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T2SOLV: AN E"CED PACKAGE OF 
SOLVERS FORTHE TOUGH2 FAMILY 
OF RESERVOIR SIMULATION CODES 

GEORGE J. MORIDIS and KARSTEN PRUESS 

Lawrence Berkeley Nationa Sciences Division, 
I Cyclotron Road, 90-1 

Abstract - T2SOLV,is an enhanced package of matrix solvers for the TOUGH2 family of 
codes. T2SOLV includes all the Preconditioned Conjugate Gradient (PCG) solvers used 
in T2CG1, the current solver package, as well as LUBAND, a new direct sglver, and 
DLUSTB, a PCG solver based on the BiCGSTAB method. Additionally, T2SOLV 
includes the D4 grid numbering scheme and two sets of preprocessors. Results fiom test 
problems indicate that LUBAND is faster, more reliable and requires less storage than 
W 8 ,  the current direct solver. BiCGSTAB solver is showq to be superior to the other 
PCG methods in T2SOLV. Finally, the preprocessors improve the performance of the 
PCG solvers and allow the solution of previously intractable problems. 

INTRODUCTION 

This paper discusses enhancements of the linear solvers for the TOUGH2 general- 
purpose fluid and heat flow simulator. TOUGH2 is capable of modeling most of the 
processes arising in the n a h l  state of geothermal res&o& and in response to 
production and injection operations. It can handle the appearance and disappearance of 
liquid and vapor phases, boiling and condensation, multiphase flow due to pressure, 
gravity, and capillary forces, vapor adsorption with vapor pressure lowering, heat 
conduction, and heat exchange between rocks and fluids. It is applicable to flow systems 
of arbitrary geometry fiom one to three dimensions, and has special provisions for flow in 
fractured-porous media. A brief summary of the equations and methods used in 
TOUGH2 is given in the appendix; additional infon&tion is available in a number of 

orts [Pmess, 1991, 1995; Pmess et al., 1996, 1997), and on the web at URL 
://ccs.lbl.gov/TOUGH2/. 

cal simulation 
le media arises fiom the solution of large systems of linear equations Ax = b, 

where A is a banded matrix of order N, x is the vector of the unknowns, and b the right- 
hand side. These are solved using either direct or iterative methods. The most reliable 
solvers are based on direct methods. The robustness of direct solvers comes at the 
expense of large storag quirements and execution times. Iterative techniques exhibit 



problem-specific perfomance and lack the generality, predictability and reliability of 
direct solvers. These disadvantages are outweighed by their low memory requirements 
and their speed especially in the solution of very large matrices. 

In the TOUGH2 general-purpose reservoir simulator [Pruess, 1991 ] the matrix A 
is a Jacobian with a consistent structure. For a flow problem with AEQ mass-and-energy 
balance equations per grid block, the Jacobian consists of many AEQ-dimensional sub- 
matrices. For a grid block n, derivatives corresponding to accumulation terms will generate 
a sub-matrix in location (n,n). Each flow term between n and a neighboring grid block m 
will give rise to two off-diagonal sub-matrices in locations (n,m) and (m,n), and will also 
contribute to the diagonal sub-matrices at (n,n) and (m,rn). Thus, the incidence matrix will 
be symmetric, although, for multi-phase and non-isothermal problems, matrix A generally 
may be far from symmetric. Each grid block is typically connected only to a few other 
blocks so that A will be sparse. The Integral Finite Difference Method, IFDM, 
[Narasimhan and Witherspoon, 19761 used in TOUGH2 does not need to make reference 
to a global system of coordinates. Very irregular grid systems may be used, which may 
result in a nearly random, but symmetric, sparsity structure. However, for regular grid 
systems involving global coordinates, such as (r,z) and (x,y,z) grids, the IFDM is 
equivalent to conventional finite differences, giving rise to Jacobian matrices with regular 
banded structure. 

The Jacobian matrices generated fiom mass and heat balance equations for multi- 
phase non-isothermal flows have a number of properties that can make linear equation 
solution quite challenging. Matrix elements can have a very large numerical range, often 
spanning 20 orders of magnitude or more. Off-diagonal elements are proportional to time 
step size, and for “practical” time steps may be orders of magnitude larger than diagonal 
elements. In fact, diagonal elements may often be zero (see below). Thus, TOUGH2 
creates very challenging matrices which can be non-symmetric, not positive definite, not 
diagonally dominant and ill-conditioned, i.e., all the attributes that cause most iterative 
techniques to fail. In addition, the general-purpose nature of TOUGH2 allows simulation 
of a great diversity of flow problems which may produce quite different matrix 
characteristics. This explains the past heavy reliance of TOUGH2 on the robust but slow 
direct solver MA28 [Dug 19773, which has large and imprecise memory requirements 
and in 3-D simulations is limited to impractically small problems (l500 gridblocks). 

In the current TOUGH2 version, T2CG1 [Moridis and Pruess, 19951, a package of 
preconditioned conjugate gradient solvers, complements the MA28 direct solver and 
significantly increases the size of tractable problems. T2CG1 includes three 
Preconditioned Conjugate Gradient (PCG) solvers: (a) DSLUBC, a routine based on the 
Bi-Conjugate Gradient (BiCG) method, (b) DSLUCS, a Conjugate Gradient Squared 
(CGS) routine, and (c) DSLUGM, a Generalized Minimum Residual (GMRES) routine. 
Tests of T2CG1 on a variety of computing platforms and for problems with Jacobian 
matrices of order 30,000 have shown that the PCG routines in T2CG1 are significantly 
(and invariably) faster than MA28 and require far less memory [Moridis and Pruess, 
19951. 

T2CG1 is a reliable and fast solver package for most TOUGH2 simulations. In 
limited cases, however, the PCG solvers in T2CG1 are challenged by classes of certain 
very demanding numerical simulation problems, as well as by limitations in the underlying 
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algorithms of the PCG (such as occasional oscillato avior as steady-state is 
approached). 

olvers for the TOUGH2 
family of codes, which was develhped as a replacement for-T2CG1, the current solver 
package. T2SOLV includes all the PCG solvers used in T2CG1 as well as a new .routine, 
DLUSTB, based on the Bi-Conjugate Gradient Stabilized (BiCGSTAB) method. 
T2SOLV also replaces MA28 by LUBAND, a.genera1 banded-matrix direct solver. 
Additionally, it -includes an option for using the D4 ordering scheme and two sets of 
matrix preprocessors to enhance the PCG performance. 

In this paper we discuss , an enhanced pac 

THE LUBAND SOLVER 

LUBAND is a direct solver that replaces the direct solver MA28 currently used in the 
TOUGH2 family of codes. It is derived from routines in the LAPACK [1993] package, 
which have been enhanced and extensively. modified to conform to 
architecture and memory management approach. It is based on a LU de 
partial pivoting and row interchange, and allows the solution of systems with a large 
number of zeroes on the main diagonal. Unlike MA28 (which is a general solver), 
LUBAND is a banded matrix solver, and as such it capitalizes on the significantly lower 
and well-defined memory requirements of this class of solvers. Athough the savings in 
execution time and memory are maximized in matrices with banded structure, LUBAND 
is capable of solving any matrix generated by TOUGH2 ( i.e. even matrices with nearly- 
random sparsity structure) faster than MA28. < 

LUBAND can be applied without any problem in the current TOUGH2 version and 
is fully backward compatible with all older input data files. The MESHMAKER routine 
[Pruess, 19911, which discretizes the domain and generates the simulation grid in 
TOUGH2, was also enhanced to minimize the bandwidth of matrix A. Defining work W 
as the number of multiplications and divisions necessary to convert the full matrix to an 
upper triangular form and to perform back substitution, Price and Coakr [1974] showed 
that for direct solvers W =  NM2 and the minimum storage S = NB, where N is the order of 
the matrix and Mits half-bandwidth, the fill bandwidth being B = 2M+ 1. 

For a given problem size N, work and storage are minimized when M is minimized. If 
I ,  J ,  K areL the number of subdivisions in the x-, y- and z-directions respectively, the 
shortest half-bandwidth is M=JK when PBK. This is called standard ordering [A& 
and Settari, 19791, and the resulting matrices are banded. As W increases with the square 
of M, it is obvious that the penalty for non-optimization of the o 
be substantial. 

THE DLUSTB SOL 
- 

DLUSTB was developed based on the BiCGSTAB(m) algorithm [SZeijpen and 
Fokkema, 19931, an extension of the BiCGSTAB algorithm of van der Vorst [1992] 
which is still an option in T2SOLV. It was developed to solve nonsymmetric linear 
systems while avoiding the irregular convergence patterns of PCG solvers in situations 



where the iterations are started close to the solution (e.g. when approaching steady state). 
This is a weakness which afflicts most PCG solvers, and may lead to severe residual 
cancellation errors. BiCGSTAB(m) alleviates the irregular (oscillatory) convergence 
common to the BiCG [Fletcher, 9761 and CGS [SonneveZd, 19891 methods, thus 
improving the speed of convergence. It also alleviates potential stagnation or even 
breakdown problems which may be encountered in traditional BiCGSTAB. According to 
SZeijpen and Fokkema [1993], BiCGSTAB(m) combines the speed of BiCG with the 
monotonic residual reduction in the Generalized Minimum Residual (GMRES) method, 
while being faster than both. Theoretical analysis indicates that the BiCGSTAB(m) 
algorithm is especially well-suited to the solution of very large (i.e. N>50,000) problems 
[van der Yorst , 19921. 

The BiCGSTAB(m) algorithm is shown as pseudocode in Figure 1. The vectors r are 
residuals, and M is the preconditioner. The preconditioner used in DLUSTB is based on 
an incomplete LU (ILU) factorization of the matrix A, which can be obtained by the 
slightly modified Gaussian elimination procedure described in Moridis and Pruess [ 19921. 
The modified BiCGSTAB(m) can be interpreted as the product of the BiConjugate 
Gradient method BiCG [Fletcher, 197611 and repeatedly applied Generalized Minimum 
Residual GMRES( 1) method [Saad and Schultz, 19861. At least locally, a residual vector 
is minimized, leading to a considerably smoother convergence behavior. In the traditional 
BiCGSTAB, if the local GMRES( 1) stagnates, then the Krylov subspace does not expand 
and the method breaks down, in addition to failure possibilities due to weaknesses of the 
underlying BiCG algorithm. BiCGSTAB(m) addresses this problem by combining BiCG 
with GMRES(m). 

DLUSTB uses the Boeing-Harwell matrix storage scheme of TOUGH2, and has the 
same architecture as the other routines in T2SOLV. As in all other PCG solvers in 
T2SOLV, it uses a modified LU decomposition for preconditioning. Its memory 
requirements increase linearly with the order M ofthe Minimal Residual polynomial. For 
m = 4, it requires twice the memory of BiCG or CGS. The optimum value of M is 
calculated internally in DLUSTB. 

THE D4 SCHEME 

The Alternating Diagonal Scheme (D4) for gridblock ordering was added as an option 
to T2SOLV. The ordering of unknowns can drastically affect the amount of computation 
and storage. For a long time the best ordering scheme was the standard ordering [Aziz and 
Settari, 19791. Figure 2 shows the standard ordering of a 2-D grid. 

D4 is a matrix-banding technique, which derives its benefits from the numbering of the 
grid points. For the 2-D problem shown in Figure 2, Figure 3 depicts the D4 numbering 
scheme. More details can be found in Price and Coats [1974]. D4 ordering partitions the 
matrix into four distinct entities according to the equation 
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where Am and AM are diagonal submatrices, and ALL and AUR are sparse submatrices. 
This structure allows forward elimination on the equations in the lower half of A, which 
zeroes all original entries in ALL and transforms it into a atrix, while creating non- 
zero entries in the submatrix Am in the lower right qua 

klx=b* *[A, 0 A', 

sk denotes transformed ces. In the transformed equation Am and 
Am remain unchanged, while A', is a banded matrix. The equation 

- A',x, = bt 

can then be solved independently. The submatrix A', is of order N/2, and allows the 
calculation of x,, the lower half of x, from which the upper half xu is obtained by simple 
substitution. The resulting reduced m using either direct (D4- 
direct) or iterative @%iterative) methods. 

D4 numbering reduces the order of the matrix by 50% while not increasing the 
bandwidth. Depending on the grid geometry, D4 makes possible execution speed 
improvement by a factor ranging between 2 and 5.85 [Price and Coats, 19741 over 
standard ordering. Moreover, it reduces storage requirements by a factor of 2. Compared 
to iterative solvers, D4-direct is competitive in 2-D problems but slower in 3-D 
problems, while yielding a robust solution. D4 with LUBAND makes possible the 
robust direct solution of large multi-dimensional problems. However, D4 can only be 
used with regular grids. 

THE 2-PREPROCESSORS 

ally challenging matrices arisi UGH2 simulations 
involve a large number of zero entries on the main diagonal of the Jacobian. Such matrices 
are quite common in non-isothermal 'two-component systems (such as modeling of "two- 
water" geothermal systems involving separate tracking of two different masses of water in 

non-zero entries on the main diagonal of the es) and result in at least 

affected by the diagonal dominance of 
es on the main diagonal. Up to 0.1N zero elements have little 

effect on the PCG solvers in T2SOLV. Matrices with as many as 0.3N (and occasionally 
up to 0 may be tractable without any'special treatment, but usually 
require rations for convergence, i.e. exceeding 0.5N. 

The three Z-preprocessors implemented in T2SOLV enhance the pedormance of the 
PCG solvers in matrices with a large number of main-diagonal zeroes. These 
preprocessors are invoked only when (a) PCG solvers are used, (b) the matrices have 
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main diagonals populated with a large number of zeroes and (c) the number of the primary 
variables NEQ> 1. 

The first option, 21, replaces the zeroes with a small number (typically lO-S), and 
can substantially decrease the number of iterations for convergence in matrices with as 
many as 0.5Nzero main-diagonal elements. The performance of the PCG solvers in Z1- 
processed matrices deteriorates rapidly when the number of the main-diagonal zero 
elements exceeds 0.5N. 

The second pre-processing option, 22, is computationally more intensive and 
involves linear combinations of the flow equations in each gridblock. 22 includes a search 
algorithm that identifies the appropriate equation to be added to the equation 
corresponding to the zero main-diagonal element. By adding the two equations, the 
corresponding elements in the Jacobian are replaced with the non-zero sum of the original 
elements. The 22 option requires limited computational effort and significantly improves 
the performance of the PCG solvers. 

While very effective, Z2-preprocessing can still suffer from poor conditioning because 
of persistent lack of diagonal dominance and large differences in the magnitude of the 
added elements. The problem can sometimes be alleviated by the 23 option, which 
precedes the linear combination with normalization with respect to the largest element in 
the corresponding row. Addition of the normalized elements leads to an improved PCG 
performance because the relative magnitude of the elements and the corresponding 
roundoff error can be reduced. The 23 option is computationally more intensive than 22. 
The 22 and 23 preprocessors can easily handle up to 0.75N zero diagonal elements. 

THE 0-PREPROCESSORS 

The 0-preprocessors are applied to matrices with no zero entries on the main 
diagonal and aim to improve the PCG solver performance by improving the matrix 
conditioning. Three such preprocessors are available in T2SOLV. These options, 01 
through 03, are in essence steps in the replacement of the AM submatrix by the unit 
matrix through a central pivoting process, and involve increasing levels of computational 
effort. 

The 01 option eliminates the lower half of the main-diagonal submatrix, and thus 
removes NEQ-I subdiagonals fiom the global matrix. This reduces the computational 
effort by reducing the number of non-zero matrix entries and can improve the PCG 
performance. Execution times are burdened by the additional work for the elimination of 
the lower half of the matrix, but usually this is overcome by the savings in the PCG 
computations. 

In the 0 2  option, in addition to 01 the upper half of the main-diagonal submatrix is 
eliminated, resulting in a diagonal submatrix and eliminating an additional NEQ-1 
superdiagonals fkom the global matrix. Compared to the original, the 02-preprocessed 
matrix is significantly sparser and better-conditioned and the performance of the PCG 
solvers can be enhanced. The increased computational effort for the 0 2  preprocessing is 
usually compensated by the reduction in the PCG iterations. 
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The 03 option involves normalization of the 0 2  matrix, resulting in a unity main 
diagonal. 03  does not further increase matrix sparsity, but may improve the matrix 
conditioning . 

TEST PROBLEMS 

Test Problems la  and Ib 
Test problems la  and lb  involve studies of non-isothermal flow in a “two-water” 

system. Such systems are known to be the most challenging for the solvers in TOUGH2, 
as they routinely create matrices with 0.67Nzeros on the main diagonal. The PCG rou- 
tines in T2CGl have in the past been unable to solve even the smallest of this class of 
problems. The problem discussed here involves injection of “water 2” at a temperature of 
30 OC into a geothermal reservoir of “water 1” at 280 “C. The EOS 1 module of TOUGH2 
is used [Pruess, 1991 1. The two different masses of water are tracked independently. 
This system is composed of 2 water components and involves 3 equations per gridblock 
(NK = 2 and AEQ = 3, respectively, in the TOUGH2 nomenclature). The geometry, 
properties and discretization of the two problems are shown in Table 1. 

Problem l a  is one-dimensional, and consists of 5 gridblocks at the geothermal 
reservoir conditions. Cold water is injected into the first gridblock at the rate indicated in 
Table 1 for a total of 20 timesteps. The small size of the problem demonstrates that the 
computational difficulties encountered in this class of problems are not related to the size 
of the matrix, but rather to fundamental issues of matrix conditioning. Table 2 and Figures 
4 through 8 show the performance of the various solvers in T2SOLV. For comparison, 
the same scale was used in Figures 4 through 8, in which the closure criterion of the 
conjugate gradient (CG) iterations (104) is indicated by a horizontal dashed line. 

The results are shown in Table 2. MA28 and LUBAND can solve this problem 
without difficulty. None of the PCG methods is capable of solving the matrix with 20 
(Le. no preprocessing) or 21  matrix preprocessing. With 22 and 23 preprocessing, all 
iterative methods can solve the problem but their performance differs significantly. 

The pdormance of DSLUBC with the 22 and 23 preprocessors (Figure 4) is 
practically the same, requiring a total of 146 and 142 CG iterations respectively. With 
22, the maximum number of allowable iterations (21) is reached only once and the CG 
closure criterion is always met. With 23, the maximum number of allowable iterations is 
reached only once but at a different time step than for 22. The CG closure criterion is 
not met once. However, this does not pose a problem as the solution is sufficiently 
accurate to satisfy the Newtonian convergence criterion of 10-5. It is obvious that the 
most challenging matrices arise during the first few timesteps, after which solutions are 
obtained within 2-4 iterations. 

DSLUCS with 22 (Figure 5 )  reaches the maximum number of allowable iterations (21) 
at the first timestep (which needs a single Newtonian iteration), at which the CG closure 
criterion is not met, but which satisfies the Newtonian convergence criterion. At the first 
timestep, <DSLUCS with 23 requires a single Newton& iteration and a single’CG 
iteration to obtain a very accurate solution (a residual of 9.4~102). After the f h t  
timestep, the DSLUCS performance with 23 has a distinct advantage in terms of total 
number of CG iterations (70 vs. 92 for 22). With both 22 and 23, 6 to 10 iterations are 

, 

i 

7 



required for the CG solutions, a relatively large number compared to the size of the 
problem (15 equations). 

The performance of DSLUGM (Figure 6) is practically the same with either 22 or 23 
preprocessing, and requires the least number of total CG iterations (61 and 60 
respectively). CG convergence in this case is achieved within 1 or 2 iterations at all the 
timesteps and Newtonian iterations. DSLUGM with either 22 or 23 appears to be the 
best overall solver of Test Problem la. 

DLUSTB with 22 (Figure 7) is unable to solve the problem, and the matrix solution is 
stopped by the TOUGH2 main program at the fourth timestep after Newtonian 
convergence on the fmt iteration at two successive timesteps (and following repeated 
timestep cutbacks). When employing DLUSTB with 22, the maximum number of 
allowable iterations (21) is reached at each Newtonian iteration, while the residuals do not 
meet the CG closure criterion. The problem can be alleviated by reducing the A Q  to 0.4 s. 
DLUSTB with 23 has a much better performance, and while it reaches the limit of 21 CG 
iterations in the fmt three timesteps, it is capable of solving the problem at all 20 
timesteps. The residual at the third timestep exceeds the CG closure criterion, but the 
solution is sufficiently accurate to satisfy the Newtonian convergence criterion. It is 
noteworthy that after the first few iterations, DSLUGM with 23 requires consistently 
the fewest iterations to convergence, i.e. 1 or 2. 

The problem specificity of the PCG solvers is demonstrated in Figure 8, which shows 
the performance of DLUSTB with 22 and 2 3  in a variant of test Problem la, in which 
water is injected into the third (as opposed to the frst) gridblock. With this minor 
change, DLUSTB with 22 manages to solve the problem despite reaching the limit of 21 
iterations on the first 6 timesteps and not achieving the CG closure criterion three times. 
After the sixth timestep, the solution of the matrix poses no particular problem and is 
attained within 1-3 iterations. The DLUSTB performance with 23 is better than with 22 
in the first timesteps, and similar to that shown in Figure 7. After the sixth timestep, the 
22 and 23 preconditioning have practically the same effect on the DLUSTB perfQmance, 
which requires 1-2 iterations for convergence. 

With 22 and 23 preprocessing, the execution times are practically the same for all 
solvers (Table 2). The Jacobians at the first Newtonian iteration of the fmt timestep of 
Problem la  for ZO, 22 and 23 preprocessing are shown in Figures 9, 10, and 1 1 
respectively. The zeros on the main diagonal in Figure 9 are replaced by non-zero entries 
in Figure 10 after linearly combining the gridblock equations by the 22 preprocessor. 
Further manipulations result in the 23 matrix of Figure 1 1. 

Problem lb involves a 3-D domain consisting of 9 x 8 ~ 5  = 360 gridblocks in (x,y,z), 
resulting in a total of N = 1080 equations. The fundamental weakness of MA28, i.e. its 
large (especially for 3-D problems) and not well defined memory requirement, i s  obvious 
in the problem. Despite memory allocation 15 times larger than the one needed for the 
LUBAND solution, MA28 could not complete the LU decomposition due to insufficient 
memory. 

Table 3 and Figure 12 show that DLUSTB has the best performance. It is the fastest 
and requires the least number of PCG iterations to convergence. DLUSTB seems to be 
the only solver that can proceed with Z1-preprocessing. Note that the use of the Z- 
preprocessors makes possible the solution of a previously-intractable problem by all the 
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PCG solvers in T2SOLV. 
performance. 

Test Problem 2 
a laboratory experiment in a heat convection 

cell. A porous medium consisting of glass beads fills the annular region between the two 
vertical concentric cylinders. Application of heat generates a thermal buoyancy force, 
giving rise to the development of convection cells. This problem has been’discussed in 
detail by Moridis and Pruess [1992]. The EOSl module is used. The domain consists of 
16x26 = 416 gridblocks in (r,z), with NK = 1 and NEQ = 2, ting in a total of N = 832 
equations. 

Table 4 and Figures 13 and 14 show the performance of the various solvers in 
Problem 2, which does not pose any significant challenges to the T2SOLV routines. 
DLUSTB is the fastest routine and requires the least number of iterations to convergence. 

In this 2-D problem, LUBAND appears as a competitive alternative. The effect of 
the 0 1  preprocessor is pronounced in terms of PCG iterations and execution times in 
DSLUBC and DLUSTB, but seems to be limited in DSLUCS and DSLUGM. The 
evolution of residuals of DSLUCS and DSLUGM in the first Newtonian iteration of the 
first timestep is identical with and without 01 preprocessing (Figures 13 and 14);while 
the DSLUCS execution time with 0 1  increases. Conversely, the use of the 0 2  and 0 3  
preprocessors seems to offer the greatest improvement in the performance of DSLUCS 
and DSLUGM. 

Test Problem 3 
id and mass flow in a mid-sized three-dimensional model 

of a geothermal reservoir. The basic computational grid is composed of 15x15~20 = 4500 
grid blocks in (XJJ). Cold water is injected through 4 wells, while hot water is with- 
drawn from 5 wells. EOSl is used with NK = 1, NEQ = 2, resulting in a total of N =  
9000 equations; I 

The solver performance is shown in Table 5. This is a relatively large but well- 
behaved problem, the size of which precluded the use of a direct solver. The use of D4 
allowed a direct solution by LUBAND, which is competitive with the PCG solutions. 
D4 with DLUSTB had a performance on a par with DLUSTB, the fastest PCG solver. In 
light of the minor overhead needed to set up the D4 system, this result is very 
encouraging. 

DLUSTB demonstrated its superiority by being the fastest solver and requiring the 
least number of PCG iterations to convergence. DSLUGM seems to be a6 inappropriate 
method for this type of problem. As expected, the benefits of 0-preprocessing in this 
well-behaved system are not evident in the execution times, although the number of PCG 
iterations are often reduced. It is noteworthy, however, that despite the increased 
computational load, the execution times for the 0-preprocessed solutions are practically 
identical to those without any preprocessing. 

An important feature of TOUGH2 is the user’s complete control over the numbering 
sequence of the gridblocks. To demonstrate the robustness of the iterative solvers, the 
order of the elements in the input file was rearranged by (a) generating 4500 random 
numbers, (b) ranking them, and (c) renumbering the sequence of grid elements according to 

The 22 preprocessor seems to offer the best overall 

Test problem 2 involves simulation 

Test problem 3 
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the ranking of the corresponding random number. This resulted in a matrix which, while 
maintaining the same number of non-zero entries, had a sparsity pattern which was 
almost symmetric but practically random in appearance. The effect of random numbering 
on the ability of the iterative solvers to produce a solution is shown in Table 6. All the 
solvers were capable of solving the problem, but required longer execution times than for 
the well-ordered case because the sparsity pattern of the matrix does not allow taking full 
advantage of the benefits of preconditioning and PCG solvers, which are most 
pronounced in well-ordered banded matrices. DLUSTB is again the fastest solver and 
rquires the least number of PCG iterations, and DSLUCS is the second best solver. The 
execution times of the solvers are about 50% longer than for the well-ordered case, while 
that for DSLUGM is about 150% longer. It is remarkable that the relative speed of the 
solvers also remains the same as in the well-ordered case. 

T a t  Problem 4. 
This problem examines non-isothermal flow in a simple two-dimensional model of a 

heterogeneous porous medium. The basic computational grid has a grid spacing of dx = 
0.25 M, Ay = 0.125 my for a total of 80 x 120 = 9600 grid blocks (Figure 15). The y-axis is 
rotated 900 against the horizontal to make the section vertical. A mesh preprocessing 
program is then used to place impermeable obstacles with lengths uniformly distributed in 
the range of 2-4 m (Figure 15). Problem parameters are chosen representative of typical 
alluvial soils and are given in Table 7. 

The heterogeneous medium described above has been used to study the behavior of 
liquid infiltration plumes in isothermal systems [Pruess, 19941, and has been discussed in 
detail by Moridis and Pruess [ 19951. In this problem, water at a temperature of 30 OC is 
injected uniformly at a total rate of 1 kgh into the fully-saturated domain across the top 
of the domain, while the bottom boundary is maintained at a constant pressure and 
temperature. The entire domain is initialized in single-phase conditions, at a pressure of P 
= 4.0~107 Pa, and a temperature of 280 OC. The simulation is performed with the EOSl 
fluid property module using NK = 1 and NEQ = 2, for a total of N = 19200 equations. 
This problem was chosen because it had confounded both the DSLUBC and the 
DSLUGM solvers [Moridk and Pruess, 19951, i.e. the building blocks of the traditional 
Bi-CGSTAB method. The pedormance of the DLUSTB was expected to be an indicator 
of the robustness of the Bi-CGSTAB(m) algorithm. 

The simulation results are shown in Table 8. The size of the problem precluded 
the use of direct solvers. The superiority and efficiency of the DLUSTB routine in the 
solution of this problem is clear. DLUSTB required 181 1 CPU sec and was significantly 
faster than DSLUCS, which required 2213 CPU sec. They were both significantly faster 
than DSLUBC (10063 sec) and DSLUGM (10139, both of which reached repeatedly the 
maximum number of iterations (because of break-down or stagnation) and needed repeated 
timestep size reductions in order to complete the 10-timestep run. 
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. .  
CONCLUSIONS AND SUMMARY 

The following conclusions can be drawn: 
(1) Without any matrix p essing, the BiCGSTAhfgorithm coded in DLUSTB 

is shown to be a fast and efficient solver which outperforms the other PCG routines. It is 
the fastest and the yost robust in T2SOLV and is shown to be practically.fiee of 
stagnation, oscillation, and divergence problems. 

(2) The use of the 2-preprocessors makes pos le the solution of problems which 
were previously intractable to all the PCG solvers. The combination of the Z- 

’ preprocessors with the BiCGSTAB routine gives the best performance in such problems. 
(3) In problems which are known to confound the other PCG solvers, DLUSTB 

converges smoothly thout invoking the matrix-preprocessing 
facility. 

(4) The 0-preprocessors are shown to improve the robustness and decrease the 
number of iterations to convergence, but their effect depends on the PCG solver in 
T2SOLV. DLUSTB appears to be the solver most consistently responsive to the 0- 
preprocessors. In well-behaved proble of the 0-preprocessors on the 
execution speed is not significant. 

(5 )  LUBAND is shown to be consistently faster and more reli than MA28, and 
can solve much larger problems. 

(6) The gains in execution speed when the D4 scheme is used in regular grids are 
shown to be significant (especially compared to the direct solution). D4-direct seems to 
be competitive (in speed) to the PCG solvers in medium-sized problems. 

In large problems (especially in 3-D systems) and when not limited by significant 
memory requirements, D4-direct will still offer a predictably large improvement in 
execution speed over the direct solution, but is expected to be consistently and 
significantly outperformed by the PCG solvers. The performance of the D4-iterative 
approach (in which the reduced matrix is solved by the PCG solvers) has not yet been 
fully assessed. 

SOLV enables the user of the TOUGH2 family of codes to solve some of the most 
challenging numerical problems (previously tractable only with direct solvers) using the 
PCG routines. The suite of PCG solvers includes all the T2CG1 routines, and is en- 
hanced by the addition of DLUST3 (based on the BiCGSTAB(m) algorithm), which 
combines speed of convergence with monotonic residual reduction and alleviates the 
oqcillatory behavior of solutions as steady-state is approached (a common problem to 
most PCG solvers). T2SOLV enhances the performance ustness of the PCG 
solvers by introducing a set of matrix preprocessors. onally, it introduces 
LUBAND, a new direct solver capable of solving problems orders of magnitude larger 
than the MA28 routine in T2CG1. It also doubles ,the size of problems tractable with 
direct solvers by implementing a 04 ering option. 

t - This wo Assistant Secretary for Energy 
Efficiency and Renewable Energy, Office of Geothermal Technologies, of the U.S. 
Department of Energy, under contract No. DE-ACO3-76SFOOO98. Drs. Curt Oldenburg and 
Stefan Finsterle are thanke their helpfid review comments. 
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Table 1. Parameters for Test Problems l a  and l b  

Initial Pressure 
Initial Temperature 
Permeability 
Porosity 

Relative Permeability 
All phases perfectly mobile 

Capillary Pressure 

krl= krg= I 

Zero capillary p ressure 

Geometry of Flow Domain -Problem l a  
1-D horizontal (x)  section 

fidding 

Injection wells 
Rate and location 

of Flow Domain -Problem l b  

gridding 
3-D horizontal (XJ) section 

Injection wells 
Rate and location 

P= 4.0x107Pu 
T= 280 *C 
k =  2.0~1043 m2 
4=  0.15 

5x1~1 blocksin (x,y,z) 
Ax= 200m 
Ay= 200m 
&= loom 
1 
30 kgkat (l,l,l) 

9x8~5 = 360 bIocks 
Ax= 200m 
Ay = 200 m 
Az= l o o m  
1 
30 kg/s at (3,3,5) 
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Table 2. Solver Performance in Problem la - At0 = 4 s 
(Macintosh PowerPC 9500/132) 

SOLVER I PP I D ~ S  I NI (Imx(#)l imn I IT I ET(S) 

- - - - MA28 20 51 0.58 
LU BAN D 20 51 - 0.52 - - - 

- DSLUBC I Fails 
z1 Fail< 

23 
DSLUCS - I Failz 

I - -..- _ _  

z1 Fails 
22 20 I 51 I 21 I 2 1  92 I 0.57 I I 23 I 20 I 51 1 4 1  1 1  70 I 0.56 

I 1 I 1 I 

- DSLUGM I I Fails 
21 Fails 
22  20 51 3 1 61 0.57 
23 20 51 3 1 60 0.56 

DLUSTB - Fails 

z1 Fails 
22 Fails 

22 (Ato=O.4~) 20 46 21 1 171 0.58 
23 20 51 21 1 136 0.58 

PP: Preprocessing 
Dts: Number of timesteps 
NI: Newtonian iterations 
Imx(#): Maximum number of PCG iterations (number of times reached) 
Imn: Minimum number of PCG iterations 
IT: Total PCG iterations 
ET: Execution time 
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Table 3. Solver Performance in Problem 1 b 
(Macintosh PowerPC 9500/132) 

21 
22 
23 

SOLVER I PP I Dts I NI I Imx I Imn I I T  I ET(s) 

Fails 
8 29 109 5 830 29.0 
8 28 109 7 877 29.6 

MA28 I Fails - insufficient memorv I 

22 
23 

LUBANDI - I 8 1  2 5 1 - 1 - 1 -  I . 63.9 

8 25 20 4 289 16.9 
8 25 27 4 288 17.0 

DSLUBC 1 - I Fails I 

DSLUCS I - I Fai Is I 
I 1 

Fails 
Fails 

22 8 30 51 7 531 21.3 
23- 8 28 27 2 496 19.3 

DLUSTB I - I Fails I 
I I I 21 I 15 I 94 I 109 I 7 I 6 4 2  193.2 I 
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Table 4. Solver Performance in Problem 2 
(Macintosh PowerPC 9500/132) 
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\ 

SOLVER 

MA28 

Table 5. Solver Performance in Problem 3 
(IBM RS/6000 370) 

PP I Dt I NI I Imx I Imn I IT  I ET 

Insufficient Memory 

LUBAND 

0 4  + 
LU BAN D 

D4 + 
DLUSTB 

. Insufficient Memory 

- 10 46 

- 10 46 
~ 

0 2  
I I I 

DSLUCS I - -1 10 1 46 

10 46 
0 1  10 46 
0 2  10 46 

q 75  

94 50 

930 95 
930 95 
930 95 

- - - 
1736 

2623 
- 
2477 
2475 

205 1 
2034 
2033 

4842 
4994 
51 13 

1736 
1695 
1719 

- 

- 

- 

- 

- 
786 

426 

579 
565 
563 

488 
485 
487 

2087 
21 78 
21 89 

423 
42 1 
429 

- 
- 

- 

- 

- 

- 

Table 6. SoIver Performance in Problem 3 with 
Random Element Numbering (No 0-Preprocessing) 

(IBM RS/6000 370) I 
SOLVER I PP At- NI Imx Imn I IT  1 ET(sec). 

I -  I I 
DSLUBC - I 25 165 417 78 13697 1954 

DSLUCS - 25 165 901 61 11998 1847 

DSLUCM - 25 175 930 138 84702 7383 

DLUSTB - 25 164 513 52 8899 1520 

17 



I 

Table 7. Parameters for Test Problem 4 

Permeability 
Porosity 

Relative Permeability 
van Genuchten function [1980] 

irreducible water saturation 
exponent 

Capillary Pressure 
van Genuchten function [1980] 

irreducible water saturation 
exponent 
strength coefficient 

Geometry of Flow Domain 
2-D vertical (x,y) section 

width (x) 

gridding 
depth 0 

heterogeneity: stochastic distribution of 
I impermeable obstacles 

@= 0.35 

Si,-= 0.15 
I =  0.457 

SI,= 0.0 or 0.15 
A =  0.457 
a =  5 m-1 

20 m 
15 m 
80 x 120 = 9600 blocks 
Ax= 0.25 m 
Av= 0.125 m 
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Table 8. Solver Performance in Problem 4 
(IBM RS/6000 370) 

DSLUBC 

DSLUCS 

DSLUGM 

DLUSTB 

SOLVER I PP I Dt I NI I Imx I Imn I I T  I ET(sec) I 

- 10 100 1601 62 I 83041 10063 

- 10 84 321 36 14994 221 3 

- 10 83 1620 49  90516 10135 

- 10 84 315 117 11681 181 1 
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Fig. 1. The BiCGSTAB(m) algorithm. 
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Fig. 6. DSLUGM performance in Test Problem la. 
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Fig. 7. DLUSTB performance in Test Problem la (injection into the first gridblock). 
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Fig. 10. The Jacobian in Problem la with 22 preprocessing at the first Newtonian iteration of the first timestep. 
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Fig. 11 .  The Jacobian in Problem la with 23 preprocessing at the first Newtonian iteration of the first timestep. 
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Fig. 13. DSLUBC and DSLUCS performance with and without 0 1  preprocessing in 
Test Problem 2 (1st NI of the 1st Dt). 
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Fig. 15. The computational grid in Problem 4. The regions shown in black indicate 
impermeable obstacles. 
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APPENDIX 

or for nonisothemal flows of NK fluid 
ases. Its moduiiw structure was built on the 

recognition that th ance equations for flow in permeable media have 
the same form, regardless of the nature and number of fluid components and phases 
present. The balance equations for component k (k = water, C02, NaCl, tracers, ...) are 
written in integral form for an arbitrary flow region Vn with surface area G, as follows 

Here Mk is the mass of component k per unit PO volume, Fkis the mass 
nent k into Vn, n is the inward unit normal vector, and qk is the rate of mass 

'generation of component k per unit volume. For the heat balance, Mk is the amount of 
energy (heat) per unit PO s medium volume, Fk is the heat flux, and qk is the rate of heat 
generation per unit vo The mass accumulation terms contain a sum over the phases b 
(b = g-gas, w-aqueous). 

$ denotes porosity, SB is the saturation (pore volume fraction) occupied by phase p, rB is 
the f3 phase density, and Xb is the mass fiaction of component k in phase p. The heat 
accumulation term (k = h) includes contributions from both the solid and the fluid phases, 

where x i s  the soil grain density, CR is the heat capacity of the soil grains, T is the 
temperature, and us is the specific internal energy of phase g. 

The mass flux F is a sum over the fluxes in liquid and vapor phases, which are written 
as a multiphase version of Darcy's law, as follows (p = g, w). 

k denotes the permeability tensor, kr is relative permeability, m is viscosity, Pp is the 
pressure in phase By and g is acceleration of gravity. Heat flux contains conductive and 
convective components: 

F h  = -KVT+(h,F,+hgFg) (A.5) 



, 

with K the thermal conductivity of the rock-fluid mixture, and h the specific enthalpy. 
Thennophysical properties of water substance are calculated, within experimental 
accuracy, from steam table equations given by the International Formulation Committee 
[IFC, 19671. Empirical correlations are used for thermophysical properties of fluid 
mixtures that contain non-condensible gases and dissolved solids [Battistelli et al., 199rJ. 

For numerical solution, the continuum equations (A.l) are discretized in space and 
time. Space discretization is made with the “Integral Finite Difference” method [IFD; 
1967; Narasimhan urd Witherspoon, 19761. This method permits irregularly shaped grid 
blocks in 1, 2, and 3 dimensions. It includes double porosity, dual permeability, and 
multiple interacting continua (h4.INC) formulations for fractured-porous media as special 
cases. For grid systems of regular blocks referred to a fixed global coordinate system, the 
IFD reduces to conventional finite differences. Time is discretized fully implicitly as a 
ht-order (backward) finite difference. 

Discretization results in a system of coupled non-linear algebraic equations. These are 
cast in residual fonn and solved simultaneously by means of Newton-Raphson iteration. 
Iteration is continued until all residuals are reduced below a user-specified convergence 
tolerance. A choice of different algorithms is available for solving the linear equations 
arising at each iteration step. 
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