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1. INTRODUCTION 

 

TMVOC-MP is a massively parallel version of the TMVOC code (Pruess  and Battistelli, 

2002), a numerical simulator for three-phase non-isothermal flow of water, gas, and a 

multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional 

heterogeneous porous/fractured media. TMVOC-MP was developed by introducing 

massively parallel computing techniques into TMVOC. It retains the physical process 

model of TMVOC, designed for applications to contamination problems that involve 

hydrocarbon fuels or organic solvents in saturated and unsaturated zones. TMVOC-MP 

can model contaminant behavior under “natural” environmental conditions, as well as for 

engineered systems, such as soil vapor extraction, groundwater pumping, or steam-

assisted source remediation. With its sophisticated parallel computing techniques, 

TMVOC-MP can handle much larger problems than TMVOC, and can be much more 

computationally efficient. 

 

TMVOC-MP models multiphase fluid systems containing variable proportions of water, 

non-condensible gases (NCGs), and water-soluble volatile organic chemicals (VOCs). 

The user can specify the number and nature of NCGs and VOCs. There are no intrinsic 

limitations to the number of NCGs or VOCs, although the arrays for fluid components 

are currently dimensioned as 20, accommodating water plus 19 components that may be 

either NCGs or VOCs. Among them, NCG arrays are dimensioned as 10. The user may 

select NCGs  from a data bank provided in the software. The currently available choices 

include O2, N2, CO2, CH4, ethane, ethylene, acetylene, and air (a pseudo-component 

treated with properties averaged from N2 and O2). Thermophysical property data of 

VOCs can be selected from a chemical data bank, included with TMVOC-MP, that 

provides parameters for 26 commonly encountered chemicals. Users also can input their 

own data for other fluids. The fluid components may partition (volatilize and/or dissolve) 

among gas, aqueous, and NAPL phases. Any combination of the three phases may 

present, and phases may appear and disappear in the course of a simulation. In addition, 
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VOCs may be adsorbed by the porous medium, and may biodegrade according to a 

simple half-life model. Detailed discussion of physical processes, assumptions, and fluid 

properties used in TMVOC-MP can be found in the TMVOC user’s guide (Pruess  and 

Battistelli, 2002). 

 

TMVOC-MP was developed based on the parallel framework of the TOUGH2-MP code 

(Zhang et al. 2001, Wu et al. 2002). It uses the MPI (Message Passing Forum, 1994) for 

parallel implementation. A domain decomposition approach is adopted for the 

parallelization. The code partitions a simulation domain, defined by an unstructured grid, 

using partitioning algorithm from the METIS software package (Karypsis and Kumar, 

1998). In parallel simulation, each processor is in charge of one part of the simulation 

domain for assembling mass and energy balance equations, solving linear equation 

systems, updating thermophysical properties, and performing other local computations. 

The local linear-equation systems are solved in parallel by multiple processors with the 

Aztec linear solver package (Tuminaro et al., 1999). Although each processor solves the 

linearized equations of subdomains independently, the entire linear equation system is 

solved together by all processors collaboratively via communication between neighboring 

processors during each iteration. Detailed discussion of the prototype of the data-

exchange scheme can be found in Elmroth et al. (2001). In addition, FORTRAN 90 

features are introduced to TMVOC-MP, such as dynamic memory allocation, array 

operation, matrix manipulation, and replacing “common blocks” (used in the original 

TMVOC) with modules. All new subroutines are written in FORTRAN 90. Program 

units imported from the original TMVOC remain in standard FORTRAN 77. 

 

This report provides a quick starting guide for using the TMVOC-MP program. We 

suppose that the users have basic knowledge of using the original TMVOC code. The 

users can find the detailed technical description of the physical processes modeled, and 

the mathematical and numerical methods in the user’s guide for TMVOC (Pruess and 

Battistelli, 2002).  
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2. REQUIREMENTS AND CODE INSTALLATION 

2.1 Hardware and Software Requirements 

TMVOC-MP has been tested on IBM and CRAY supercomputers, Linux clusters, Macs, 

and multi-core PCs under different operating systems. It has been successfully compiled 

using g95, and Fortran compilers from Intel, IBM, and the Portland Group. The code 

requires 64-bit arithmetic (8 byte word length for floating point numbers) for successful 

execution. TMVOC-MP can be run on any shared- or distributed-memory multiple CPU 

computer system on which MPI is installed. The code has been tested on LAM/MPI, 

OPEN MPI, and MPICH2.  

The total computer memory required by TMVOC-MP depends on the problem size. For a 

given problem, memory requirement is split among the processors used for the simulation. 

The code automatically distributes memory requirements to all processors based on the 

partitioning of the domain.  All major arrays are dynamically allocated according to the 

numbers of local gridblocks and connections assigned by domain partitioning to each 

processor. As a result, larger problems can be solved using more processors on a 

distributed memory computer system.  For example, by far the largest array used in 

TMVOC-MP is “PAR”.  Its size in bytes (using 8-byte real data) is 

 

                 M=(NPH*(NB+NK)+2)*(NEQ+1)*NEL*8                                     (2.1)  

 

Here the parameters are the total phase number NPH, secondary parameter number NB, 

component number NK, and gridblock number NEL. If NPH=3, NB=8, NK=3, NEQ=4, 

NEL=10
6
, the total memory requirement for this array is about 1400 MB. If 64 

processors are used to solve this problem, each processor requires about 22 MB of 

memory for this array.  

 

2.2 CODE COMPILATION AND INSTALLATION 

 

The TMVOC-MP code was developed through successive modifications from the 

original serial (or sequential) TMVOC code. The source code consists of 10 FORTRAN 
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files (Compu_Eos.f, Data_DD.f, Input_Output.f, Main_Comp.f , Mem_Alloc.f, 

Mesh_Maker.f,  MULTI.f,   Paral_Subs.f,  TOUGH2.f,   Utility_F.f ) and two library files 

(libmetis.a and libaztec.a). The two library files are generated by compiling the METIS 

and AZTEC software packages.  

 

Compilation and installation can be done through the following steps: 

1. Download METIS at:  

http://www-users.cs.umn.edu/~karypis/metis/metis/download.html 

2. Compile METIS in the computer system where TMVOC-MP will be installed.  

3. Download AZTEC at: 

http://www.cs.sandia.gov/CRF/aztec1.html 

4. Compile AZTEC in the computer system where TMVOC-MP will be installed.  

(Guides for compiling METIS and AZTEC are provided with the downloaded packages.) 

5. Transfer the file “tmvoc-mp_1.0.tar.gz” from the installation CD-ROM to your 

working directory. 

6. Use gunzip to unzip the file and then use the tar command to untar the archived files 

and directories as followings: 

gunzip  tmvoc-mp_1.0.tar.gz 

tar –xvf  tmvoc-mp_1.0.tar 

A directory named tmvoc-mp_1.0 will be created under the current working directory. 

Source files, make scripts, and installation test input files will be located in the 

subdirectories. Two additional subdirectories are created under the directory tmvoc-

mp_1.0: ~/tmvoc-mp_1.0/partition/ and ~/tmvoc-mp_1.0/utility/.  

 7. Copy az_aztecf.h and libaztec.a from ~/aztec/lib and libmetis.a from ~/metis-4.0 to the 

subdirectory where source codes are located (~/tmvoc-mp_1.0/). libaztec.a and libmetis.a 

were created by compiling Metis and Aztec in steps 2 and 4, respectively. 

8. “makefile” for three different compilers are provided: IBM, INTEL and PORTLAND 

GROUP. You can choose the one most close to your complier. In the “makefile”, a 

wrapper compiler, mpif90, was specified for compiling the source codes. The user may 

need to change the compiler name to the one appropriate for his/her system by editing the 

file “makefile” at the line with “FC=mpif90”. The user may also need to specify the path 
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for MPI “include” and “library” files. Figure 2.1 shows the makefile using PORTLAND 

GROUP Fortran 90. 

# for clusters 
FC = mpif90 
FFLAGS = -O -r8 -i4 
 
# The following specifies the files used for the "standard 
version" 
OBJS = Data_DD.o Mem_Alloc.o MULTI.o Main_Comp.o TOUGH2.o \ 
       Compu_Eos.o Input_Output.o Mesh_Maker.o \ 
       Paral_Subs.o Utility_F.o \ 
 
LIBS =  libmetis.a libaztec.a  
tough2: $(OBJS) 
 $(FC) -o tmvoc-mp $(FFLAGS) $(OBJS) $(LIBS) 
clean: 
 rm -f *.o *.mod 

 

Figure 2.1 A makefile for TMVOC-MP compilation 

 

9. Type “make” under the ~/tmvoc-mp_1.0/ subdirectory to compile the code. The 

executable file “tmvoc-mp” will be created. After compilation, you may type “make 

clean” to clean all intermediate files. 

In order to successfully build TMVOC-MP V1.0, the c and Fortran compilers used for 

compiling the MPI system, AZTEC, METIS and TMVOC-MP source codes must be 

compatible. A Fortran 90 or higher version must be used for TMVOC-MP Fortran source 

code compilation.  

If you encounter “invalid communicator” or other communication problems during 

running the executable, you may try following: 

1. Copy   ~/tmvoc-mp_1.0/utility/md_wrap_mpi_c.c to ~/aztec/lib to replace the original 

one. 

2. Recompile AZTEC and then use the new library libaztec.a to recompile the TMVOC-

MP executable. 

If you have difficulty to use linear solver “AZ_gmres”, you may try the following: 

1. Copy   ~/tmvoc-mp_1.0/utility/la_dlaic1.f to ~/aztec/lib to replace the original one. 
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2. Recompile AZTEC and then use the new library libaztec.a to recompile the TMVOC-

MP executable. 

You may get additional speedup by using non-blocking communication version AZTEC 

through: 

1. Copy ~/tmvoc-mp_1.0/utility/az_comm.c and  

~/tmvoc-mp_1.0/utility/az_matvec_mult.c to ~/aztec/lib to replace the original files. 

2. Recompile AZTEC and then use the new library libaztec.a to recompile the TMVOC-

MP executable. 

The library file “libmetis.a” contains subroutines of the METIS package for partitioning 

irregular graphs and meshes. For reducing the requirement of computer memory, we use 

4-byte integer for all large integer arrays in TMVOC-MP.  The corresponding arrays in 

METIS must also be in 4-byte integer. This can be implemented by simply removing the 

line of “#define IDXTYPE_INT” in head file “struct.h” of the METIS source code.  

3. METHODOLOGY AND CODE ARCHITECTURE 
 

TMVOC-MP V1.0 is based on a fully implicit formulation with Newton iteration and 

offers a choice of Krylov iterative methods such as conjugate gradient (CG), generalized 

minimum residual (GMRES), and stabilized biconjugate gradient (BiCGSTAB). The 

fully implicit scheme has proven to be the most robust numerical approach in modeling 

multiphase flow and heat transfer in reservoirs in the past several decades. For a typical 

simulation with fully implicit scheme and Newton iteration, the most time-consuming 

parts of the execution are (1) assembling the Jacobian matrix, (2) solving the linearized 

system of equations, and (3) updating thermophysical parameters. The basic strategy of a 

parallel code is to distribute the computational work of these three parts as evenly as 

possible among the processors, while minimizing communication cost. To reach this goal, 

a number of computing strategies and methods are implemented in TMVOC-MP, such as 

grid node/element domain partitioning, grid node/element reordering, data input and 

output optimizing, and efficient message exchange between processors. These will be 

further described below.   
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3.1 Grid Domain Partitioning and Gridblock Reordering  

 

In a TMVOC-MP V1.0 simulation, a model domain is represented by a set of three-

dimensional gridblocks (elements), and interfaces between ordered pairs of gridblocks, 

called “connections.” The entire connection system of the gridblocks is treated as an 

unstructured grid. From the connection information, subdomain partitioning can be 

generated and stored in an adjacency matrix. The adjacency or connection structure of the 

model meshes is stored in a compressed storage format (CSR).  

 

The adjacency structure of the model grids can be described as follows: In the CSR 

format, the adjacency structure of a global-mesh domain with n gridblocks and m 

connections is represented by two arrays, xadj and adj. The xadj array has a size of n+1, 

whereas the adj array has a size of 2m. Assuming that element numbering starts from 1, 

the adjacency list of element i is stored in an array adj, starting at index xadj(i) and 

ending at index xadj(i+1)-1.  That is, for each element i, its adjacency list is stored in the 

consecutive locations in the array adj, and the array xadj is used to point to where it 

begins and where it ends.  Figure 3.1a shows the connection of a 12-element domain; 

Figure 3.1b illustrates its corresponding CSR-format arrays.  

 

TMVOC-MP utilizes three partitioning algorithms of the METIS software package 

(version 4.0) (Karypsis and Kumar, 1998) for grid domain partitioning. The three 

algorithms are denoted as the K-way, the VK-way, and the Recursive partitioning 

algorithm. K-way is used for partitioning a global mesh (graph) into a large number of 

partitions (more than 8). The objective of this algorithm is to minimize the number of 

edges that straddle different partitions. If a small number of partitions is desired, the 

Recursive partitioning method, a recursive bisection algorithm, should be used. VK-way 

is a modification of K-way, and its objective is to minimize the total communication 

volume. Both K-way and VK-way are multilevel partitioning algorithms.    
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Figure 3.1a shows a scheme for partitioning a sample domain into three parts. Gridblocks 

are assigned to different processors through partitioning methods and reordered by each 

processor to a local index ordering. Elements corresponding to these blocks are explicitly 

stored in local memory of the processor and are defined by a set of indices referred to as 

the processor’s update set. The update set is further divided into two subsets: internal and 

border. Elements of the internal set are updated using only the information on the current 

processor. The border set consists of blocks with at least one edge of a block belonging 

to another processor. As a result, updating values of the border elements requires values 

of those blocks from the other processors. These blocks are called as external blocks 

whose values are not calculated in the current processor, but are obtained from other 

processers via communication to update the components in the border set.   Table 3.1 

shows the partitioning results. One of the local numbering schemes for the sample 

problem is presented in Figure 3.1a. 

Table 3.1. Example of Domain Partitioning and Local Numbering 

Update External 
 

Internal Border  

Gridblocks 1 2    3    4 5   7  10 Processor 0 

Local Numbering         1                   2    3    4             5   6   7 

Gridblocks 8     9 7   10 2   3  11 Processor 1 

Local Numbering      1     2                 3    4                5    6   7 

Gridblocks 6    12 5   11 4  10 Processor 2 

Local Numbering     1     2                  3    4                    5   6 

 

The local numbering of gridblocks is carried out to facilitate the communication between 

processors. The numbering sequence is internal block set followed by border block set 

and finally by the external block set. In addition, all external blocks on the same 

processor are in a consecutive order.  

 

For the Jacobian matrix, only nonzero entries of a submatrix for a partitioned mesh 

domain are stored on each processor. Each processor stores only the rows that correspond 
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to its update set (including internal and border blocks, see Table 3.1). These rows form a 

submatrix whose entries correspond to the variables of both the update set and the 

external set defined on this processor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. An example of domain partitioning and CSR format for storing 

connections 

 

3.2 Organization of Input and Output Data  

 

The input data include hydrogeologic parameters and constitutive relations of porous 

media, such as absolute and relative permeability, porosity, capillary pressure, 

thermophysical properties of fluids and rocks, and initial and boundary conditions of the 

system. Other processing requirements include the specification of space-discretized 

geometric information (grid) and various program options (computational parameters and 
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(a) A 12-elements domain partitioning on 3 processors 

(b) CSR format 

Processor 0 

Processor 2 

Processor 1 

Elements 1 2 3 4 5 6 7 8 9 10 11 12

xadj 1 2 5 8 10 12 14 16 18 20 23 26 27

adj 2 1,3,7 2,4,10 3,5 4,6 5,11 2,8 7,9 8,10 3,9,11 6,10,12 11
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time-stepping information). For large-scale three-dimensional models, computer memory 

of several gigabytes may be required, and the distribution of the memory to all processors 

is necessary.  

 

To efficiently use the memory of each processor (considering the distributed-memory 

computer), the input data files for the TMVOC-MP V1.0 simulation are organized in 

sequential format. TMVOC-MP V1.0 uses two large groups of data blocks: one with 

dimensions equal to the number of gridblocks; another with dimensions equal to the 

number of connections (interfaces). Large data blocks are read one by one through a 

temporary full-sized array and then distributed to different processors. This method 

avoids storing all input data in the memory of a single processor (which may be too small) 

and enhances the code scalability. Other small-volume data, such as simulation control 

parameters, are duplicated on all processors. Note that the formats of the input data 

mentioned above are used internally by TMVOC-MP (i.e., generated from the regular 

TMVOC input file when needed). As an interface to the user, the original input file 

formats of TMVOC are fully compatible with TMVOC-MP.  

 

3.3 Assembly and Solution of Linearized Equation Systems  

 

In the TMVOC-MP V1.0 formulation, the discretization in space using the integral finite 

difference method (IFD; Narasimhan and Witherspoon, 1976) leads to a set of strongly 

coupled nonlinear algebraic equations, which are linearized by the Newton method. 

Within each Newton iteration, a Jacobian matrix is first constructed by numerical 

differentiation. The resulting system of linear equations is then solved using an iterative 

linear solver with chosen preconditioning procedures. The following gives a brief 

discussion of assembling and solving the linearized equation systems using parallel 

computing. 

 

The discrete mass and energy balance equations solved by the TMVOC-MP code can be 

written in residual form as follows (Pruess, 1991; Pruess et al., 1999):  
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where xi,p represents the value of ith primary variable at the pth iteration step.  

 

The Jacobian matrix as well as the right-hand side of (3.2) needs to be recalculated for 

each Newton iteration, leading to a large computational effort for large-scale simulations. 

In the parallel code, the assembly of the linear equation system (3.2) is shared by all the 

processors, and each processor is responsible for computing the rows of the Jacobian 

matrix that correspond specifically to the blocks in the processor’s own update set.  

Computation of the elements in the Jacobian matrix is performed in two parts. The first 

part consists of the computations related to the individual blocks (accumulation and 

source/sink terms). Such calculations are carried out using the information stored on the 

current processor, without communications with other processors. The second part 

includes the computations related to the connections or flow terms. Elements in the 

border set need information from the external set, which requires communication with 

neighboring processors. Before performing these computations, an exchange of relevant 

primary variables is required. For the elements corresponding to border set blocks, each 

processor sends the values of these elements to the corresponding processors, which 

receive them for their external blocks. 
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The Jacobian matrix for local gridblocks in each processor is stored in the distributed 

variable block row (DVBR) format, a generalization of the VBR format. All matrix 

blocks are stored row-wise, with the diagonal blocks stored first in each block row. Scalar 

elements of each matrix block are stored in column major order. The data structure 

consists of a real vector and five integer vectors, forming the Jacobian matrix. Detailed 

explanation of the DVBR data format can be found in Tuminaro et al. (1999).  

 

The linearized equation system arising at each Newton step is solved using a parallel 

iterative linear solver from the AZTEC package V2.1 (Tuminaro et al., 1999).  Several 

different solvers and preconditioners from the package can be selected, including 

conjugate gradient, restarted generalized minimal residual, conjugate gradient squared, 

transpose-free quasi-minimal residual, and bi-conjugate gradient with stabilization 

methods. The work solving the global linearized equation is shared by all processors, 

with each processor responsible for computing its own portion of the partitioned domain 

equations. To accomplish this parallel solution, communication among processors is 

required to exchange data between the neighboring grid partitions at each iteration. 

Moreover, global communication is also required to compute the norms of vectors for 

checking the convergence. 

 

During a simulation, the time step usually is automatically adjusted (increased or 

reduced), depending on the convergence rate of the iterations. In the TMVOC-MP V1.0 

code, time-step size is calculated at the master processor, after collecting necessary data 

from all processors. The convergence rates may be different in different processors. Only 

when all processors reach stopping criteria will the calculation proceed to the next time 

step.    

 

At the end of a time step or a simulation, the solutions obtained from all processors are 

transferred to the master processor for output. Results related to the connections or flow 

terms that cross the boundary of two different processors are obtained by arithmetic 

averaging of the solutions from the two processors involved. Output of time series for 
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selected gridblock or connection is done by the processor that the gridblock or connection 

belong to. 

3.4 Communication between Processors 

 

Communication or exchange between processors is an essential component of the 

parallel-computing algorithm. In addition to the communication that takes place inside 

the AZTEC routine to solve the linear system, the communication between neighbor 

processors is necessary to update the primary and secondary variables during Newton 

iterations. These tasks are implemented in a subroutine, which performs the exchanges of 

vector elements corresponding to the external set of the gridblocks between neighboring 

processors. To minimize the communication cost, only the primary variables of the 

external blocks are passed between the neighboring processors. The secondary variables 

for the external set are computed on the appropriate distributed processors after 

communications. Detailed discussion of the scheme used for data exchange is given in 

Elmroth et al. (2001), and Zhang and Wu (2006).
 

 

3.5 Program Structure and Flow Chart 

 

TMVOC-MP V1.0 has a program structure very similar to the original TMVOC, except 

that the parallel version solves a problem using multiple processors. We implement 

dynamic memory management, modules, array operations, matrix manipulation, and 

other FORTRAN 90 features in the parallel code. In particular, the message-passing 

interface (MPI) library is used for message passing. Another important modification to 

the original code is in the time-step looping subroutine CYCIT. This subroutine now 

provides the general control of problem initialization, grid partitioning, data distribution, 

memory requirement balancing among all processors, time stepping, and output options. 

In summary, all data input and output is carried out through the master processor. The 

most time-consuming tasks (assembling the Jacobian matrix, updating thermophysical 

parameters, and solving the linear equation systems) are distributed over all processors. 

In addition, memory requirements are also distributed to all processors. Figure 3.2 gives 

an abbreviated overview of the program flow chart. 
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Figure 3.2  Flow Chart of TMVOC-MP V1.0 (PE0: master processor; PE1-PEn: 

slave processors) 
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4. DESCRIPTION OF INPUT FILES 
 

4.1 Preparation of Input Data 

Input of TMVOC-MP V1.0 is provided through a fixed-name file (INFILE), organized 

into data blocks, labeled by five-character keywords. The format of “INFILE” is the same 

as that of the input file for TMVOC. TMVOC-MP may also receive input data through 

additional optional input files. 

4.2 Special Input Requirements for TMVOC-MP V1.0 

In some cases, TMVOC-MP needs to be run in batch mode. To run a job in batch mode, 

the user submits a job to a computer and the computer schedules the job in a queue. 

When the requested number of processors is available, the job will be run. In batch 

running mode, all data are provided in input files, since run-time communication with 

computer is not feasible. The input files include: 

 

INFILE 

 

This file is in standard TOUGH2 (TMVOC) input file format. In the file, data are 

organized in blocks that are defined by five-character keywords typed in Columns 1-5. 

The first record must be a problem title of up to 80 characters. The last record usually is 

ENDCY. Data records beyond ENDCY will be ignored. The most important data blocks 

include ROCKS, MULTI, PARAM, ELEME, CONNE, INCON, and GENER. All input 

data in INFILE are in fixed format and standard metric (SI) units. Detailed information 

about this file format can be found in Pruess and Battistelli (2002). 

 

The data blocks of ELEME, CONNE, GENER and INCON can be extremely large. It is 

good practice to provide these blocks through separate data files. Input for the ELEME 

and CONNE blocks can be provided through an ASCII-formatted MESH file, or 

alternatively through two binary files: MESHA and MESHB. The two binary files are 

intermediate files which are created by TMVOC-MP at its first run for a model. If 

MESHA and MESHB exist in the working folder, the code will ignore MESH file and 
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read information directly from these two files. Once the mesh file is changed, MESHA 

and MESHB must be deleted from the working folder in order for the changes to take 

effect. The two files have completely different data formats from the ELEME and 

CONNE blocks.  The detailed formats are given in the following. 

 

MESHA, MESHB 

 

The purpose of replacing file MESH (or blocks ELEME and CONNE in input file) with 

MESHA and MESHB is to reduce the memory requirements for the master processor and 

to enhance I/O efficiency.  Both MESHA and MESHB are binary files. These two files 

contain all information provided by file MESH.  

 

The file MESHA is written (to file unit 20 which was opened as an unformatted file) in 

the following sequence:    

 

write(20) NEL 

write(20) (EVOL(iI),iI=1,NEL) 

write(20) (AHT(iI),iI=1,NEL) 

 write(20) (pmx(iI),iI=1,NEL) 

write(20) (gcoord(iI,1),iI=1,NEL) 

write(20) (gcoord(iI,2),iI=1,NEL) 

write(20) (gcoord(iI,3),iI=1,NEL) 

write(20) (DEL1(iI), iI=1,NCON) 

write(20) (DEL2(iI), iI=1,NCON) 

write(20) (AREA(iI), iI=1,NCON) 

write(20) (BETA(iI), iI=1,NCON) 

 write(20) (sig(iI), iI=1,NCON) 

write(20) (ISOX(iI),iI=1,NCON) 

write(20)(ELEM1(iI), iI=1,NCON) 

write(20)(ELEM2(iI), iI=1,NCON) 
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where  

 

NEL                 Total gridblock number, in 4-byte integer. 

NCON             Total connection number, in 4-byte integer. 

EVOL              Element volume (m
3
), in 8-byte real.        

AHT                 Interface area (m
2
) for heat exchange with semi-infinite confining beds,      

                         in 8-byte real. 

pmx   Permeability modifier, in 8-byte real. 

gcoord(*,1-3)    Cartesian coordinates (X,Y,X) of gridblock center, in 8-byte real. 

DEL1, DEL2  Distance (m) from first and second element, respectively, to their  

                        common interface, in 8-byte real. 

AREA             Interface area (m
2
), in 8-byte real. 

BETA             Cosine of the angle between the gravitational acceleration vector and the  

                        line between two elements, in 8-byte real. 

 sig  Radiant emittance factor for radiative heat transfer, in 8-byte real. 

 ISOX              Specify absolute permeability for the connection, in 4-byte integer. 

 ELEM1           Code name for the first element of a connection, in 8 characters. 

 ELEM2           Code name for the second element of a connection, in 8 characters. 

 

The file MESHB is written (to file unit 30, unformatted) in the following sequence: 

 

write(30) NCON,NEL 

write(30) (ELEM(iI),iI=1,NEL) 

write(30) (MA12(iI),iI=1,NEL) 

write(30) (NEX1(iI),iI=1,NCON) 

write(30) (NEX2(iI),iI=1,NCON) 

 

where 

 

ELEM               Code name of the element, in 8 characters. 

MA12               Material identifier of the element, in 5 characters. 
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NEX1, NEX2   First and second element number of the connection, in 4-byte integer.   

 

For a detailed explanation of these parameters, the reader may refer to the TOUGH2 

User’s Guide, Version 2.0 (Pruess et al., 1999). 

 

After the first run of a simulation, the material name array MA12 will be replaced by the 

material index (array MATX, in 4-byte integer). In addition, NEL will be replaced by –

NEL to inform the program of the replacement. Through this replacement, the material 

index search is avoided for subsequent runs with the same computational grid.  

 

MESHA and MESHB can also be created directly from the MESH file through a 

preprocessing program. For extremely large problems, generation of MESHA and 

MESHB is the bottleneck of memory requirement for TMVOC-MP. By using a 

preprocessing program, the bottleneck for memory requirement can be avoided.  

    

PARAM.prm 

  

 PARAM.prm is an optional file providing computational parameters for TMVOC-MP. If 

this file does not exist in the working folder, the code will take default parameters. These 

parameters are needed if the user wants to try different options for the parallel linear 

solver, partitioning algorithms, and other program options. Following is an example of 

the file. 

 

1008680, 4000000, 0        

AZ_solver AZ_bicgstab 

AZ_scaling AZ_BJacobi 

AZ_precond AZ_dom_decomp 

AZ_tol 1e-6 

AZ_overlap 0 

AZ_max_iter 250 

AZ_conv AZ_rhs 
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AZ_subdomain_solve AZ_ilut 

AZ_output AZ_none 

EE_partitioner METIS_Kway 

EE_output 100 

END OF INPUTS 

The three numbers in the first line are: 

MNEL :              Estimated total gridblocks, should be larger than the number of the  

                            actual model gridblocks. 

MCON:              Estimated total connections, should be larger than the number of the  

                           actual model connections. 

PartReady:          A parameter to inform the program that domain partitioning was done   

                            by a preprocessing program or will be done inside the TMVOC-MP. 

                            If PartReady=0, TMVOC-MP will perform domain partitioning as part  

                            of the execution. If PartReady>0, the code will not perform domain 

                            partitioning and partition data will be read directly from file  

                            “part.dat”. Default PartReady=0. 

 

The default values of MNEL and NCON are 500,000 and 2,300,000 respectively. The 

two parameters are required only in generating MESHA and MESHB and when a model 

has more than 500,000 gridblocks or 2,300,000 connections.  

 

From the second line onward, each line provides a single parameter. These parameters 

give options for running the Aztec and METIS packages, and SAVE file output 

frequency control. The parameters can be in any order. If one parameter is not present, its 

default value will be used.  Each line in the file consists of two terms. The first term is the 

parameter name and the second term is its value. Detailed content of the parameters is 

discussed below. 

 

AZ_solver               Specifies solution algorithm, available solvers: 

            AZ_cg                    conjugate gradient (only applicable to symmetric positive  

                                           definite matrices). 
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            AZ_gmres               restarted generalized minimal residual. 

            AZ_cgs                   conjugate gradient squared. 

            AZ_tfqmr                transpose-free quasi-minimal residual. 

            AZ_bicgstab           bi-conjugate gradient with stabilization. 

            AZ_lu                     sparse direct solver (single processor only). 

AZ_scaling              Specifies scaling algorithm, user can select from: 

            AZ_none                no scaling. 

            AZ_Jacobi              point Jacobi scaling. 

            AZ_BJacobi           Block Jacobi scaling where the block size corresponds to the  

                                           VBR blocks. 

            Az_row_sum          scale each row so the magnitude of its elements sum to 1. 

            AZ_sym_diag         symmetric scaling so diagonal elements are 1. 

            AZ_sym_row_sum   symmetric scaling using the matrix row sums.  

AZ_precond            Specifies preconditioner. Available selections include: 

 AZ_none                  no preconditioning. 

 AZ_Jacobi                k step Jacobi (or block Jacobi for DVBR matrices) 

 AZ_Neumann          Neumann series polynomial. 

 AZ_ls                       least-squares polynomial. 

 AZ_sym_GS            non-overlapping domain decomposition (additive Schwarz) k  

                                             step symmetric Gauss-Seidel. 

 AZ_dom_decomp    domain decomposition preconditioner (additive Schwarz). 

 

AZ_tol                    Specifies tolerance value used in conjunction with convergence tests. 

 

AZ_type_overlap      Determines how overlapping subdomain results are combined when  

                                  different processors have computed different values for the same  

                                  unknown. 

 AZ_standard             the resulting value of an unknown is determined by the  

                                              processor owning that unknown. 

            AZ_symmetric          average the results obtained from different processors 

                                              corresponding to the same unknown.  
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AZ_overlap              Determines the submatrices factored with the domain decomposition  

                                 algorithms. 

AZ_max_iter            Maximum number of iterations. 

AZ_conv                  Determines the residual expression used in convergence check and  

                                 printing.  Available selections include: AZ_r0, AZ_rhs, AZ_Anorm, 

                                 AZ_noscaled, AZ_sol, AZ_weighted. 

AZ_subdomain_solve    Specifies the solver to use on each subdomain when AZ_precond 

                                       is set to AZ_dom_decomp, available selections include: AZ_lu,  

                                       AZ_ilut, AZ_ilu, AZ_rilu, AZ_bilu, and AZ_icc.  

AZ_reorder               Determines whether RCM reordering will be done in conjunction  

                                  with domain decomposition incomplete factorizations, 1 yes; 0 no. 

AZ_pre_calc              Indicates whether to use factorization information from previous  

                                 calls to AZ_solve, three selections: AZ_calc, AZ_recalc, and  

                                 AZ_reuse. 

AZ_output                Specifies information to be printed, available selections: AZ_all, 

                                 AZ_none, AZ_warnings, AZ_last, and >0.  

EE_partitioner         Specifies the partitioner to be used, user can select  partitioners from: 

METIS_Kway  uses the multilevel k-way partitioning algorithm. The  

                                    objective of this partitioning method is to minimize the  

                                    edgecut. It should be used to partition a graph into a large  

                                    number of partitions (greater than 8). 

METIS_Vkway           uses the multilevel k-way partitioning algorithm. The  

                                    objective of this partitioning method is to minimize the  

                                     total communication volume.  

METIS_Recursive       uses multilevel recursive bisection. The objective of this    

                                     partitioning method is to minimize the edgecut, this   

                                     function should be used to partition a graph into a small  

                                     number of partitions (less than 8).  

EE_output               Output control for solution results. The SAVE file will be written  
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                                every EE_output time steps. If EE_output=0, no SAVE file will be  

                                written out until last time step.  

 

Note that there are additional options or parameters for Aztec parallel linear equation 

solver.  For further discussion, readers may refer to Tuminaro et al. (1999). Table 3 

presents the default values used in TMVOC-MP. 

 

   Table 3. Default values of the options and parameters 

Parameters or options Values 

AZ_solver AZ_bicgstab 

AZ_scaling AZ_Bjacobi 

AZ_pecond AZ_dom_decomp 

AZ_tol 1x10
-6

 

AZ_type_overlap AZ_standard 

AZ_max_iter 500 

AZ_conv AZ_r0 

AZ_subdomain_solve AZ_ilut 

AZ_reorder 1 

AZ_pre_calc AZ_calc 

AZ_output AZ_none 

EE_partitioner METIS_Kway 

EE_output 200 

 

 

part.dat 

 

If parameter PartReady in “PARAL.prm” has a value larger than 0, TMVOC-MP will 

read file “part.dat” during run-time. The file contains domain-partitioning results. It is 

read by following code: 

        open (unit=50,file='part.dat',form='formatted',status='old') 

        read(50,133) nparts,edgecut,NEL  



 - 26 -  

       read(50,144) (part(iI),iI=1,NEL)  

133   format(3I10) 

144   format(10I8) 

    

where 

nparts                  Number of parts that the domain has been partitioned to. It should equal  

                            to the number of processors used for solving the problem. 

edgecut               Number of cut edges. 

nel                      Total number of elements or gridblocks in the domain. 

part                     Partitioning result of each gridblock. The integer value indicates which  

                           processor the gridblock belongs to. 

                                          

File “part.dat” may be created through a preprocessing program based on the user’s 

special requirements, e.g. based on physical boundaries of the modeling domain for grid 

partitioning.  

 

4.3 Output from TMVOC-MP V1.0 

 

TMVOC-MP V1.0 produces a variety of output, most of which can be controlled by the 

user. The output file for TMVOC is replaced by two files in TMVOC-MP V1.0, naming 

OUTPUT and OUTPUT_DATA, and the file format is maintained. The first file provides 

problem initialization and time-stepping information, and the second file gives a 

complete element-by-element and/or connection-by-connection report of thermodynamic 

state variables, fluxes and other important parameters. Information written in the 

initialization phase to the OUTPUT file includes parameter settings in the main program 

for dimensioning of problem-size dependent arrays, and disk files in use. This is followed 

by documentation on settings of the MOP-parameters for choosing program options, and 

on the EOS-module. At the end of the OUTPUT file, parallel computing information is 

documented.  During execution, TMVOC-MP can optionally generate a brief message for 

Newtonian iterations and time steps based on the specifications defined in the INFILE.  
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5. SAMPLE PROBLEM 
 

5.1 Model Setup 

This is sample problem 7 from the TMVOC user’s guide (Pruess  and Battistelli, 2002). It 

demonstrates the application of TMVOC-MP to a flow problem with realistic features as 

would be encountered in actual field situations. We consider a multi-component NAPL 

spill in the unsaturated zone that is followed by redistribution of the NAPL plume within 

the unsaturated zone and along the water table. Subsequent remediation operations 

involve VOC recovery from the unsaturated zone by soil vapor extraction close to the 

spill area and NAPL extraction by pumping from the saturated zone. In this simulation, 

the model domain was simplified as a two-dimensional vertical section. Figure 5.1 shows 

the cross-section. Detailed discussion of the problem setup can be found in Pruess  and 

Battistelli (2002). 

  

Figure 5.1 Conceptual model of 2-D vertical section problem for simulating a 

multicomponent NAPL spill in the unsaturated zone. Rock domain assignments and 

boundary conditions are shown together with the position of the spill point, a soil 

vapor extraction well, and a downstream extraction well (From Pruess and 

Battistelli [2002]). 
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The 100 m×15 m simulation domain was discretized into 40 columns and 17 layers with 

a total of 680 gridblocks. Vertical grid spacing is 0.5 m in the unsaturated zone and in the 

upper part of the unconfined aquifer. Horizontal grid spacing is 1 m in the region affected 

by the NAPL spill and the subsequent soil vapor extraction, and gradually increases to 10 

m near the left and right boundaries. Depth to the water table is 5 meter on the left side of 

the section and 5.5 m on the right side. 

 

The problem is run in four segments, (1) generation of steady flow prior to introduction 

of NAPL, (2) NAPL spill in the unsaturated zone, (3) redistribution of NAPL, and (4) 

extraction simultaneously in the saturated and unsaturated zones. The MESH and 4 input 

files (r2dl1, r2dl2, r2dl3, and r2dl4) for these simulations are directly copied from 

TMVOC sample problem 7, because TMVOC-MP accepts the same input file formats as 

TMVOC. 

5.2 Running Simulations 

A parallel simulation can be run on multi-core PCs, Linux clusters, supercomputers, or 

other multi-CPU computers. On different platforms or MPI installations, simulations may 

be run in slightly different ways. Following is the procedure for running a simulation on a 

typical Linux cluster with OPEN-MPI installed.   

 

(1) Create a working directory. Copy the executable file to the working directory (or run 

the code by specifying the path where the executable is located). 

(2) Copy input file(s) (MESH, r2dl1, r2dl2, r2dl3, and r2dl4) to the working directory. 

Rename the input file to “INFILE” (case sensitive); e.g., for the initial simulation of 

generating steady flow, we need to rename file “r2dl1” to “INFILE”. Furthermore, 

the parallel version: (a) does not support simplified mesh format (NSEQ is not 0); (b) 

does not support inactive elements (inactive elements are automatically replaced by 

large-volume gridblocks internally); (c) requires removal of previously saved 

MESHA and MESHB files if MESH was changed. 

(3) A host file may be needed. The host file contains a list of computer nodes that can be 

used for computations. 
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(4) For a cluster the computational tasks can not be automatically scheduled, and we need 

to monitor the usage of CPUs on the cluster. Rearrange the sequence of nodes listed 

in the host file by putting the idle nodes at the top of the list, and busy nodes at the 

bottom. MPI assigns jobs to CPUs from the top to the bottom of the list. If several 

programs share a CPU computing resource, execution of TMVOC-MP could be 

extremely slow.  

(5) An optional input file “PARAL.prm” may be needed for extremely large models 

(more than 0.5 million grid blocks), using a specific domain partitioning algorithm, 

needing different Aztec solver options, or needing controlling the SAVE file output 

frequency. A template for this file is included in the installation package. 

(6) Under the working directory, type: 

 “mpirun --hostfile ~/host_file –np x ./tmvoc_mp” to run the simulation, where x is 

the number of CPUs being used.  

5.3 Simulation Results and Code Performance  

 

The first segment of the simulation is to generate ambient steady-state flow under 

gravity-capillary equilibrium conditions prior to the contamination event. File “r2dl1” is 

the input file for this simulation segment. The input file includes soil properties and 

initial conditions of different portions of the flow domain (see Figure 5.1). The INCON 

data for the left and right boundary columns were generated from 1D column models and 

atmospheric pressure was assigned at the top boundary as fixed boundary condition. A 

net infiltration of 10 cm/year of water with a density of 998.32 kg/m
3
 (at T = 20 °C and 

ambient pressure) is applied at the top of the model domain.  

 

Simulations were run on a Linux cluster equipped with AMD Athlon(tm) MP 2100+ 

processors. Both TMVOC and TMVOC-MP run 120 time steps to reach steady-state 

solutions, using 42 and 17 seconds (with 2 CPUs), respectively. Simulation results from 

the two codes are identical. 
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The second run segment simulates the process of NAPL spill in the unsaturated zone. In 

the input file “r2dl2”, data for six VOCs are introduced through data block CHEMP. 

Altogether 8 components (water, air, and 6 VOCs) are considered. The thermodynamic 

conditions for the two-component water-air system obtained in the first run segment are 

used as the initial conditions for this run. The SAVE file from the first run segment is 

renamed INCON, and simulation time and time step counter in the file are reset to zero. 

Water sources for infiltration at the land surface are kept unchanged. The six VOCs with 

different injection rates are applied to a gridblock at x=39.5 m and z=4.25 m for a period 

of 1 year. 

 

Figure 5.2 shows distribution of total VOC mass fractions in the aqueous phase at the end 

of the NAPL spill period simulated by the parallel simulator. By comparing the TMVOC-

MP predicted pattern of VOC mass fraction distribution with the contour plot of the 

Figure 10.7.8 in Pruess and Battistelli (2002), we can find both codes produced almost 

identical results.  
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Figure 5.2. Contour plot of total VOC mass fraction in the aqueous phase at the end 

of the NAPL spill period simulated by TMVOC-MP. 

 

The performance of the parallel code for different numbers of processors was 

investigated (see Table 5.1). For a different number of processors, the simulation may 

require a different number of time steps. This is due to changes in the convergence rate 
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when using different domain partitioning, which in turn will impact the automatic time 

step selection. Because this problem has only 680 gridblocks, it only shows modest 

speedups from parallel computing. 

 

Table 5.1. Comparison of performance for the second segment run using different 

numbers of processors 

Number of processors 1* 2 4 6 

Time for updating 

thermophysical parameters 

and assembling Jacobian 

matrix (second) 

 166 56 49 

Time for solving linear 

equations(second) 

 445 156 133 

Total execution time 

(second) 

779 612 212 182 

Total time steps 120 167 117 125 

Average iterations for 

solving linear equations 

 20 23.7 26.5 

* run with the original TMVOC code, with exactly the same input files and on the same 

computer. 

 

The third run segment simulates redistribution of the VOCs for a period of 1 year after 

the end of the NAPL spill, using the SAVE file written at the end of the spill period as 

INCON. We again replace the second-last line of file SAVE with a blank line, to reset 

time and iteration counters. The input file for this run is “r2dl3”, which needs to be 

renamed “INFILE”. Simulation for this segment again was done by both sequential and 

parallel codes. The simulation results presented in Pruess and Battistelli (2002) can be 

reproduced by both codes. Figure 5.3 shows TMVOC-MP simulated distribution of total 

VOC mass fractions in the aqueous phase at 1 year after the end of the NAPL spill, and 

Figure 5.4 shows the simulated NAPL saturations for the same time. Comparing these 

two figures to the Figures 10.7.11 and 10.7.12 in Pruess and Battistelli (2002), it is seen 

that the simulation results from both codes agree well. 
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Figure 5.3 Contour plot of total VOC mass fraction in the aqueous phase at the end 

of the NAPL redistribution period. 
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Figure 5.4  NAPL saturations at the end of the redistribution period simulated by 

TOUGH2-MP. 

  

The performance of the parallel code was also investigated through using different 

number of processors to solve this problem. Table 5.2 shows the performance of the 

parallel code by comparing to performance of the original sequential code. Speedup for 

parallel computing is quite significant. 
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Table 5.2. Comparison of performance for the third segment run using different 

numbers of processors 

Number of processors 1* 2 4 6 

Time for updating 

thermophysical parameters 

and assembling Jacobian 

matrix (second) 

 109 63 

 

48 

Time for solving linear 

equations(second) 

 242 136 99 

Total execution time 

(second) 

831 351 199 148 

Total time steps 202 176 193 188 

Average iterations for 

solving linear equations 

 17.9 19 20.7 

* run with the original TMVOC code, with exactly the same input files and on the same 

computer. 

 

The final segment of this problem models extraction of VOCs. The extraction was 

simulated by specifying a soil vapor extraction well, which produces on deliverability 

against a sandface pressure of 0.9x105
 Pa from grid layers 4 through 8.  Another 

extraction well produces from the saturated zone. The final SAVE file written by the 

redistribution simulation is used as initial conditions for the current run, again renaming it 

“INCON” and resetting time and iteration counters. The input file “r2dl4” is renamed 

“INFILE” for the simulation. At the end of the simulation, 470.48 kg of VOCs, 

corresponding to 54.3 % of the original inventory, are remaining in the flow system. 

Approximately 99.8 % of this inventory is present as a free NAPL phase, 0.18 % is 

dissolved in water, and 0.02 % is in the gas phase. The spatial extent of VOC 

contamination has been much reduced. All these results agree closely with the simulation 

using the sequential code. The parallel code demonstrates similar speedup as for previous 

run segments. 
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6. CONCLUDING REMARKS 

 

A parallel simulator (TMVOC-MP) for three-phase non-isothermal flow of water, gas, 

and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional 

heterogeneous porous/fractured media has been developed. This parallel simulator uses 

fully implicit time differencing and solves large, sparse linear systems arising from 

discretization of the partial differential equations for mass and energy balance. TMVOC-

MP was developed based on the sequential TMVOC code. It is written in Fortran 90 with 

MPI for parallel implementation. 

 

The parallel simulator retains all the process modeling capabilities of TMVOC. Thus it is 

a versatile numerical simulator for multi-phase flows involving aqueous, nonaqueous, 

and gas phases, which may include several volatile organic compounds, along with water 

and a variety of non-condensable gases. All possible phase combinations in a water-air-

NAPL system are treated, including single-phase gas, aqueous, NAPL; two-phase gas-

aqueous, gas-NAPL, and aqueous-NAPL; and three-phase gas-aqueous-NAPL. Like 

TMVOC, TMVOC-MP has capabilities for modeling flow and transport processes in 

variably saturated media at ambient conditions, as well as under non-isothermal 

conditions such as electric resistance heating or steam flooding.  

 

TMVOC-MP is more efficient than its sequential counterpart, especially for larger 

problems. It provides a powerful tool for tackling larger-scale and more complex 

problems than can be solved currently by sequential codes. The new simulator will 

enhance modeling capacity in terms of model size and simulation time by 1-3 orders of 

the magnitude.  The code is designed to be easy to use and little learning is necessary for 

experienced TMVOC users.  
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