02   0.56254E-01    (...)    0.14575E+02 
  920 447 VAPOR PRO       4.1    0.11146E+02   0.62456E-01    (...)    0.14805E+02 
  921 448 VAPOR PRO       4.2    0.11111E+02   0.69985E-01    (...)    0.15058E+02 
  922 449 VAPOR PRO       4.3    0.11076E+02   0.78328E-01    (...)    0.15330E+02 
  923 450 VAPOR PRO       4.4    0.11043E+02   0.87172E-01    (...)    0.15618E+02 
  924 451 VAPOR PRO       4.5    0.11014E+02   0.96287E-01    (...)    0.15920E+02 
  925 452 VAPOR PRO       4.6    0.10992E+02   0.10555E+00    (...)    0.16234E+02 
  926 453 VAPOR PRO       4.7    0.10977E+02   0.11486E+00    (...)    0.16561E+02 
  927 454 VAPOR PRO       4.8    0.10970E+02   0.12416E+00    (...)    0.16900E+02 
  928 455 VAPOR PRO       4.9    0.10972E+02   0.13341E+00    (...)    0.17591E+02 
  929 456 VAPOR PRO       5.0    0.31263E+02   0.11424E+00    (...)    0.60380E+02 
  930 

Figure 3.5.1. Scaled sensitivity matrix. 
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 1389  
 1390  Contributions of data sets to parameter sensitivity 
 1391  --------------------------------------------------- 
 1392  
 1393                                         1               2               3      (…) 
 1394                              P. INJECTION   P. PRODUCTION       P. OBS. 1      (…) 
 1395    1 PERMEABILITY           0.2445092E+03   0.5583105E+03   0.6168560E+02      (…) 
 1396    2 POROSITY FRACT         0.9661308E+00   0.2199926E+01   0.6557739E+00      (…) 
 1397    3 SPECIFIC HEAT          0.1233379E+01   0.1261526E+02   0.8089690E+00      (…) 
 1398    4 HEAT COND.             0.6927413E+00   0.1115076E+02   0.6585789E+00      (…) 
 1399    5 FRACT. SPACING         0.3503012E+01   0.5206797E+02   0.3281645E+01      (…) 
 1400    6 RESERVOIR TEMP.        0.5910144E+02   0.6189656E+02   0.5962931E+02      (…) 
 1401  
 1402                                         7               8               9 
 1403                                 T. OBS. 2     WATER PROD.     VAPOR PROD. 
 1404    1 PERMEABILITY           0.1083181E-01   0.3117569E+02   0.6225785E+03 
 1405    2 POROSITY FRACT         0.1972657E-01   0.4138312E+00   0.9765180E+01 
 1406    3 SPECIFIC HEAT          0.1214911E-02   0.2280472E+01   0.4505189E+02 
 1407    4 HEAT COND.             0.1515059E-02   0.2108302E+01   0.4186790E+02 
 1408    5 FRACT. SPACING         0.7548145E-02   0.9797245E+01   0.1944335E+03 
 1409    6 RESERVOIR TEMP.        0.1999854E+02   0.3171093E+01   0.6254400E+02 
 1410 
 1411  Sum of Sensitivity Coefficients 
 1412  ------------------------------- 
 1413  
 1414  ----------------------------------------------------------------------------- 
 1415  PARAMETER/OBSERVATION     TOTAL       VARIATION   SENS. OUTPUT  SENS. OBJ. F. 
 1416  ----------------------------------------------------------------------------- 
 1417  PERMEABILITY   :    0.71938E+04     0.25000E+00    0.17985E+04    0.13573E+00 
 1418  POROSITY FRACT :    0.78832E+02     0.20000E+00    0.15766E+02    0.32017E-01 
 1419  SPECIFIC HEAT  :    0.14019E+01     0.50000E+02    0.70093E+02    0.77531E+00 
 1420  HEAT COND.     :    0.31760E+03     0.20000E+00    0.63521E+02    0.69914E-01 
 1421  FRACT. SPACING :    0.29659E+02     0.10000E+02    0.29659E+03    0.74038E-01 
 1422  RESERVOIR TEMP.:    0.18681E+03     0.20000E+01    0.37361E+03    0.34961E+02 
 1423  ----------------------------------------------------------------------------- 
 1424  P. INJECTION   :                                   0.31001E+03 
 1425  P. PRODUCTION  :                                   0.69824E+03 
 1426  P. OBS. 1      :                                   0.12672E+03 
 1427  P. OBS. 2      :                                   0.92278E+02 
 1428  T. PRODUCTION  :                                   0.31640E+03 
 1429  T. OBS. 1      :                                   0.29167E+02 
 1430  T. OBS. 2      :                                   0.20039E+02 
 1431  WATER PROD.    :                                   0.48947E+02 
 1432  VAPOR PROD.    :                                   0.97624E+03 
 1433  ----------------------------------------------------------------------------- 
 1434 

Figure 3.5.2. Summary of contributions of data sets to parameter sensitivity. 
 
 
 Figure 3.5.2 contains the table that summarizes the relative contribution of each data set to each 
of the parameters, given by Equation (2.8.2.3). For example, vapor flow rates and pressures 
measured at the production well contain the most information for the determination of absolute 
permeability, whereas temperature measurements in the two remote observation wells do not make 
a contribution to the estimation of this specific parameter. 
 
 The second table in Figure 3.5.2 contains the remaining aggregate sensitivity measures. The 
overall parameter sensitivity jd , Equation (2.8.2.5), is given in Column 4, Lines 1417–1422. It is 
the product of the sum of the absolute sensitivity coefficients scaled by the measurement errors 
(Column 2) and the expected parameter variation 

jpσ , which is reproduced in Column 3. The 
expected parameter variation 

jpσ  is specified either using command >>>> DEVIATION (p), 
which also weighs prior information, or command >>>> VARIATION. If neither of these 
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commands is given, the value given in Column 3 is set to 10% of the initial parameter guess. Note 
that the only purpose of command >>>> VARIATION is to provide 

jpσ  for the scaling of the 
sensitivity matrix (Figure 3.5.1), and its aggregate measures (Figure 3.5.2); 

jpσ  does not affect the 
outcome of the inversion, unless it is also used to weigh prior information. Column 5 shows the 
sensitivity of the objective function with respect to each parameter, as given by Equation (2.8.2.6). 
The lower part of Figure 3.5.2., Lines 1424–1432, lists measure kc , Equation (2.8.2.4). It is the 
overall sensitivity of each data set. It shows, for example, that the vapor flow data are crucial for the 
solution of the inverse problem, whereas the amount of water produced doesn’t seem to be 
sufficiently sensitive to the parameters of interest. If this sensitivity analysis were performed for test 
design, one could also conclude that the accuracy of the water production measurements would 
have to be improved by an order of magnitude to be able to make a significant contribution to the 
inverse problem at hand. 
 
 If fewer than 6 parameters are estimated, the information shown in Figure 3.5.2 is directly 
appended to the output of the scaled sensitivity matrix in the format schematically shown in Figure 
2.8.2.1b. 
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3.6 Printout From Error Analysis 
 
 This section of the iTOUGH2 output deals with the covariance matrix of the estimated 
parameter set discussed in Section 2.8.4. Depending on the outcome of the Fisher Model Test (see 
Table 2.8.3.1) or the user’s choice, the inverse of the curvature matrix is multiplied with either the 
a priori  error variance 12

0 =σ  or the a posteriori error variance 2
0s , Equation (2.8.3.1). The factor 

used for the subsequent error analysis is first reported (see Figure 3.6.1, Line 1372). Lines 1377–
1383 constitute the covariance matrix ppC , Equation (2.8.4.2). The diagonal elements are the 
variances 2

pσ ; the covariances are reproduced as the lower triangular matrix, whereas the upper 
triangular matrix shows the corresponding correlation coefficients, Equation (2.8.4.3). These 
correlation coefficients contain contributions from indirect dependencies, which are difficult to 
interpret physically. The matrix of direct correlations, revealing the dependence of pairs of 
parameters, is shown below, Lines 1388–1394. The calculation of the matrix of direct correlations 
is described in Section 2.8.4. 
 

 

 
 1367 
 1368 =========================================================================== 
 1369                                 ERROR ANALYSIS 
 1370 =========================================================================== 
 1371 
 1372 Error analysis is based on >>> a posteriori <<< variance:  0.1009964E+01 
 1373 
 1374 
 1375 Covariance(L+D)/Correlation(U) Matrix of Estimated Parameters 
 1376 ------------------------------------------------------------- 
 1377                     PERM. POROSITY SPEC HEAT HEAT COND   SPACING     TEMP. 
 1378 PERMEABILITY     0.413E-5    -0.207     0.202    -0.272    -0.266    -0.175 
 1379 POROSITY FRACT  -0.596E-4  0.200E-1    -0.362     0.576     0.657     0.221 
 1380 SPECIFIC HEAT    0.201E-1 -0.251E+1  0.241E+4    -0.855    -0.275    -0.060 
 1381 HEAT COND.      -0.177E-3  0.261E-1 -0.135E+2  0.103E+0     0.724     0.125 
 1382 FRACT. SPACING  -0.989E-3  0.170E+0 -0.247E+2  0.426E+0  0.336E+1     0.087 
 1383 RESERVOIR TEMP. -0.398E-4  0.350E-2 -0.328E+0  0.449E-2  0.179E-1  0.125E-1 
 1384 
 1385 
 1386 Matrix of Direct Correlations 
 1387 ----------------------------- 
 1388                     PERM. POROSITY SPEC HEAT HEAT COND   SPACING     TEMP. 
 1389 PERMEABILITY        1.000     0.133     0.240     0.225    -0.255    -0.245 
 1390 POROSITY FRACT      0.133     1.000    -0.529    -0.507     0.598     0.418 
 1391 SPECIFIC HEAT       0.240    -0.529     1.000    -0.993     0.974     0.508 
 1392 HEAT COND.          0.225    -0.507    -0.993     1.000     0.982     0.508 
 1393 FRACT. SPACING     -0.255     0.598     0.974     0.982     1.000    -0.515 
 1394 RESERVOIR TEMP.    -0.245     0.418     0.508     0.508    -0.515     1.000 
 1395 

Figure 3.6.1. Covariance matrix of estimated parameter set and direct correlation coefficients. 
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 Lines 1400–1405 of Figure 3.6.2 contain a list with the parameter estimates and their a priori, 
conditional, and marginal standard deviations. A value is given in Column 3 only if prior 
information of a parameter is weighted using its a priori standard deviation. The conditional 
standard deviation indicates the estimation uncertainty assuming that all the other parameters are 
perfectly known. The marginal standard deviation given in Column 5 is the square-root of the 
diagonal element of ppC . Column 6 holds Γ , the measure of overall parameter correlation given 
by Equation (2.8.4.4);  the higher its value, the more independent the estimate. The parameters in 
this table and the following correlation chart are sorted according to this criterion. In this example, 
permeability is the most independent parameter, whereas heat conductivity is strongly correlated to 
all the other parameters. Column 7 can be interpreted as a measure of how much has been learned 
about a specific parameter by performing the inversion. Since no prior information was given, i.e., 
nothing was assumed to be known about any of the parameters, Column 7 contains only ones in this 
example. If the uncertainty of a parameter after the inversion is only slightly lower than the a priori 
standard deviation, the information gain would have been minimal, resulting in a value close to 
zero. 
 
 In the correlation chart, all parameters are connected to each other, where the vertical lines 
linking two parameters indicate the correlation coefficient (Line 1411). Since the parameters are 
sorted according to their overall correlation Γ , the correlation chart displays a pyramid-like 
structure, with long horizontal lines extending from the most strongly correlated parameter at the 
bottom to shorter lines connecting the most independent parameter at the top.  
 
 1396 
 1397 Standard Deviations 
 1398 ------------------- 
           1               2       3         4           5         6       7 
 1399 PARAMETER         ESTIMATE PRIOR CONDITIONAL    MARGINAL     C/M   1-J/P 
 1400 PERMEABILITY    -0.1422E+2  N/A    0.1867E-2   0.2032E-2   0.919   1.000 
 1401 RESERVOIR TEMP. 0.3001E+3  N/A    0.9280E-1   0.1121E+0   0.827   1.000 
 1402 POROSITY FRACT   0.2633E+0  N/A    0.8702E-1   0.1415E+0   0.615   1.000 
 1403 FRACT. SPACING   0.5745E+2  N/A    0.2577E+0   0.1833E+1   0.141   1.000 
 1404 SPECIFIC HEAT    0.1036E+4  N/A    0.5503E+1   0.4914E+2   0.112   1.000 
 1405 HEAT COND.      0.2704E+1  N/A    0.2623E-1   0.3213E+0   0.082   1.000 
 1406 
 1407 
 1408 Correlation Chart 
 1409 ----------------- 
 1410 
 1411  -0.8    -0.6    -0.4    -0.2     0.0         0.0     0.2     0.4     0.6     0.8  
 1412    |-------|-------|-------|-------| PARAMETER |-------|-------|-------|-------| 
 1413  
 1414                          |--||-----|    PERM.  |------| 
 1415                          |  ||                         | 
 1416                          |  ||----||    TEMP.  |-|-|--|| 
 1417                          |  |     |               | |  || 
 1418                       |--|--|-----||  POROSITY  |-|-|--||-------------|--| 
 1419                       |  |        |               | |  |              |  | 
 1420                       |  |--------||  SPACING   |-|-|--|--------------|--|--| 
 1421                       |  |        |                 |  |              |     | 
 1422   |-------------------|--|--------||  SP. HEAT  |---|--|              |     | 
 1423   |                      |                          |                 |     | 
 1424   |----------------------|---------|  HEAT COND |---|-----------------|-----| 
 1425 

Figure 3.6.2. Standard deviations and correlation chart. 
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 iTOUGH2 performs an eigenanalysis of the estimation covariance matrix. A performance 
index (Line 1429) of less than 1 indicates an accurate eigenanalysis. The condition number (Line 
1430) is defined as the ratio of the largest and smallest eigenvalue. It determines the dominance of 
one eigenvalue over the others, also affecting the accuracy of the eigenanalysis. A large scaled 
condition number (Line 1431), which is the condition number based on the eigenvalues divided by 
the corresponding parameter estimates, indicates the presence of a long valley in the objective 
function. The eigenvalues given on Line 1439 represent the actual lengths of the semiaxes of the 
hyper-ellipsoid. We prefer to analyze the scaled eigenvalues (Line 1447). The parameter associated 
with the largest scaled eigenvalue is usually the most uncertain, and—if also strongly correlated—
responsible for poor identifiability of all parameter combinations along the corresponding 
eigenvector, i.e., the respective column of the modal matrix shown on Lines 1455–1460. Note that 
the eigenvectors are normalized. 
 
 
 
 1426 
 1427 Eigenanalysis of Covariance Matrix 
 1428 ---------------------------------- 
 1429 Performance index      :  0.29851783E-01 
 1430 Condition number       :  0.69291990E+09 
 1431 Scaled condition number:  0.69291990E+05 
 1432 
 1433 
 1434 Eigenvalues 
 1435 ----------- 
 1436 
 1437                          1          2          3          4          5          6 
 1438                      PERM.  POROSITY  SPEC HEAT  HEAT COND    SPACING      TEMP. 
 1439   1 Eigenvalue:  0.3486E-5  0.9328E-2  0.2415E+4  0.6878E-3  0.3141E+1  0.1420E-1 
 1440 
 1441 
 1442 Scaled Eigenvalues 
 1443 ------------------ 
 1444 
 1445                          1          2          3          4          5          6 
 1446                      PERM.  POROSITY  SPEC HEAT  HEAT COND    SPACING      TEMP. 
 1447   1 Eigenvalue:  0.1394E-4  0.2332E+0  0.9662E+0  0.1719E-1  0.3141E-1  0.1420E-3 
 1448 
 1449 
 1450 Eigenvectors 
 1451 ------------ 
 1452 
 1453                           1          2          3          4          5          6 
 1454                       PERM.  POROSITY  SPEC HEAT  HEAT COND    SPACING      TEMP. 
 1455 1 PERMEABILITY    0.9998E+0  0.1608E-2  0.8340E-5  0.1700E-1 -0.2504E-3 -0.2003E-2 
 1456 2 POROSITY FRACT -0.2874E-2  0.8071E+0 -0.1042E-2  0.1600E+0  0.4643E-1  0.5663E+0 
 1457 3 SPECIFIC HEAT  -0.8171E-4 -0.5880E-3  0.9999E+0  0.4587E-2  0.1078E-1  0.4976E-3 
 1458 4 HEAT COND.    -0.1611E-1 -0.2143E+0 -0.5591E-2  0.9719E+0  0.9213E-1  0.2316E-1 
 1459 5 FRACT. SPACING  0.1856E-2 -0.1518E-1 -0.1027E-1 -0.9688E-1  0.9945E+0 -0.3253E-1 
 1460 6 RESERVOIR TEMP  0.4937E-2 -0.5498E+0 -0.1359E-3 -0.1412E+0  0.4763E-2  0.8232E+0 
 1461 
 1462 

Figure 3.6.3. Eigenanalysis of estimation covariance matrix. 
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3.7 Printout From Residual Analysis 
  
 The residual analysis has been discussed in Section 2.8.5. We first describe the columns of the 
main table shown in Figure 3.7.1. The first column contains the index i , mi ,,1 K= , frequently 
used to refer to a certain calibration point (see, for example, Figures 3.4.1 and 3.5.1 as well as 
specially requested output). The first n  observations represent prior information (Lines 1477–
1482). In this section of the iTOUGH2 output, the observations are grouped by data set (i.e., not by 
time as in the actual residual vector), as can be seen in Column 2, which labels the data set of the 
corresponding residual. 
 
 The calibration time in user-specified units (default: seconds) is shown in Column 3. Columns 4 
through 6 contain, respectively, the measured and calculated value and their difference, the residual, 
Equation (2.4.1). For the first n  rows, Column 4 holds the prior information value, and Column 5 
the best estimate. Note that the measured value (Column 4) may not be an actually recorded 
measurement, but a value interpolated between two data points. It may also be multiplied by the 
conversion factor shown in Figure 3.3.2, Column 10. The computed value (Column 5) is the result 
from the TOUGH2 simulator; a shift and/or linear trend may have been applied if such parameters 
were estimated. 
 
 Column 7 holds the weight zσ/1 , i.e., the square-root of the reciprocal diagonal element of 
matrix zzC . For measurement errors that are constant for each data set, the value is the reciprocal of 
the standard deviation given in Figure 3.3.2, Column 5. Column 8 contains the loss function ω  (see 
Table 2.6.5.1), i.e., the contribution of the calibration point to the final objective function. For least 
squares, this is the square of the weighted residual, 22

zr σ  . 
 
 The standard deviation reported in Column 9 is the uncertainty of the simulation result, 
calculated using Equation (2.8.5.7). It is also the uncertainty of the model prediction when 
performing linear error propagation analysis (FOSM, see Section 2.8.7), i.e., the square-root of the 
diagonal element of matrix zzˆˆC , Equation (2.8.7.4). Column 10 holds the reliability measure iy , 
Equation (2.8.5.9). Local reliabilities less than 0.25 are marked with “*” (see, for example, Line 
1887). Finally, the normalized residual, Equation (2.8.5.10), is given in Column 11. Normalized 
residuals that exceed the quantile of the normal distribution on the chosen confidence level are 
marked with “*” (see, for example, Lines 1573 and 1887); they should be checked as potential 
outliers. 
 
 The values in all columns (except time in Column 3) are given in standard TOUGH2 units. 



   

iTOUGH2 USER’S GUIDE 96 OUTPUT 

1463 
1464 ================================================================================== 
1465                                RESIDUAL ANALYSIS 
1466 ================================================================================== 
1467 
1468 RESIDUAL : Measured - computed 
1469 OMEGA    : Loss function (= squared weighted residual for least squares) 
1470 STD. DEV.: A posteriori standard deviation of computed system response 
1471 Yi       : Local reliability. Observations with Yi<0.25 are poorly controlled. 
1472 Wi       : Normalized residual. If |Wi|>u(0.99) = 2.58 obs. is potential outlier. 
1473 
       1     2        3        4        5        6       7       8       9     10    11 
1474 ---------------------------------------------------------------------------------- 
1475   # OBSERV. TIME [a] MEASURED COMPUTED RESIDUAL  WEIGHT   OMEGA    SDEV  Yi    Wi 
1476 ---------------------------------------------------------------------------------- 
1477   1 PERMEABILITY      -.130E+2 -.142E+2  .122E+1 .10E-49 .000E+0 .203E-2 
1478   2 POROSITY FRACT     .500E+0  .263E+0  .236E+0 .10E-49 .000E+0 .141E+0 
1479   3 SPECIFIC HEAT      .800E+3  .103E+4 -.236E+3 .10E-49 .000E+0 .491E+2 
1480   4 HEAT COND.        .250E+1  .270E+1 -.204E+0 .10E-49 .000E+0 .321E+0 
1481   5 FRACT. SPACING     .200E+2  .574E+2 -.374E+2 .10E-49 .000E+0 .183E+1 
1482   6 RESERVOIR TEMP.   .250E+3  .300E+3 -.501E+2 .10E-49 .000E+0 .112E+0 
1483   7 P. INJECT. .10E+0  .100E+8  .100E+8 -.769E+5 .500E-5 .147E+0 .165E+5 .99 -0.39 
1484  16 P. INJECT. .20E+0  .102E+8  .101E+8  .127E+6 .500E-5 .407E+0 .157E+5 .99  0.64 
1485  25 P. INJECT. .30E+0  .101E+8  .101E+8  .809E+4 .500E-5 .163E-2 .154E+5 .99  0.04 
1486  34 P. INJECT. .40E+0  .100E+8  .101E+8 -.105E+6 .500E-5 .280E+0 .154E+5 .99 -0.53 
1487  43 P. INJECT. .50E+0  .101E+8  .101E+8 -.483E+5 .500E-5 .585E-1 .155E+5 .99 -0.24 
(...) 
1533   8 P. PRODUC. .10E+0  .599E+7  .583E+7  .155E+6 .500E-5 .604E+0 .252E+5 .98  0.78 
1534  17 P. PRODUC. .20E+0  .582E+7  .579E+7  .311E+5 .500E-5 .242E-1 .197E+5 .99  0.16 
1535  26 P. PRODUC. .30E+0  .598E+7  .570E+7  .281E+6 .500E-5 .198E+1 .208E+5 .99  1.42 
1536  35 P. PRODUC. .40E+0  .582E+7  .571E+7  .103E+6 .500E-5 .267E+0 .333E+5 .97  0.52 
1537  44 P. PRODUC. .50E+0  .561E+7  .598E+7 -.369E+6 .500E-5 .341E+1 .432E+5 .95 -1.89 
(...) 
1573 368 P. PRODUC. .41E+1  .502E+7  .560E+7 -.579E+6 .500E-5 .840E+1 .226E+5 .99 -2.92* 
(...) 
1887  51 VAP. PROD. .50E+0 -.214E+0 -.189E+0 -.255E-1 .100E+3 .649E+1 .945E-2 .11*-7.53* 
(...) 
1928 420 VAP. PROD. .46E+1 -.210E+0 -.207E+0 -.264E-2 .100E+3 .701E-1 .134E-2 .98 -0.27 
1929 429 VAP. PROD. .47E+1 -.200E+0 -.210E+0  .972E-2 .100E+3 .946E+0 .150E-2 .98  0.98 
1930 438 VAP. PROD. .48E+1 -.223E+0 -.213E+0 -.102E-1 .100E+3 .105E+1 .170E-2 .97 -1.04 
1931 447 VAP. PROD. .49E+1 -.215E+0 -.216E+0  .529E-3 .100E+3 .280E-2 .193E-2 .96  0.05 
1932 456 VAP. PROD. .50E+1 -.224E+0 -.219E+0 -.483E-2 .100E+3 .233E+0 .217E-2 .95 -0.50 
1933 

Figure 3.7.1. Residual analysis. 
 
 

 For each observation type, the residuals are visualized in a scatter plot of the residual versus the 
calculated value. In the example shown in Figure 3.7.2, pressure residuals are depicted as digits, 
where the number refers to the number of the data set it belongs to (see Figure 3.3.2, Column 2). 
The residuals are expected to be randomly distributed around the center line (Line 1649). Unwanted 
trends in the residuals indicating a systematic error are usually easy to detect. Similar residual plots 
are generated for the temperature and flow rate measurements (not shown).  
 
 Notice that the residual plot does not reflect the weight assigned to each data point. Thus, the 
residual plot may be misleading if the data sets or individual data points have been assigned 
significantly different measurement errors. 
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 1934 
 1935 Residual Plots 
 1936 -------------- 
 1937 
 1938    RESIDUAL   ------------------------------------------------------------- 
 1939   0.504E+06   |                                        3                  | 
 1940   0.452E+06   |                                                           | 
 1941   0.400E+06   |                                    4    3                 | 
 1942   0.349E+06   |    2                                                      | 
 1943   0.297E+06   |  2                                     33                 | 
 1944   0.246E+06   |    2                               44  33               1 | 
 1945   0.194E+06   |   22  2                            444 3                 1| 
 1946   0.142E+06   |  2222  2                             4 33                1| 
 1947   0.909E+05   |   2222  2                           44   3            1 11| 
 1948   0.393E+05   |  222 2  2                          444 3                11| 
 1949  -0.123E+05   |-222-2- 2 - - - - -  - - - - - - - - 44-3-3- - - - - - - 11| 
 1950  -0.639E+05   | 222  22                             44 33             11 1| 
 1951  -0.115E+06   | 22 2                               444  3             11 1| 
 1952  -0.167E+06   | 2    2 2                             4  3              111| 
 1953  -0.219E+06   |                                     4  33               11| 
 1954  -0.270E+06   | 2      22                           4  33                1| 
 1955  -0.322E+06   |                                     44  3               1 | 
 1956  -0.373E+06   |     2                              44   3                1| 
 1957  -0.425E+06   |        2                                                1 | 
 1958  -0.477E+06   | 2                                    4 3                  | 
 1959  -0.528E+06   |                                     4  3                  | 
 1960  -0.580E+06   |   2                                4                      | 
 1961               ------------------------------------------------------------- 
 1962              0.537E+07                                            0.104E+08 
 1963                                         PRESSURE [Pa] 
 (...) 

Figure 3.7.2. Scatter plot of residuals. 
 

 
 The residual analysis is summarized in a table reproduced in Figure 3.7.3. The maximum 
weighted residual (Lines 2026–2028, see also Figure 3.7.1, Line 1573) is the one with the largest 
contribution to the objective function. However, it may not be a potential outlier, i.e., its iw  value 
may be acceptably low as a result of high prediction uncertainty. In this example, the largest 
normalized residual (Lines 2030–2032) is associated with the vapor flow measurement shown in 
Figure 3.7.1, Line 1887, which is also the only poorly controlled measurement (Line 2029). Line 
2033 shows the probable size of the maximum error (Equation 2.8.5.11) for residual No. 51. 
 
 A total of 10 iterations, i.e., minimization steps, were performed in this example (Line 2038), 
requiring 89 solutions of the forward problem (Line 2039). The two measures controlling numerical 
accuracy of the residual analysis, Equations (2.8.5.12) and (2.8.5.13), are shown on Lines 2044 and 
2045. 
 
 During the 10 iterations, the objective function was reduced from the value obtained with the 
initial parameter set (Line 2050) to its final value shown on Line 2051; the relative contribution of 
residuals from individual data sets and observation types (see Figure 3.7.4) is reported as a 
percentage of the final objective function. 
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 2023 
 2024 Summary of Residual Analysis 
 2025 ---------------------------- 
 2026 Max weighted residual at observation    :            368 
 2027 Max weighted residual                   :    -0.2899E+01 
 2028 Max residual                            :    -0.5798E+06 
 2029 Number of poorly controlled observations:              1 
 2030 Number of large normalized residuals    :              5 
 2031 Max normalized residual at observation  :             51 
 2032 Max normalized residual                 :           7.53 
 2033 Probable size of maximum error          :     0.2221E+00 
 2034 
 2035 
 2036 Iteration Statistics 
 2037 -------------------- 
 2038 Number of iterations                    :             10 
 2039 Number of TOUGH2 calls                  :             89 
 2040 
 2041 
 2042 Control Measures 
 2043 ---------------- 
 2044 Trace (P*QLL) : n   =   6               :     0.6000E+01 
 2045 Sum   (Yi)    : m-n = 444               :     0.4440E+03 
 2046 
 2047 
 2048 Objective Function                                                   C.O.F. 
 2049 ------------------ 
 2050 Initial value of objective function     :     0.1430E+06          31888.6 % 
 2051 Minimum value of objective function     :     0.4484E+03            100.0 % 
 2052 
 

Figure 3.7.3. Summary of residual analysis and iteration statistics. 
 
 
 Figure 3.7.4 shows the moment analysis of the residuals, Equations (2.8.5.1) through (2.8.5.6). 
The first block (Lines 2068–2077) presents the analyses for each data set, wheras Line 2079 
contains the moments of all weighted residuals. The second block, Lines 2086–2089 shows the 
same information for each observation type. Of special interest is Column 9, which shows the ratio 
of the bias—the mean of the residuals—and the standard deviation. If this ratio significantly 
deviates from zero, the corresponding data set or observation type is systematically over- or 
underpredicted by the model, i.e., there is likely to be a systematic error in either the data or the 
model. Column 10 shows the contribution of the data set or observation type to the final objective 
function. Ideally, the contributions should reflect the number of points (see Column 2) in the data 
set in proportion to the total number of calibration points, m . 
 
 Figure 3.7.5 shows the linear regression analysis of a scatter plot with the calculated versus 
observed system response. The intercept and slope are expected to be close to zero and one, 
respectively. For more details see the discussion in Finsterle [2007c; Problem 6]. 
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 2053 
 2054 ======================================================================================= 
 2055 
 2056 MEAN     : Mean of residuals = bias 
 2057 MEDIAN   : Median of residuals 
 2058 STD. DEV.: Root mean squared deviation of residuals from bias 
 2059 AVE. DEV.: Mean absolute deviation of residuals from bias 
 2060 SKEWNESS : Degree of asymmetry of residuals around bias 
 2061 KURTOSIS : Relative peakedness of distribution 
 2062 B/S      : Ratio of bias and standard deviation 
 2063 C.O.F.  : Relative contribution to final objective function 
 2064     1                  2       3       4         5        6      7      8     9    10 
 2065 ======================================================================================= 
 2066 DATASET       DATAPOINTS     MEAN   MEDIAN     SDEV     ADEV   SKEW   KURT   B/S C.O.F. 
 2067 --------------------------------------------------------------------------------------- 
 2068 PRIOR INFORMATION      6                                                          0.0 % 
 2069 P. INJECT.  [Pa]      50 -.651E+4  .904E+4  .149E+6  .120E+6  -.370  -.589  .044  6.0 % 
 2070 P. PRODUCT. [Pa]      50  .282E+5  .633E+5  .193E+6  .144E+6  -.908   .717  .146  1.3 % 
 2071 P. OBS. 1    [Pa]     50 -.149E+5 -.268E+5  .217E+6  .175E+6   .320  -.516  .069 12.9 % 
 2072 P. OBS. 2    [Pa]     50 -.175E+4  .234E+5  .209E+6  .162E+6  -.510  -.213  .008 11.9 % 
 2073 T. PRODUCT. [C]       50 -.107E+1 -.821E+0  .451E+1  .348E+1   .263  -.017  .237  9.4 % 
 2074 T. OBS. 1    [C]      50 -.419E+0 -.404E+0  .536E+1  .430E+1  -.344  -.509  .078 12.6 % 
 2075 T. OBS. 2    [C]      50  .134E+1  .172E+1  .497E+1  .403E+1  -.003  -.690  .270 11.6 % 
 2076 WATER PROD. [kg/sec]  50  .125E-1  .677E-2  .200E+0  .161E+0   .306  -.458  .063  1.9 % 
 2077 VAPOR PROD. [kg/sec]  50 -.480E-3  .685E-3  .113E-1  .896E-2  -.235  -.426  .042 14.1 % 
 2078 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 2079 ALL RESIDUALS  [-]   456  .119E-2  .859E-2  .993E+0  .789E+0  -.157  -.120  .001  100 % 
 2080 ======================================================================================= 
 2081 
 2082 
 2083 ======================================================================================= 
 2084 DATATYPE      DATAPOINTS     MEAN   MEDIAN     SDEV     ADEV   SKEW   KURT   B/S C.O.F. 
 2085 --------------------------------------------------------------------------------------- 
 2086 PRIOR INFORMATION      6                                                          0.0 % 
 2087 PRESSURE    [Pa]     200  .127E+4  .169E+5  .193E+6  .153E+6  -.324  -.010  .007 41.3 % 
 2088 FLOW RATE   [kg/sec] 100  .601E-2  .103E-2  .141E+0  .849E-1   .571  2.226  .043 25.0 % 
 2089 TEMPERATURE [C]      150 -.483E-1 -.325E+0  .503E+1  .403E+1  -.049  -.340  .010 33.6 % 
 2090 ======================================================================================= 
 2091 

Figure 3.7.4. Statistical moment analysis of residuals. 
 

 
 2092 
 2093 Linear Regression Analysis Calculated Vs. Observed 
 2094 -------------------------------------------------- 
 2095 
 2096 ====================================================================== 
 2097 DATASET               DATAPOINTS     INTERCEPT       SLOPE           R 
 2098 ---------------------------------------------------------------------- 
 2099 P. INJECTION      [Pa]        50     0.794E+06   0.922E+00    0.375414 
 2100 P. PRODUCTION     [Pa]        50    -0.437E+06   0.108E+01    0.741147 
 2101 P. OBS. 1         [Pa]        50    -0.358E+07   0.139E+01    0.266365 
 2102 P. OBS. 2         [Pa]        50    -0.260E+07   0.130E+01    0.257011 
 2103 T. PRODUCTION     [C]         50     0.207E+02   0.920E+00    0.410527 
 2104 T. OBS. 1         [C]         50     0.217E+03   0.273E+00    0.066226 
 2105 T. OBS. 2         [C]         50    -0.180E+05   0.610E+02    0.031780 
 2106 WATER PROD.       [kg/sec]    50    -0.203E+01   0.425E+00    0.063968 
 2107 VAPOR PROD.       [kg/sec]    50     0.353E-02   0.102E+01    0.939064 
 2108 ====================================================================== 
 2109 

Figure 3.7.5. Linear regression analysis of plot calculated versus observed. 
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3.8 Model Test and Optimality Criteria 
  
 The outcome of the Fisher Model Test (see Table 2.8.3.1) is summarized in Lines 2113–2120. 
The root mean square error and estimated error variance, Equation (2.8.3.1), measure the overall 
goodness-of-fit. If both the stochastic and functional models are correct, the estimated error 
variance should not deviate significantly from one, i.e., it should be smaller than the critical value of 
the F -distribution shown on Line 2115. The quantile depends on the degree of freedom and the 
confidence level. Depending on the outcome of the Fisher Model Test or following the user’s 
choice (see discussion of Figure 3.3.3, Line 122), the error analysis is based on either the a priori or 
a posteriori error variance. In this example, the a posteriori error variance was used as a result of 
the Fisher model test (see Line 2119). The quantile of the t -distribution given on Line 2120 can be 
used to construct confidence intervals according to Equation (2.8.4.6). 
 
 The optimality criteria, Equations (2.8.6.1) through (2.8.6.3), are given on Lines 2125–2127. 
The criteria are evaluated using either the actual, unscaled covariance matrix ppC , or the one scaled 
according to Equation (2.8.6.4). Line 2128 shows the log-likelihood criterion, Equation (2.6.4.2), 
followed by the model identification criteria after Akaike, Equation (2.8.6.5), and Kashyap, 
Equation (2.8.6.6). 
 

 
 
 2110 
 2111 Fisher Model Test 
 2112 ----------------- 
 2113 Root mean square error             :      0.1005E+01 
 2114 Estimated error variance           :      0.1010E+01 
 2115 Critical value of F-distribution   :      0.1203E+01 
 2116 Degree of freedom                  :             444  (No prior info.) 
 2117 Confidence level (1-alpha)         :            99.0 [%] 
 2118 Lucky you                          : Model test successful! 
 2119 Error analysis based on            : a posteriori variance = 0.1009964E+01 
 2120 Quantile of t-distribution         :      0.2587E+01 
 2121 
 2122 
 2123 Optimality Criteria                         unscaled         scaled 
 2124 ------------------- 
 2125 D-optimality = det(Cpp)            :      0.2412E-08     0.7358E-25 
 2126 A-optimality = trace(Cpp)          :      0.2419E+04     0.3064E+00 
 2127 E-optimality = max eigenvalue      :      0.2416E+04     0.9663E+00 
 2128 Log-likelihood ln(L)               :     -0.3010E+04 
 2129 Akaike  =-2ln(L)+2n                :      0.6031E+04 
 2130 Kashyap =-2ln(L)+n*ln(m/2Pi)+ln|F| :      0.6059E+04 
 2131 

Figure 3.8.1. Model test and optimality criteria. 
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3.9 Summary Output 
  
 The final block in the output file, reproduced in Figure 3.9.1, shows a summary of the major 
inverse modeling results. The “+” in the first column of Line 2133 indicates that the Fisher Model 
Test was successfully passed. In Lines 2136–2141, the parameters are identified in Columns 1 
through 4, followed by their initial guesses and best estimates. The number of significant digits 
printed in Column 6 depends on the parameter’s estimation uncertainty, which is reported in 
Column 8. The ratio of the conditional and marginal standard deviation given in Column 9 is the 
measure of overall parameter correlation, Equation (2.8.4.4). Two aggregate sensitivities can be 
found in Columns 10 and 11. The first is the total parameter sensitivity, Equation (2.8.2.5), and the 
second is the sensitivity of the objective function with respect to the parameter, Equation (2.8.2.6). 
 
 Each iTOUGH2 run is logged in file itough2.log with the date of its completion and the CPU 
time used (Line 2144). The number of error and warning messages is given on Line 2146. 
 
 

 
 2132      1         2      3    4     5        6       7       8        9     10    11 
 2133 +!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 2134 PARAMETER    V/L/F ROCKS PAR  INITIAL  ESTIMATE   STANDARD DEVIATIONS  SENSITIVITY 
 2135                                                PRIOR  MARGINAL    C/M  OUTPUT   OF 
 2136 PERMEABILITY LOG10 FRACT   1 -.13E+2 -.14221E+2  N/A  0.203E-2  0.919  3546.3 4.05 
 2137 POROSITY     VALUE FRACT   1  .25E+0     .26E+0  N/A  0.142E+0  0.615    13.6 0.18 
 2138 SPEC. HEAT   VALUE FRACT+1 1  .80E+3    .104E+4  N/A  0.491E+2  0.112    53.1 8.37 
 2139 HEAT COND.  VALUE FRACT+1  1  .25E+1     .27E+1  N/A  0.321E+0  0.082    46.4 3.92 
 2140 SPACING      VALUE -----   1  .20E+2    .575E+2  N/A  0.183E+1  0.141   232.2 6.48 
 2141 TEMPERATURE  VALUE DEFAU   1  .25E+3  .30019E+3  N/A  0.112E+0  0.827  2133.0 8.21 
 2142 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 2143 
 2144 -- 12124th iTOUGH2 simulation job completed: 3-Nov-98 11:13 - CPU time = 972.2 sec 
 2145 
 2146 --     0 error(s) and  0 warning(s) detected 
 

Figure 3.9.1. Summary of inverse modeling results. 
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3.10 Version Control 
  
 Version control information is always written to the iTOUGH2 message and TOUGH2 output 
file (unless option NOVER is set), and is appended to the iTOUGH2 output file if command 
>>> VERSION is used. The dimensions of major arrays as specified in the FORTRAN include 
file maxsize.inc is reproduced first (Figure 3.10.1), followed by the list of version control statements 
shown in Figure 3.10.2. The list of subroutines touched during an iTOUGH2 run varies depending 
on the application. 
 
 
  
 ======================================================================================= 
 ARRAY DIMENSIONS (SEE FILE maxsize.inc) 
 --------------------------------------------------------------------------------------- 
 MAXEL    = 4000  Maximum number of elements 
 MAXCON   = 8000  Maximum number of connections 
 MAXK     =    2  Maximum number of components 
 MAXEQ    =    3  Maximum number of equations 
 MAXPH    =    2  Maximum number of phases 
 MAXB     =    8  Maximum number of phase-dependent secondary variables 
 MAXSS    =   50  Maximum number of sinks/sources 
 MAVTAB   =   20  Maximum average number of table entries per sink/source 
 MAXROC   =   50  Maximum number of rock types 
 MAXTSP   =    5  Maximum number of specified time steps, divided by eight 
 MAXLAY   =   10  Maximum number of reservoir layers for wells on deliverability 
 MXRPCP   =    7  Maximum number of parameters for rel. perm. and cap. pres. functions 
 MXPCTB   =   30  Maximum number of points in table for ECM capillary pressure 
 MXTBC    =   10  Maximum number of elements with time vs. boundary condition 
 MXTBCT   =   10  Maximum number of time vs. pressure data 
 MAXTIM   =  500  Maximum number of calibration times 
 MAXN     =   20  Maximum number of parameters to be estimated 
 MAXO     =  100  Maximum number of datasets 
 MAXM     = 2000  Maximum number of calibration points 
 MAXPD    = 1000  Maximum number of paired data 
 MAXR     =   25  Maximum number of elements or indices of each parameter or observation 
 MAXBRK   =   20  Maximum number of points in time at which SAVE file is written 
 MAXEBRK  =   20  Maximum number of elements with new initial conditions after restart 
 MAXCOEFF =    5  Maximum number of coefficients for data modeling functions 
 MAXMCS   =  100  Maximum number of Monte Carlo simulations 
 MAXCURVE =  100  Maximum number of curves to be plotted 
 MAXXGR   =    3  Dimension of third index of array XGUESSR 
 MTYPE    =   17  Number of observation types 
 MPFMT    =    6  Number of plot file formats 
 MAXPV    =    4  Maximum number of primary variables 
 --------------------------------------------------------------------------------------- 
  

Figure 3.10.1. Printout of array dimensions. 
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 ------------------------------------------------------------------------------------------- 
 PROGRAM  VERSION   DATE                  COMMENT 
 ------------------------------------------------------------------------------------------- 
 iTOUGH2            Current version       iTOUGH2 V6.0 (JANUARY, 2007)                                      
 ------------------------------------------------------------------------------------------- 
 iTOUGH   1.0       1 AUGUST    1992      ITOUGH User's Guide, V1.0, Rep. NIB 92-99 
 iTOUGH2  2.2       1 FEBRUARY  1994      iTOUGH2 User's Guide, V2.2, Rep. LBL-34581 
 iTOUGH2  3.0      12 JULY      1996      YMP Software qualification, Rep. LBNL-39489 
 iTOUGH2  3.1       1 APRIL     1997      iTOUGH2 Command Reference V3.1,  Rep. LBNL-40041 
 iTOUGH2  3.2      30 JUNE      1998      YMP Software Qualification, Rep. LBNL-42002 
 iTOUGH2  3.3       1 OCTOBER   1998      Parallelization using PVM, Rep. LBNL-42261 
 iTOUGH2  4.0      19 JANUARY   1999      Released by ESTSC 
 iTOUGH2  5.0      31 JULY      2002      Qualified for use within Yucca Mountain Project 
 ------------------------------------------------------------------------------------------- 
 WHATCOM  1.0       5 APRIL     2000      Q: WHAT COMPUTER IS USED? A: PC (DVF) 
 CALLSIG  1.0       5 APRIL     2000      #112: SIGNAL HANDLER, DIGITAL VISUAL FORTRAN 
 CPUSEC   1.0       5 APRIL     2000      RETURNS CPU-TIME (PC, DVF) 
 OPENFILE 4.0      19 JANUARY   1999      OPENS MOST OF THE FILES 
 LENOS    1.0       1 MARCH     1992      RETURNS LENGTH OF LINE 
 PREC     1.0       1 AUGUST    1992      CALCULATE MACHINE DEPENDENT CONSTANTS 
 ITHEADER 3.2      27 MAY       1998      PRINTS iTOUGH2 HEADER 
 DAYTIM   1.0       5 APRIL     2000      RETURNS DATE AND TIME (FOR DVF) 
 THEADER  5.0      12 JULY      2002      PRINTS TOUGH2 HEADER 
 SOLVTYPE 1.0       1 OCTOBER   1999      INITIALIZE PARAMETERS FOR THE SOLVER PACKAGE 
 INPUT    5.0      12 JULY      2002      READ ALL DATA PROVIDED THROUGH FILE *INPUT* 
 MESHM    5.0      12 JULY      2002      EXECUTIVE ROUTINE FOR INTERNAL MESH GENERATION 
 MINC     1.0      22 JANUARY   1990      EXECUTIVE ROUTINE FOR MAKING A "SECONDARY" MESH 
 PART     1.0      22 JANUARY   1990      READ SPECIFICATIONS OF MINC-PARTITIONING 
 GEOM     1.0       1 MAY       1991      CALCULATE GEOMETRY PARAMETERS OF SECONDARY MESH 
 PROX     1.0      22 JANUARY   1990      CALCULATE PROXIMITY FUNCTIONS 
 INVER    1.0      22 JANUARY   1990      INVERT A MONOTONIC FUNCTION THROUGH BISECTIONS 
 MINCME   5.0      12 JULY      2002      PROCESS PRIMARY MESH FROM FILE *MESH* 
 CHECKMAX 5.0      12 JULY      2002      CHECK KEY DIMENSIONS 
 FLOPP    1.0      11 APRIL     1991      CALCULATE NUMBER OF SIGNIFICANT DIGITS 
 RFILE    5.0      12 JULY      2002      INITIALIZE DATA FROM FILES *MESH* OR *MINC*, … 
 ITINPUT  1.0       1 AUGUST    1992      READS COMMANDS OF COMMAND LEVEL 1 
 READCOMM 2.5      14 JUNE      1996      READS A COMMAND 
 FINDKEY  4.2      22 FEBRUARY  2000      READS A KEYWORD 
 LTU      1.0       1 AUGUST    1992      CONVERTS LOWER TO UPPER CASE 
 INPARAME 5.1       1 NOVEMBER  2002      READS PARAMETERS TO BE ESTIMATED 
 ININIGUE 2.5      12 JUNE      1996      READS INITIAL GUESS 
 NEXTWORD 4.2      23 FEBRUARY  2000      EXTRACTS NEXT WORD ON A LINE 
 INPAR    5.1       6 NOVEMBER  2002      READS PARAMETER VALUES, WEIGHTS, ETC. 
 INELEM   5.1       6 DECEMBER  2002      READS GRID BLOCK NAMES OR ROCK TYPES 
 INWBP    5.1       9 AUGUST    2002      READS WEIGHT, BOUNDS, ANNOTATION, AND PARAMETERS 
 READREAL 5.1      25 FEBRUARY  2005      READS A REAL AFTER A COLON 
 READINT  1.0       1 AUGUST    1992      READS AN INTEGER AFTER A COLON 
 INOBSERV 4.2      27 MARCH     2000      READS TYPE OF OBSERVATION 
 INTIMES  5.1      12 NOVEMBER  2003      READS TIMES AT WHICH OBSERVATIONS ARE AVAILABLE 
 INOBS    5.0      12 JULY      2002      READS OBSERVATION INFOS 
 INOBSDAT 5.1      15 SEPTEMBER 2005      READS OBSERVED DATA 
 INPAIRED 4.3      14 SEPTEMBER 2000      READS PAIRED DATA SET 
 INWEIGHT 5.1      25 FEBRUARY  2005      READS WEIGHTS 
 INCOMPUT 1.0       1 AUGUST    1992      READS VARIOUS COMPUTATIONAL PARAMETERS 
 INPRINT  5.1      29 MAY       2003      READS OUTPUT OPTIONS 
 INERROR  5.1      30 SEPTEMBER 2003      READS COMMANDS FOR ERROR ANALYSIS 
 INQXX    4.2       6 JULY      1999      READS COVARIANCE MATRIX OF PARAMETERS 
 INJACOB  1.0       1 AUGUST    1992      READS PARAMETERS FOR COMPUTING JACOBIAN 
 GETINDEX 3.3      17 JULY      1998      GETS INDEX OF ELEMENTS, CONNECTIONS, AND SOURCES 
 INIGUESS 5.1      15 APRIL     2006      ASSIGN DEFAULT INITIAL PARAMETER GUESS 
 GETNMAT  2.1      21 SEPTEMBER 1993      IDENTIFIES MATERIAL NUMBER 
 IXLBXUB  2.1      21 SEPTEMBER 1993      INITIALIZES ARRAY XLB AND XUB 
 ADDNOISE 5.1      19 SEPTEMBER 2005      ADDS NOISE TO SYNTHETIC DATA 
 SETWSCAL 5.1       1 DECEMBER  2005      INITIALIZES ARRAY WSCALE 
 OBSMEAN  1.0       1 AUGUST    1992      CALCULATES MEAN OF OBSERVATIONS 
 SETXSCAL 1.0       1 AUGUST    1992      INITIALIZES ARRAY XSCALE 
  

Figure 3.10.2. Version control statements. 
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 IN_OUT   5.1       7 OCTOBER   2003      PRINTS A SUMMARY OF INPUT DATA 
 TIMEWIND 5.0      12 JULY      2002      SETS TIME WINDOW 
 PRSTATUS 3.1      20 FEBRUARY  1997      PRINTS STATUS MESSAGES  
 ERRORMSG 5.1      19 SEPTEMBER 2005      PRINTS ERROR MESSAGES 
 LEVMAR   5.1      11 NOVEMBER  2002      LEVENBERG-MARQUARDT OPTIMIZATION ALGORITHM 
 FCNLEV   5.0      12 JULY      2002      RETURNS WEIGHTED RESIDUAL VECTOR 
 UPDATE   5.1       5 NOVEMBER  2002      UPDATES PARAMETERS 
 PRIORINF 2.1      21 SEPTEMBER 1993      PRIOR INFORMATION 
 OBSERVAT 5.1       7 JANUARY   2004      COMPARES MEASURED AND CALCULATED QUANTITIES 
 GETMESH  3.2      20 JUNE      1998      READS FILE MESH, MINC, GENER, AND INCON 
 GETINCON 5.0      12 JULY      2002      READS FILE INCON 
 INITTOUG 5.0      12 JULY      2002      INITIALIZES TOUGH2 RUN (REPLACES CYCIT) 
 EOS      1.0      15 AUGUST    1990      *EOS1* THERMOPHYSICAL PROPERTIES MODULE FOR WATER 
 SAT      4.2 MOS  16 JULY      1999      STEAM TABLE EQUATION 
 RELP     4.4       9 FEBRUARY  2001      RELATIVE PERMEABILITIES 
 TSAT     1.0      14 MARCH     1991      SATURATION TEMPERATURE AS FUNCTION OF PRESSURE 
 PCAP     5.1      18 NOVEMBER  2002      CAPILLARY PRESSURE FUNCTIONS 
 COWAT    4.2 MOS  16 JULY      1999      LIQUID WATER DENSITY AND INT. ENERGY  
 SUPST    4.2 MOS  16 JULY      1999      VAPOR DENSITY AND INTERNAL ENERGY 
 VIS      1.0      22 JANUARY   1990      VISCOSITY OF LIQUID WATER AND VAPOR 
 BALLA    3.3      17 JULY      1998      SUMMARY BALANCES FOR VOLUME, MASS, AND ENERGY 
 CALLTOUG 5.1       4 MARCH     2004      CALLS TOUGH2 FOR ONE TIME STEP 
 TSTEP    3.1      27 MARCH     1997      ADJUST TIME STEPS TO COINCIDE WITH TARGET TIMES 
 MULTI    5.0      12 JULY      2002      ASSEMBLE ALL ACCUMULATION AND FLOW TERMS 
 QU       5.0      12 JULY      2002      ASSEMBLE ALL SOURCE AND SINK TERMS 
                                          "RIGOROUS" STEP RATE CAPABILITY FOR MOP(12) = 2 
 LINEQ    2.1      30 JANUARY   2007      INTERFACE FOR LINEAR EQUATION SOLVERS 
 MTRXIN   4.4      17 JANUARY   2001      ROUTINE FOR Z-PREPROCESSING  
 VISW     1.0      22 JANUARY   1990      VISCOSITY OF LIQUID WATER  
 CONVER   5.0      12 JULY      2002      UPDATE PRIMARY VARIABLES AFTER CONVERGENCE 
 OUT      5.0      12 JULY      2002      PRINT RESULTS  
 OBSERVED 2.4       4 AUGUST    1996      RETURNS OBSERVED DATA AS A FUNCTION OF TIME 
 OBJFUN   5.1      29 OCTOBER   2003      COMPUTE OBJECTIVE FUNCTION 
 WRITEPAR 4.2      27 JULY      1999      WRITE BEST FIT PARAMETER SET AND BLOCK ROCKS 
 PLOTFILE 4.0      19 JANUARY   1999      WRITES PLOTFILE IN PLOPO-FORMAT 
 JAC      4.0      19 JANUARY   1999      CALCULATES FINITE DIFFERENCE JACOBIAN 
 TERMINAT 5.1      29 MAY       2003      PERFORM ERROR ANALYSIS AND TERMINATE iTOUGH2 
 WRIFI    5.0      12 JULY      2002      WRITE PRIMARY VARIABLES ON FILE *SAVE* 
 EIGEN    4.1      24 JUNE      1999      PERFORMS EIGENANALYSIS 
 LOGLIKE  2.1      29 SEPTEMBER 1993      COMPUTE LOG-LIKELIHOOD 
 MLLAMBDA 2.2      14 FEBRUARY  1994      ESTIMATES NEW LAMBDAS 
 QNORMAL  2.5      13 JANUARY   1996      RETURNS QUANTILE OF NORMAL DISTRIBUTION 
 MOMENT   3.3      28 OCTOBER   1998      MOMENTS OF DISTRIBUTION 
 SORT     3.1      17 APRIL     1997      SORTS ARRAY 
 LINREG   5.0      12 JULY      2002      LINEAR REGRESSION ANALYSIS 
 PLOTIF   1.0      15 FEBRUARY  1993      PLOT INTERFACE 
 REFORMAT 5.1       8 JUNE      2005      REFORMATS PLOT FILES 
 QUOTES   1.0      15 FEBRUARY  1993      RETURNS TEXT BETWEEN QUOTES 
 

Figure 3.10.2. (cont.)  Version control statements. 
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4. PROGRAM ARCHITECTURE 
 
4.1 Program Structure 
 
 iTOUGH2 is written in a modular form. Figure 4.1.1 shows the program architecture in a 
simplified flow chart. The program first reads the TOUGH2 input deck, which defines the forward 
problem. The required TOUGH2 input may vary depending on the module used. In the iTOUGH2 
input file, the user defines the parameters to be estimated, provides the data and the associated 
measurement errors, and selects program options such as the objective function, the minimization 
algorithm, the output format, and convergence criteria. Optimization is then initiated, iteratively 
updating parameter vector p  and calling TOUGH2 for the calculation of the system response, z . 
Some of the forward calculations may be performed in parallel using PVM [Finsterle, 1998b]. The 
optimization routines of iTOUGH2 communicate with the TOUGH2 simulator through selected 
COMMON blocks shared by both modules. This program architecture allows one to update both the 
forward and the inverse part of the code more or less independently. 
 

 

Figure 4.1.1. Simplified iTOUGH2 flow chart. 
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 The architecture of iTOUGH2 allows for safe and convenient maintenance of the program. The 
code was developed based on the following principles: 
 
- Each subroutine contains an IMPLICIT NONE statement, i.e., each constant and variable 

used in iTOUGH2 is explicitly declared. 
 
- All COMMON blocks holding major arrays are defined in FOTRAN include files, ensuring that 

modifications are made consistently throughout the code. 
 
- Array dimensions are given by constants, which are defined using PARAMETER statements in 

FORTRAN include file maxsize.inc (see Section 5.1). This allows for convenient redimen-
sioning of arrays and ensures consistency of array sizes. 

 
- Variables of different types are stored in separate COMMON blocks for efficient alignment. 
 
- Compilation is supported by a Makefile. The dependencies specified in the makefile ensure that 

all files affected by a change are recompiled and properly linked. 
 
- Checks are made within iTOUGH2 to ensure that a given array is sufficiently large to 

accommodate the problem to be solved. If an array index is greater than the size of the array, an 
error message is issued indicating the constant that must be increased. 

 
- For traceability, array dimensions used for a specific run as well as version control statements 

are reported in output files (see Section 3.10). 
 
- Subroutines and functions containing machine-dependent system calls are isolated (see files 

mdep$COMP.f, where $COMP is the name of a computer platform). 
 
- iTOUGH2 was tested on different platforms to enhance portability. 
 
- The use of non-ANSI FORTRAN extensions is minimized. 
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5.2 Directory Structure 
 
 It is recommended that the installation of iTOUGH2 on Unix machines be performed 
according to the instructions in this section. However, different file structures can be chosen, 
requiring minor modifications of the utility script files (see Section 6). 
 
 The iTOUGH2 source files and executables are expected to be stored in the iTOUGH2 home 
directory $HOME/itough2 or $HOME/itough2v$VERS, where $HOME is the user’s home directory 
name. If iTOUGH2 is installed in $HOME/itough2v$VERS, where $VERS is a version identifier, 
the -v option (see Section 6.2) must be used at run time to indicate which version should be 
selected. If option -v is not given on the command line, the executable installed in directory 
$HOME/itough2 is used. 
 
 The source code is comprised of files with extensions .f and .inc. The FORTRAN include files 
contain the COMMON blocks and constants for dimensioning of major arrays (see Section 5.2). 
The executable is named itough2_$EOS.$HOST, where $EOS identifies the equation-of-state 
module, and $HOST is the name of the Unix host. 
 
 iTOUGH2 is executed using a Unix shell script file itough2 (see Section 6.2), expected to be 
stored in a subdirectory $HOME/bin, which should be added to the Unix command search path. 
iTOUGH2 input files can be stored in any directory. For each iTOUGH2 run, the shell script 
creates a temporary directory with the unique name $HOME/it2_$PID, where $PID is the process 
identifier. All input files are copied from the arbitrary working directory to this temporary directory, 
before iTOUGH2 is started. After termination of the run, the most important output files are copied 
back to the working directory. The temporary directory is then removed, unless command option -
no_delete is set (see Section 6.2). During execution, command prista can be invoked to 
check the status file in the temporary directory (see Section 6.4). Furthermore, command kit 
allows a user to send signals to iTOUGH2 applications to gracefully terminate the run (see Section 
6.5). Finally, command it2help searches file $HOME/itough2/it2help.txt and displays manual 
pages of iTOUGH2 commands (see Section 6.6). The recommended directory structure is visual-
ized in Figure 4.2.1. Directory names are underlined, file names are printed in bold, and 
environment and shell variables to be set by the user are in italics. 
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 $HOME

.cshrc set path=( . $path ~/bin)

*.f, *.inc

maxsize.inc

Makefile

itough2_$EOS.$HOST

it2help.txt

invdir

read_me.txt

source files

redimension major arrays

compile and link iTOUGH2

EOS = (EOS module)

COM = (computer)

FOR = (compiler)

COO = (compiler options)

executable

help file

dummy iTOUGH2 

input file for forward run

instructions for installation

itough2

tough2

prista

kit

it2help

runs iTOUGH2

prog_dir=$HOME/itough2

tmp_dir=$HOME

creates  $tmp_dir/it2_$PID

creates $tmp_dir/it2_$PID/itough2.fil

runs $prog_dir/itough2_$EOS.$HOST

runs iTOUGH2 in forward mode

script_dir=$HOME/bin

runs $script_dir/itough2

uses $prog_dir/invdir

displays status of iTOUGH2 run

tmp_dir=$HOME

uses $tmp_dir/it2_$PID/status

signals iTOUGH2

ps_opt='-e -o pid,time,pcpu,comm'

prints syntax of iTOUGH2 commands

help_dir=$HOME/itough2

uses $help_dir/it2help.txt

 bin Unix shell script files itough2 or  itough2v$VERSION code

input and output files

itough2.fil

status

input and output files

 it2_$PID (temporary directory)  working_directory data

sample problems

 samples

Figure 4.2.1.  iTOUGH2 directory structure.
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4.3 iTOUGH2 Input and Output Files 
 
 Table 4.3.1 shows the names and contents of iTOUGH2 input and output files. Input file 
names are arbitrary, and are specified at the time an iTOUGH2 job is submitted (see Section 6.2). 
The output file names are by default a combination of the TOUGH2 and iTOUGH2 input file 
names and a predefined three-character extension. Some of the output file names can be changed 
upon job submission.  
 
 The Unix shell script itough2 (see Section 6.2) writes a file itough2.fil with the names of the 
working directory, temporary directory, TOUGH2 input file, iTOUGH2 input file, as well as the 
arguments submitted to the shell script. This information allows iTOUGH2 to access the 
appropriate input files. 
 
 The user must provide at least two input files to run iTOUGH2. The first one is a TOUGH2 
input file in standard TOUGH2 format as described in Pruess [1987, 1991a, 1991b], Finsterle et 
al. [1994], Falta et al. [1995], Moridis and Pruess [1995], Battistelli et al. [1997], Finsterle  
[1998a], and Finsterle [2007b; Appendix A], as well as other publications pertaining to particular 
TOUGH2 modules and code enhancements. This input file defines the conceptual model, i.e., the 
forward problem, which must run successfully not only for the initial parameter set, but also for a 
wider range of parameter combinations that may potentially arise during the iTOUGH2 run. 
 
 The second input file is the iTOUGH2 input file, in which the user specifies the parameters to 
be estimated, the observations used for calibration, and various program options. The basic 
concepts of the iTOUGH2 input language and a detailed description of each iTOUGH2 command 
are given in Finsterle [1998b, 2007b,c]. 
 
 Additional TOUGH2 input files may be given with information about the mesh, sinks and 
sources, and initial conditions. Furthermore, initial parameter guesses and calibration data can be 
provided either in the iTOUGH2 input file or on separate data files, with their names specified in 
the iTOUGH2 input file. All these additional input files are optional and depend on the TOUGH2 
and iTOUGH2 options invoked. 
 
 iTOUGH2 creates a number of output files. In addition to the standard TOUGH2 output files, 
iTOUGH2 generates a main output file with information about the minimization process, the 
sensitivity coefficients, the residuals, the estimated parameters and their uncertainties; an example 
is described in Section 3. Furthermore, separate output files are generated upon request with the 
best estimate parameter set and corresponding TOUGH2 ROCKS block, the covariance matrix of 
the calculated system response, the observed data and the modeling result for plotting purposes, and 
a plot file with the relative permeability and capillary pressure curves. The message file, which 
contains Unix standard error and standard output information along with version control statements, 
should be consulted whenever execution problems persist. 
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Table 4.3.1. List of iTOUGH2 Input and Output Files 

  Filenames  
Generic Example File Content 

Input Files 
- itough2.fil Names of working directory and input files 
dir_file test.inp* Standard# TOUGH2 input file (forward problem) 
inv_file testi.inp* iTOUGH2 input file (inverse problem) 
dat_file pressure.dat Measured data 
par_file testi.par Initial parameter guesses 
$dir_file.mes coarse.mes Elements and connections (TOUGH2 file MESH) 
$dir_file.ini equi.ini Initial condition information (TOUGH2 file INCON) 
$dir_file.gen sinks.gen Sinks and sources (TOUGH2 file GENER) 

Output Files 
- itough2.ver& Version control statements 
- Status& Current status (updated after each forward run) 
- fort.99& File used for debugging 
$dir_file.out test.out@ Standard# TOUGH2 output file 
$dir_file.sav test.sav Primary variables for restarting (TOUGH2 file SAVE) 
$dir_file.mes test.mes Mesh information (TOUGH2 file MESH) 
$dir_file.min test.min Mesh information after MINC preprocessing 
$dir_file.ini test.ini Initial conditions written from block INCON in dir_file 
$dir_file.lin test.lin Messages on linear equation solution 
$dir_file.tab test.tab Data from semi-analytical heat exchange calculation 
$inv_file.out testi.out@ Main iTOUGH2 output file 
$inv_file.tec testi.tec@% Plot file showing match 
$inv_file.err testi.err& Summary error mesages 
$inv_file.msg testi.msg@+ iTOUGH2 message file 
$inv_file.par testi.par@ Best estimate parameter set and ROCKS block 
$inv_file_ch.tec testi_ch.tec% Relative permeability and capillary pressure curves 
$inv_file.cov testi.cov Covariance matrix of calculated system response 
* These files are mandatory; all other input files are optional and depend on program options. 
# See pertaining user’s guide, source code, and Appendix A of iTOUGH2 Command Reference. 
@ These files are automatically returned to the working directory. 
% The extension depends on the chosen plotformat (see command >>> FORMAT). 
& Contents appended to file inv_file.out and/or inv_file.msg after completion of run. 
+ If using script file tough2, the message file name is t2.msg. 
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5. CODE INSTALLATION 
 
5.1 Getting Started 
 
 This section describes the installation of iTOUGH2 on a Unix workstation, assuming that the 
source code, shell script files, and sample problem input files are distributed as a potentially 
compressed archive file itough2.tar. The installation procedure may vary if iTOUGH2 is 
distributed differently, or if it is not installed in the directory structure shown in Figure 4.2.1. 
Additional instructions can be found on file read_me.txt and in the header of the Makefile and the 
Unix shell script files itough2, tough2, prista, kit, and it2help. Installation and execution of 
iTOUGH2 on a PC is different; see instructions in file read_me.txt. 
 
 

Table 5.1.1. Code Installation Procedure 
 
 Step 1: Create the iTOUGH2 home directory: 
  cd; mkdir itough2 
 
  If multiple iTOUGH2 versions must be accessible, they should be installed in 

separate directories itough2v$VERS, where $VERS is a version identifier to 
be used with the -v option at run time: 

  cd; mkdir itough2v$VERS 
 
 Step 2: Move the iTOUGH2 distribution file(s) to the iTOUGH2 home directory. 
 
 Step 3: Go to the iTOUGH2 home directory and extract all files from the distribution. If 

iTOUGH2 is distributed as a compressed tar file itough2.tar.gz, the following 
command sequence establishes the directory structure shown in Figure 4.2.1: 

  gunzip itough2.tar.gz; tar xvf itough2.tar 
 
 Step 4: Customize iTOUGH2, as necessary: 
  • Set the maximum problem size in file maxsize.inc (see Section 5.2). 
  • Set default format of plot file (see file it2main.f, BLOCK DATA IT, 
   variable IPLOTFMT). 
  • Add code to file it2user.f to provide user-specified parameters,  
   observations, boundary conditions, and data definitions.  
  • Provide machine-dependent system calls if ported to a new platform not  
   supported by iTOUGH2 (see files mdep$COMP.f, where $COMP is the  
   name of a computer platform). 
 
 Step 5: Edit Makefile and compile iTOUGH2 (see Section 5.3). 
 
 Step 6: Install and customize Unix shell script files (see Section 6). 
 
 Step 7: Test installation by running sample problems [Finsterle, 2007c]. 
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5.2 Dimensioning of Major Arrays 
 
 Problems solved by iTOUGH2 vary considerably in size, depending on the number of 
gridblocks and connections, the number of equations solved per gridblock, the number of 
parameters estimated, the number of observations available, etc. It is important to be able to adjust 
the dimensions of major arrays to make the code fit on a specific computer with limited memory. 
Because iTOUGH2 is written in FORTRAN77, no dynamic memory allocation is possible, i.e., 
arrays are redimensioned by changing their size in the source code, followed by recompilation.  
 
 The user must set the appropriate constants in file maxsize.inc. The constants of greatest impact 
on memory requirement are MAXEL, MAXCON, MAXN, and MAXM. The number of mass 
components, phases, and balance equations per gridblock is given by MAXK, MAXPH, and 
MAXEQ, respectively. Note that they must be set to the maximum number required by the chosen 
equation-of-state module, regardless of the values given in TOUGH2 block MULTI. For example, 
if EOS7 is used [Pruess, 1991b], MAXK must be set to 3 and MAXEQ to 4, even though the model 
may be run in isothermal mode with no air involved, i.e., with NK=2 and NEQ=2. If an array is 
improperly dimensioned, iTOUGH2 issues a corresponding error message.  
 
 
5.3 Compiling and Linking 
 
 A Makefile is provided for convenient compilation of iTOUGH2 on Unix workstations. File 
Makefile must be edited to indicate the desired equation-of-state (EOS) module and to provide the 
name of the FORTRAN compiler as well as various compiler options, which are specific to the 
computer platform. Table 5.3.1 shows some of the Makefile variables that must be set by the user. 
Compiler options are provided for most Unix platforms and the PC compilers by Lahey¨ and 
Compaq¨ Visual Fortran (formerly DIGITAL Visual Fortran). It is expected that iTOUGH2 can be 
compiled using other compilers with minor modifications (see files read_me.txt and 
read_me_CVF.txt for additional information). If the Makefile is used, the appropriate options can be 
selected by deleting the pound sign (#) in the first column, and by commenting out the portions of 
the Makefile that do not apply.  
 
 Depending on the compiler used, a linking error may occur if a subroutine is specified more 
than once, as is the case for eos9.f and eos10.f. In these instances, the user must ensure that the 
subroutine encountered first in the list of source files (see variables OBJxxx in Table 5.3.1) is linked 
to iTOUGH2, i.e., the subroutine in the second file must be renamed. For example, there are two 
versions of subroutine MULTI, one in file eos9.f, another in file t2f.f. If setting EOS=9, the 
subroutine has to be renamed (e.g., to MULTIx) in file t2f.f . 
 
 Table 5.3.2 shows the different targets defined in the Makefile. For example, in order to make a 
standard iTOUGH2 executable for the equation-of-state module defined through variable EOS, one 
must simply type make. For example, iTOUGH2-PVM [Finsterle, 1998b] is created by typing 
make pvm. 
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Table 5.3.1. Variable Definitions in Makefile 

Variable Description Examples 

EOS Equation-of-state module 
identifier 

3 to compile and link eos3.f 
(see files eos$EOS.f) 

COM Name of computer platform pc, linux, ibm, sun, dec, sgi, hp, cray, etc. 

(see files mdep$COM.f) 

FOR Compiler name f77, f90, g77, ifc, pgf90 

COO Compiler options -c -O3 (see manual pages of compiler $FOR) 

LIN Linking options +U77 (see manual pages of compiler $FOR) 

EXS Extension of source files f, FOR 

EXO Extension of object files o, OBJ 

EXE Extension of executable $hostname, EXE 

LPVM Location of PVM library see Finsterle [1998b] 

OBJSTD List of files for  
standard iTOUGH2 

it2main, it2input, it2xxxx, it2user, 
mdep$COM, eos$EOS, t2cg22, t2f, meshm, 
t2solv.f 

SPECIAL List of special modules# it2stubs, it2pvm, it2gslib, it2lhs, ifs 

# In order to invoke special modules (such as parallel execution using PVM [Finsterle, 1998b], 
the Geostatistical Software Library GSLIB, Latin Hypercube Sampling, or Iterated Function 
Systems [Doughty, 1995]), rename the corresponding subroutines in file it2stubs.f and link the 
appropriate module to standard iTOUGH2. 

 

Table 5.3.2. Targets in Makefile 

Target Executable/Action Comment 

make Creates standard iTOUGH2 
itough2_$EOS.$EXE 

Rename# subroutine MULTI in file t2f.f if 
EOS=9. 

Rename# subroutines INPUT, MULTI, 
RELP, and PCAP in file t2f.f if EOS=10. 

make pcf77 
make pcf90 

Creates iTOUGH2 on PC Supports Lahey compiler f77l3. 
Supports Lahey compiler lf90. 

make zip Creates archive file itough2.tar.gz Includes iTOUGH2 source code, sample 
problems, and manuals. 

# Renaming is automatically performed when using ultility it2make. 
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6. UTILITIES 
 
6.1 Installation of Unix Shell Script Files 
 
 The iTOUGH2 distribution includes five Unix shell script files: itough2, tough2, prista, kit, 
and it2help. While iTOUGH2 can be run by typing the name of the executable, use of the Unix 
script files discussed in this section adds convenience and increases safety. A Unix script file is a 
command file that contains a shell program, and—if properly installed—can be invoked like any 
other Unix command, i.e., simply by typing the file name (e.g., the script file kit is invoked by 
typing kit). The five script files discussed here make use of the Bourne shell (/bin/sh); they 
can be executed from most shells. 
 
 The five Unix shell script files are assumed to be installed in a directory $HOME/bin, where 
$HOME is the user's login directory. The directory must be part of the search path where the shell 
looks for commands. It is suggested to add the following line to file .cshrc: 
 
set path=($path ~/bin) 
 
 All script files must be executable; if not, type: 
 
cd ~/bin; chmod a+x itough2 tough2 prista kit it2help 
 
 If the directory structure is different from that shown in Figure 4.2.1, the user must redefine 
some of the shell variables according to Table 6.1.1. The default values assume that iTOUGH2 is 
installed as described in Section 4.2. Script file kit requires identifying a suitable option for Unix 
command ps, which varies with the Unix flavor. If typing “ps $ps_opt” during the execution 
of an iTOUGH2 run, the command output must contain the process ID and the string 
“itough2_”. Depending on the selected option ps_opt, the process ID appears in either the first 
or the second column (ipid = 1 or 2). Command line awk `{print $ipid}` near the end 
of file kit must be adjusted accordingly (for more details see header of file kit). 
 
 
Table 6.1.1. Customizing Shell Variables in iTOUGH2 Script Files 

Script File Shell Variable Default Description 

itough2 prog_dir $HOME/itough2 iTOUGH2 home directory 
 tmp_dir $HOME Main temporary directory 
tough2 script_dir $HOME/bin Directory of itough2 script file 
prista tmp_dir $HOME Main temporary directory 
kit ps_opt ux Option for Unix command ps 
it2help help_dir $HOME/itough2 Directory of file it2help.txt 
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6.2 Submitting an iTOUGH2 Job (Command itough2) 
 
 Shell script file itough2 should be used to submit an iTOUGH2 job on a Unix workstation. 
The command usage, reproduced in Figure 6.2.1, can be displayed by typing itough2 without 
any arguments. 
 
  
 =============================================================================== 
 iTOUGH2 --- iTOUGH2 --- iTOUGH2 --- iTOUGH2 --- iTOUGH2 --- iTOUGH2 --- iTOUGH2 
 =============================================================================== 
 
 Script file   : /m/presto/u/finster/bin/itough2 
 
 Syntax  
 ------ 
  
 itough2 [Options] InverseFile ForwardFile EOS & 
  
 InverseFile : iTOUGH2 input file 
 ForwardFile : TOUGH2 input file 
 EOS         : EOS module identifier 
 
 Options 
 ------- 
 -no_delete : temporary directory /m/presto/u/finster/it2_29321 is not deleted 
 -m file    : copies $file to temporary directory as input file MESH 
 -i file    : copies $file to temporary directory as input file INCON 
 -g file    : copies $file to temporary directory as input file GENER 
 -ind file  : copies $file to temporary directory as input file INDEX 
 -unv file  : copies $file to temporary directory as input file UNVEC 
 -vel file  : copies $file to temporary directory as input file VELOC 
 -tvsp file : copies $file to temporary directory as input file timvsp.dat 
 -fi file   : copies $file to temporary directory 
 -ito file  : names iTOUGH2 output $file instead of $InverseFile.out 
 -to file   : names TOUGH2 output $file instead of $ForwardFile.out 
 -save file : names output file SAVE $file instead of $ForwardFile.sav 
 -mesh      : returns output file MESH to working directory as $ForwardFile.mes 
 -lin       : returns output file LINEQ to working directory as $ForwardFile.lin 
 -index     : returns output file INDEX to working directory as $ForwardFile.ind 
 -unvec     : returns output file UNVEC to working directory as $ForwardFile.unv 
 -veloc     : returns output file VELOC to working directory as $ForwardFile.vel 
 -cov       : returns covariance file to working directory as $InverseFile.cov 
 -plo       : returns output file PLOPO to working directory as $InverseFile.plo 
 -fo file   : returns $file from temporary directory to working directory 
 -v vers    : uses version in directory ~/itough2v$vers 
 -pvm       : runs iTOUGH2 in parallel under PVM 
 -node node : starts iTOUGH2 on a specific node (for certain Linux clusters only) 
  
 Examples 
 -------- 
 tough2 forward 3 & 
 itough2 sam2p1i sam2 3 & 
 itough2 -mesh dummi meshm.inp 1 & 
 itough2 -i equil.inc -m coarse.mes inverse.inp t2voc.inp 10 & 
 itough2 -pvm -no_delete testpvmi test 9ecm & 
 

Figure 6.2.1. Usage and options of command itough2. 
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The general command syntax is: 
 
itough2 [options] InverseFile ForwardFile EOS & 
 
Command itough2 is followed by at least three arguments in the following order: (1) the name 
of the iTOUGH2 input file, (2) the name of the TOUGH2 input file, and (3) an indicator of the 
EOS module being used (usually a number). Additional options discussed below may precede the 
three mandatory arguments. iTOUGH2 should always be run in the background (i.e., add “&” at 
the end of the command line) to allow usage of commands prista  and kit. Example: 
 
command           TOUGH2 input file    background 

  ↓                    ↓          ↓  
itough2 samplei.inp sample.inp 3 & 
              ↑                 ↑  
         iTOUGH2 input file                Number of EOS module     
 
 Submitting this command line has the following effect. A temporary directory is created named 
$(tmp_dir)/it2_$$, where $(tmp_dir) is the directory specified by shell variable tmp_dir (see 
Table 6.1.1), and $$ is a unique process ID number. The specified input files are copied from the 
working directory to the temporary directory. iTOUGH2 is started where the name of the 
executable depends on the EOS module requested. In this example, EOS3 is used. After completion 
of the run, the main output files are copied from the temporary to the working directory, and the 
temporary directory is deleted unless flag -no_delete is specified or the program was 
terminated with an error signal. 
 
 Some iTOUGH2 runs may require additional input files containing mesh information, initial 
conditions, sinks and sources, or other special data. These files must be explicitly specified using 
flags -m, -i, -g, and -fi, respectively, followed by the appropriate file name. (All data and 
input files explicitely specified in the iTOUGH2 input file do not need to be given on the 
command line.)  For example, if the TOUGH2 blocks ELEME and CONNE are provided on a 
separate file named coarse.mes, the command reads: 
 
itough2 -m coarse.mes -v 3.2 samplei.inp sample.inp 3 & 
 
 By default, only the main output files are returned to the working directory, before the 
temporary directory is deleted. If additional files should be preserved, such as the mesh files MESH 
and MINC, the linear equation file LINEQ, the PLOPO plot file, or the covariance file of the 
calculated system response, the flags -mesh, -lin, -plo, and -cov must be set, 
respectively. Finally, the default names of the iTOUGH2 output file, the TOUGH2 output file, 
and the TOUGH2 SAVE file can be changed using options -ito, -to, and -save, 
respectively, followed by the desired file name. Example: 
 
itough2 -i test.sav -save test.sav2 -mesh testi test 10 & 
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 In this example, initial conditions are not provided through the TOUGH2 input file test, but are 
read from file test.sav, which apparently is the SAVE file from a previous run. In order not to 
overwrite this file, the default file name for the current SAVE file is changed to test.sav2. The 
MESH file generated by this run is returned to the working directory with name test.mes. This is an 
inversion using the T2VOC simulator [Falta et al., 1995]; its EOS number is 10. 
 
 
6.3 Submitting a TOUGH2 Job (Command tough2) 
 
 iTOUGH2 can also be used to run standard TOUGH2 simulations. There are several 
advantages of using iTOUGH2 for forward runs: (1) only one version of the simulation program 
has to be installed and maintained; (2) the exact same code is used for solving both the forward and 
inverse problem, reducing the risk of introducing errors when modifying the programs; (3) 
additional program features are available (see Finsterle [2007b; Appendix A]); and (4) a forward 
run can be observed and terminated using commands prista and kit, respectively. 
 
The general command syntax is: 
 
tough2 [options] ForwardFile EOS & 
 
 Command tough2 is followed by two arguments in the following order: (1) the name of the 
TOUGH2 input file, and (2) an indicator of the EOS module being used (usually a whole number). 
Additional options may precede the mandatory arguments. They are the same as those for command 
itough2 (see Section 6.2). 
 
 Command tough2 calls shell script file itough2 with a dummy iTOUGH2 input file 
invdir, which is expected to be present in directory $(prog_dir) (see Table 6.1.1). There is only 
minimal overhead associated with reading the dummy input file and writing additional output. The 
name of the message file created by command tough2 is always t2.msg. 
 
 
6.4 Status Checking of an iTOUGH2 Job (Command prista) 
 
 The progress of an iTOUGH2 can be observed using command prista, which accesses file 
status in the temporary directory. File status is updated after each forward simulation, and contains 
iteration statistics, information about the current parameter set, and the development of the 
objective function.  
 
 If more than one iTOUGH2 simulations are running at the same time, the user is first 
prompted to select which run shall be checked (see Figure 6.4.1). Then, the contents of file status 
are displayed. The current parameter set is printed along with the latest and total update. The 
sensitivity measure S∂δ =  (Equation 2.8.2.6) shows the change of the objective function if the 
parameter is perturbed by a small amount. Lastly, information about the objective function is given, 
with its current value, the update due to the perturbation of the parameter indicated by the arrow 
<---, and the total improvement with respect to the initial value printed in the last column. 
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your_prompt> prista 
 
 ID      STIME   DIRECTORY   ARGUMENTS 
  1 -->  09:29   it2_87631   -tough2 test 9 
  2 -->  09:31   it2_87633   sam2p1i sam2 3     
  3 -->  09:32   it2_87639   -fi atmos.dat sam5i sam5 3 
 
 Enter ID: 2 
 
 ================================================================== 
      S T A T U S   O F   i T O U G H 2   S I M U L A T I O N 
 ================================================================== 
 
 Date                        : 23-Nov-98 09:33 
 iTOUGH2 file                : sam2p1i 
 TOUGH2 file                 : sam2 
 Working directory           : /m/presto/u/finster/itough2/samples/sample2 
 Temporary directory         : /m/presto/u/finster/it2_29625 
 Unix command line arguments : sam2p1i sam2 3 
 Comment                     : No fit improvement. Jacobian (forward). 
 
 Iterations completed        :              1    Iterations to go      7 
 TOUGH2 runs completed  (+/-):         8/   0    Unsuccessful steps    0 
 TOUGH2 runs to go (approx.) :             43    Log(Levenberg)       -3 
 CPU time used     [sec]     :          41.63    for last step      5.48 
 
     Parameter            Current  Last Update Total Update        Sens. Active 
  1. ABS. K GEYS1+8 :  -.1939E+02   -.3917E+00   -.3917E+00      937.787 
  2. KLINK GEYS1+8  :   .6543E+01   -.4569E+00   -.4569E+00      871.680 
  3. POROSITY GEYS1+:   .1080E-01   -.4311E-02   -.4311E-02       24.210 <--- 
 
     TOUGH2 run No. :           8       8 -  5       5 -  1      Initial 
     Obj. Function  :   .6016E+05    .2421E+02   -.2572E+06    .3174E+06 
 
Do you want to read an output file? 
 
 1 --> sam2.out 
 2 --> sam2p1i.out 
 * --> another file 
 
Enter file No. plus v(i) or t(ail): 2 
 

Figure 6.4.1. Screen dump from command prista. 
 
 
 The user has then the opportunity to look at some of the output files using either the vi-editor 
or Unix command tail. If the file number is given, command tail is invoked, displaying the 
last 10 lines of the chosen output file. The tail command continues to display lines as they are 
added to the output file until stopped by pressing the Ctrl-C key sequence. In order to user the 
vi-editor, the file number has to be followed by the character v. Note that the file should not be 
modified since it is continuously updated by iTOUGH2. 
 
 Command prista allows a user also to inspect a TOUGH2 simulation. If deemed neces-
sary, the run can be gracefully terminated using command kit (see Section 6.5). 
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6.5 Terminating an iTOUGH2 Job (Command kit) 
 
 An iTOUGH2 run can be interrupted and in particular gracefully terminated using command 
kit, which sends a signal to the process running iTOUGH2. A signal handler is installed (see file 
mdep$COMP.f) to trigger the desired action. Command kit is usually used after checking the 
status of an iTOUGH2 run using command prista (see Section 6.4). The signal numbers and 
their effects are described in Table 6.5.1. 
 
 
Table 6.5.1. Signals Sent by Command kit 

Signal Effect 

0 Exit shell script (no action taken). 

1 Terminates iTOUGH2 immediately, but gracefully. 

2 Terminates iTOUGH2 after completion of the current forward run. The Jacobian matrix 
used for the error analysis may contain columns that are from the previous evaluation. 
The corresponding parameter sensitivities are printed in brackets [] in the iTOUGH2 
output file. 

3 Terminates iTOUGH2 after completion of the next time step. The system state is written 
to the TOUGH2 output file (even if a negative value is specified for variable KDATA; 
see Finsterle [2007b; Appendix A2]). This option is useful especially for long TOUGH2 
runs. A run can be terminated at any time and later restarted using the returned SAVE file 
$dir_file.sav. 

4 Terminates iTOUGH2 after completion of next iTOUGH2 iteration. 

5 TOUGH2 output is generated after completion of the next time step; the run continues. 

6 The output buffers are flushed% so the full content of the output file can be seen during 
the run using command prista. 

7 An iTOUGH2 run is stopped without terminating it (sends signal STOP).# 

8 An iTOUGH2 run previously stopped using Signal 7 is continued (sends signal 
CONT).# 

9 Kills run immediately and abruptly  (sends signal KILL). 

10 A previously submitted Signal 2, 3, or 4 is canceled. 

% Not necessary if output is not buffered. 
# Does not work on Sun workstations using Solaris. 

 
 
 Figure 6.5.1 shows a screen dump from command kit. If multiple iTOUGH2 inversions are 
running at the same time, they are listed and numbered. The information displayed depends on the 
option of Unix command ps (see ps_opt in Table 6.1.1). 
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your_prompt> kit 
 
 #     USER       PID %CPU %MEM   SZ  RSS    TTY STAT    STIME  TIME  COMMAND 
 1 --> finster  13181 49.8  3.0  876 1668  pts/0 R    15:45:56 31:56  
itough2_1.itelos 
 2 --> finster  13997 76.8  3.0  872 1664  pts/0 R    14:25:55 110:47 
itough2_3.itelos 
 
Select iTOUGH2 run by number : 2 
 
  0: exit 
  1: terminate immediately 
  2: terminate after completion of TOUGH2 run 
  3: terminate after completion of TOUGH2 time step 
  4: terminate after completion of iTOUGH2 iteration 
  5: print output now 
  6: flush output buffers 
  7: sleep 
  8: wake up 
  9: kill run 
 10: cancel previous signal 
 
Choose signal: 6 
 
Signal 6 sent to process 13997 
 

Figure 6.5.1. Screen dump from command kit. 
 
  
 The command kit sometimes fails to recognize a Unix process as an iTOUGH2 run. In 
these cases, iTOUGH2 can be killed manually using command: 
 
kill -SIGNAL PID 
 
where SIGNAL is the signal number of Table 6.5.1, and PID is the process ID of the 
iTOUGH2 executable with the command name $prog_dir/itough2_$EOS.$HOST. Do not 
kill the shell script itough2 or tough2. If either of these script commands is killed, the actual 
iTOUGH2 simulation in fact keep running but fails to return the output files from the temporary to 
the working directory after its completion. Moreover, the temporary directory is not removed, 
making it reappear whenever command prista is used. In order to remove left behind 
temporary directories, type: 
 
rm -r ~/it2_* 
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6.6 Obtaining On-line Help (Command it2help) 
 
 The content of Finsterle [2007b; Section 4] can be accessed on-line at the web site 
http://www-esd.lbl.gov/iTOUGH2, by clicking on “Command Index”. Alternatively, command 
it2help can be used, followed by the command name and, optionally, the command level. Type 
it2help to display the command usage (see Figure 6.6.1). There are three special commands. In 
order to display the complete iTOUGH2 command index (see Finsterle [2007b; Appendix B]), 
type: 
 
it2help index 
 
The following command displays the iTOUGH2 log book $prog_dir/itough2.log: 
 
it2help logbook 
 
 The manual pages are stored on file it2help.txt. The content of this file is continually updated to 
include added features of later versions of iTOUGH2.  

 
  =================================================================== 
  IT2HELP --- IT2HELP --- IT2HELP --- IT2HELP --- IT2HELP --- IT2HELP 
  =================================================================== 
 
  Purpose: 
 
  Displays iTOUGH2 manual pages on-line. 
 
  Syntax: 
 
  it2help command [command_level] 
 
    command       = iTOUGH2 command 
    command_level = integer indicating command level (1, 2, 3, or 4) 
 
  Examples: 
 
  1. it2help iteration 
     Prints manual pages of command ITERATION on all command levels. 
 
  2. it2help iteration 3 
     Prints manual page of third-level command >>> ITERATION. 
 
  3. it2help index 
     Prints the iTOUGH2 command index. 
 
  4. it2help update 
     Prints version update information. 
  =================================================================== 

Figure 6.6.1. Screen dump from command it2help showing command usage. 
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Akaike, 73, 100 
Andrews estimator, 36 
annealing schedule, 48 
annotation, 8 
A-optimality, 38, 72 
a priori, 23, 27, 92, 100 
a posteriori, 28, 59, 92, 100 
 
B 
bias, 35, 38, 57 
 
C 
calibration point, 7, 10, 19, 82, 84 
Cauchy, 36 
central limit theorem, 30 
confidence region, 61, 65, 72 
consistency, 22, 27 
contraction, 46 
correlation, 56, 61, 63, 72, 93 
cost function, 30 
covariance matrix 
 observation, 27, 32, 83, 95 
 parameter, 5, 61, 63, 72, 92, 100 
 prediction, 70, 75, 95 
 residual, 70 
curvature matrix, 63, 64 
 
D 
data (see observation) 
design, 4, 63, 73, 91 
D-optimality, 72 
 
E 
eigenanalysis, 64, 72, 94 
ellipsoid, 61, 64 
E-optimality, 72 
EOS, 80, 107, 112, 113, 115–117 
error 
 discretization, 74 
 measurement, 7, 10, 23, 27, 83, 95 
 modeling, 7, 23, 74 

 propagation, 4 
 random, 24, 34 
 systematic, 11, 24, 34, 68, 98 
expansion, 46 
 
F 
F-distribution, 59, 62, 100 
finite differences, 16, 41, 86 
Fisher information matrix, 63 
Fisher Model Test, 59, 92, 100 
forward run, 41, 50, 110, 113, 117 
FOSM, 74 
 
G 
gas-pressure-pulse-decay, 9 
Gauss, 15 
Gauss-Markov, 33 
Gauss-Newton method, 40, 42 
goodness-of-fit, 59, 63, 72, 100 
gradient, 40 
grid search, 50, 54 
 
H 
Hessian matrix, 31, 40 
Huber estimator, 36 
 
I 
IFS, 105, 113 
include file, 106, 107 
inconsistency, 25 
initial 
 condition, 6 
 guess, 7, 10, 17, 81, 101 
invdir, 117 
inverse problem 
 ill-posed, 17, 31 
 well-posed, 30 
iTOUGH2, 4, 80, 105 
itough2, 107, 109, 114, 115 
it2_tar, 111 
it2help, 114, 121 
 
J 
Jacobian matrix, 4, 39–41, 46, 53, 55, 75, 

79, 86, 88, 119 
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K 
Kashyap, 73, 100 
kit, 107, 114, 119 
Klinkenberg, 9 
kurtosis, 69 
 
L 
least absolute residual, 36 
least squares, 8, 11, 15, 32 
Lahey¨, 112, 113 
Levenberg-Marquardt, 40, 44 
Levenberg parameter, 44, 86 
likelihood function, 32, 62, 100 
loss function, 35, 95 
 
M 
m, 19 
Makefile, 106, 111, 112 
Marquardt parameter, 44, 86 
maximum likelihood, 8, 30, 32, 62 
maxsize.inc, 102, 106, 111, 112 
median, 69 
minimum 
 global, 30, 31 
 local, 7, 30, 48, 50 
minimization algorithm, 8, 38, 86 
modal matrix, 66, 94 
model 
 alternative, 2, 72 
 calibration, 3 
 conceptual, 2, 3, 6, 9, 16, 68, 74, 109 
 development, 2, 3 
 forward, 6, 109 
 functional, 24, 59 
 identification, 3, 59, 72 
 inverse, 2, 5 
 output, 7 
 stochastic, 6, 23 
 structure, 6 
model-related, 3, 16 
moment analysis, 68 
Monte Carlo, 4, 76 
 

N 
n, 16 
Newton method, 41 
noise (see random error) 
nonuniqueness, 31 
norm, 30 
 
O 
objective function, 8, 30, 54, 86, 97 
observation 
 type, 7, 19, 60, 97 
 vector, 7, 20 
optimality criteria, 72, 100 
outlier, 25, 30, 34, 68, 71, 95 
overparameterization, 55, 72 
 
P 
parameter 
 estimation, 4 
 fixed, 6, 16 
 input, 6, 16 
 selection, 52, 86 
 transformation, 6, 10, 16 
 vector, 16 
parameterization, 16 
parsimony, 73 
path, 114 
PC, 111, 112 
perturbation method, 41 
prior information, 6, 7, 10, 17, 19, 28, 81, 

88, 93, 95 
prista, 107, 114, 117 
probability density function, 32, 61 
PVM, 105, 112, 113 
 
Q 
quantile, 62, 66, 71, 95, 100 
 
R 
random variable, 27 
redundancy, 70 
reflexion, 46 
regression analysis, 69, 98 
regularization, 7, 17 
reliability, 70 
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residual, 22, 23 
 analysis, 68, 95 
 normalized, 71, 95, 97 
 plot, 96 
robust estimator, 34 
 
S 
scaling 
 observations, 27 
scatter plot, 68, 96 
sensitivity 
 analysis, 4, 55, 88 
 coefficient, 41, 55, 63 
 criterion, 52, 86 
 matrix, 58, 88 
 measures, 56, 88, 90, 101, 117 
simplex, 46 
Simulated Annealing, 48 
skewness, 68 
standard deviation 
 conditional, 64, 93, 101 
 marginal, 64, 93, 101 
steepest descent, 38, 44 
step size, 51, 82, 86 
stopping criteria, 50 
 
T 
t-distribution, 100 
temperature, 48 
TOUGH2, 4, 105, 109 
tough2, 110, 114, 117 
 

U 
uncertainty 
 prediction, 5 
 propagation, 4, 16, 74 
Unix shell script, 84, 107, 109, 111, 114–

121 
 
V 
version, 80, 102, 107, 109, 111 
vertex, 46 
 
W 
weight, 5–7, 23, 27, 95 
window, 84 
World Wide Web, 80 
 
X 
xvf, 111 
 
Y 
you (lucky), 100 
 
Z 
zonation, 16 
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